
 
 

 

 

 
Abstract—Mobile robots often find themselves in a situation 

where they must find a collision-free path from start to goal 
point in their environment, subject to constraints posed by 
environment boundaries and obstacles. In this work, we 
conduct and experiment for mobile robot path planning based 
on potential field method that relies on the use of Laplace’s 
Equation to constrain the generation of a potential function 
over regions of the configuration space of a mobile point-robot. 
An experiment based on finite-difference techniques shows a 
local minima-free motion with smooth path between the start 
and goal points. This work introduces the first application of a 
numerical technique, known as Red-Black Half-Sweep 
Successive Over-Relaxation (HSSOR-RB) iterative method, for 
mobile robot path planning. The results show that HSSOR-RB 
provides great potential for real application of mobile robot 
path generation. 
 

Index Terms — Mobile robot path planning, Red-Black 
Half-Sweep Successive Over-Relaxation (HSSOR-RB), 
Laplace’s Equation.  

I. INTRODUCTION 
This paper presents our work on implementing mobile 

robot path planning via numerical potential function in 
configuration space based on the theory of heat transfer. This 
heat transfer model creates an environment which is not only 
free of local minima but also beneficial for robot navigation 
control. In this work, the heat transfer problem is modeled 
with Laplace’s Equation. Solutions of Laplace's Equation are 
called harmonic functions, which consequently represent 
temperature values in the configuration space to be used for 
simulation of path generation.  

Various approaches had been used to obtain harmonic 
functions, but the most common method is via numerical 
techniques due to the availability of fast processing machine 
and their elegant and efficiency in solving the problem. In 
this work, several experiments were conducted to study the 
performance of using Red Black Half-Sweep Successive 
Over-Relaxation (HSSOR-RB) iterative method, in 
generating mobile robot path. The efficiency of HSSOR-RB 
is studied by comparing its performance with the previous 
iterative methods that employed Red-Black strategy, i.e. 
Red-Black Full-Sweep Gauss-Seidel (FSGS-RB) and 
Red-Black Half-Sweep Gauss-Seidel (HSGS-RB). 
Furthermore, varying number of obstacles is considered to 
study the effectiveness of HSSOR-RB method. 
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II. LITERATURE REVIEW 
In the literature, Connolly and Gruppen [1] reported that 

harmonic functions have a number of properties useful in 
robotic applications. The use of potential functions for robot 
path planning, as introduced by Khatib [5], views every 
obstacle to be exerting a repelling force on an end effector, 
while the goal exerts an attractive force.  

Koditschek [6], using geometrical arguments, showed that, 
at least in certain types of domains, there exists potential 
functions which can guide the effector from almost any point 
to a given point. These potential fields for path planning, 
however, suffer from the spontaneous creation of local 
minima. 

Connolly et al. [7] and Akishita et al. [8] independently 
developed a global method using solutions to Laplace’s 
equations for path planning to generate a smooth, 
collision-free path. The potential field is computed in a global 
manner, i.e. over the entire region, and the harmonic 
solutions to Laplace’s equation are used to find the path lines 
for a robot to move from the start point to the goal point. 
Obstacles are considered as current sources and the goal is 
considered to be the sink, with the lowest assigned potential 
value. This amounts to using Dirichlet boundary conditions. 
Then, following the current lines, i.e. performing the steepest 
descent on the potential field, a succession of points with 
lower potential values leading to the point with least potential 
(goal) is found out.  

It is observed by Connolly et al. [7] that this process 
guarantees a path to the goal without encountering local 
minima and successfully avoiding any obstacle. Previous 
works [2], [3] show that block methods perform much faster 
than the standard Jacobi and Gauss-Seidel iterative methods. 

Several other methods are also proposed for solving path 
planning problem. In [16], an algorithm that employs 
distance transform method is reported. Jan et al. [17] 
conducted researches on utilizing geometry maze routing 
algorithm. The work by Bhattacharya and Gavrilova [18] 
uses Voronoi Diagram to solve path planning problem. 

III. PHYSICAL ANALOGY 
Assuming that a real robot vehicle can be reduced to a 

point moving in a known environment, path planning 
problem of the robot can be formulated as a steady-state heat 
transfer problem. In the heat transfer analogy, the goal is 
treated as a sink pulling heat in. The environment boundaries 
and obstacles are considered as heat sources and are fixed 
with constant temperature values. As the result of a heat 
conduction process, a temperature distribution develops and 
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the heat flux lines that are flowing to the sink fill the 
workspace. Such a field can be seen as a communication 
medium among the goal, obstacles and robots. The path can 
be easily found by following the heat flux.  

IV. HARMONIC FUNCTIONS 

A harmonic function on a domain nR⊂Ω  is a function 
which satisfies Laplace’s equation, 
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where ix  is the i-th Cartesian coordinate and n is the 
dimension. In the case of robot path construction, the 
boundary of Ω  (denoted by Ω∂ ) consists of the outer 
boundary of the workspace and the boundaries of all the 
obstacles as well as the start point and the goal point, in a 
configuration space representation. The spontaneous creation 
of a false local minimum inside the region is avoided if 
Laplace’s equation is imposed as a constraint on the 
functions used, as the harmonic functions satisfy the 
min-max principle.  

The gradient vector field of harmonic functions has a zero 
curl, and the function itself obeys the min-max principle. 
Hence the only types of critical points which can occur are 
saddle points. For a path-planning algorithm, an escape from 
such critical points can be found by performing a search in 
the neighbourhood of that point. Moreover, any perturbation 
of a path from such point results in a path which is smoothes 
everywhere. 

In this paper, our study focuses on attempting to solve 
Laplace’s equation in Eq. (1) via numerical technique using 
point iterative method. The work in [2],[3],[19] reported the 
performance of several point iterative methods that 
successfully produced satisfying results. This study proposes 
faster technique in solving Eq. (1) known as HSSOR-RB 
iterative method to improve the performance of the previous 
methods. 

V. CONFIGURATION SPACE 
In the framework used in this study, the robot is 

represented by a point in the configuration space, or C-space. 
The path planning problem is then posed as an obstacle 
avoidance problem for the point robot from the start point to 
the goal point in the C- space.  

The C-space can have either square or rectangular outer 
boundaries, having projections or convolutions inside to act 
as barriers. Apart from projections of the boundaries, some 
obstacles inside the boundary are also considered. The 
C-space is designed in grid or discrete form and the 
coordinates and function values associated with each node 
are computed iteratively by applying numerical technique to 
satisfy equation in Eq. (1).  

The highest temperature is assigned to the start point 
whereas the goal point is assigned the lowest. In some cases 
with Dirichlet conditions, the start point is not assigned any 
temperature. In this study, Dirichlet boundary conditions are 

employed, thus the results are processed by assigning 
different temperature values to the boundaries and obstacles, 
and lowest temperature for the goal point. No temperature 
values are assigned to the start points. 

In this work, solution to the Laplace’s equation were 
examined with Dirichlet boundary conditions 

  c=Ω∂Φ |  
where c is constant. 

VI. PATH PLANNING 
Once the harmonic function under the boundary conditions 

is established, the required path can be traced by the steepest 
descent method, following the negative gradient from the 
start point through successive points with lower temperature 
till the goal, which is the point with the lowest temperature. 
The coordinates and the nodal gradients of temperature 
obtained from the finite difference analysis can be used to 
draw the path. 

A. Formulation of Red-Black Half-Sweep Successive 
Over-Relaxation (HSSOR-RB) Iterative Method 
In the literature, Jacobi [9] and Gauss-Seidel [7] are the 

most common approaches and standard choices for solving 
any linear system. More recently, Daily and Bevly [11] use 
analytical solution for arbitrarily shaped obstacles. In this 
study, we conduct an experiment with faster numerical solver 
than in [2],[3][7],[9], and [19] by employing HSSOR-RB 
iterative method for solving the Laplace’s equation.   

The half-sweep iterative method is introduced by Abdullah 
[10] via the Explicit Decoupled Group (EDG) iterative 
method to solve 2-D Poisson equations. This method is also 
applied in solving partial differential equations in Ibrahim & 
Abdullah [12], Yousif & Evans [13], and Abdullah & Ali 
[14]. A modified version of this method is also investigated 
by Sulaiman et al for solving diffusion equation [15]. Early 
work on combining Successive Over-Relaxation (SOR) with 
other technique was reported in [22].  

Let us consider the two-dimensional Laplace equation in 
Eq. (1) defined as 
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By using the second-order central difference scheme, we 

can simplify the five point second-order standard finite 
difference approximation equations for problem (2) as 
generally stated in the following equation 
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The equation in Eq. (3) shown above is the standard 

Gauss-Seidel iterative method for solving linear system. 
Instead of computing all points in the environment, only 

half of the points will be computed with half-sweep approach 
thus reducing the total computational time considerably. As 
shown in Figure 1, the implementation of half-sweep 
iteration considers the inner points (black dot) only compared 
to the full-sweep approach which iterates all inner points in 
the environment. 



 
 

 

 

 

    
 (a) (b) 

Figure 1. (a) All nodes will be considered in full-sweep iteration case. (b) For half-sweep iteration, only black (black dot) nodes are 
considered. 

 

 

     

 (a) (b) 

Figure 2: The stencil of (a) full-sweep and (b) half-sweep cases, respectively. 

 
The half-sweep iteration technique was first applied in 

robotics application in [19]. Essentially, the half-sweep 
iteration is based on the five points rotated finite difference 
approximation equation, which was first introduced by 
Abdullah [21] for solving problem in Eq. (1). The main 
characteristic of such iterative method is to reduce the 
computational complexity by considering only half of the 
total node points. 

The stencil for full-sweep case is shown in Figure 2 (a), 
whereas Figure 2 (b) shows the stencil of half-sweep iteration 
technique. The half-sweep approximation equation is 
actually a rotated 45° of Eq. (3) as shown in Eq. (4). 
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When SOR is embedded to Eq. (4) by adding a weighted 

parameter, see Young [20],[21], the implementation of the 
half-sweep iteration can be shown as 
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Furthermore, Red-Black ordering strategy [23],[4] is 

applied to the half-sweep iteration technique to demonstrate 
the effectiveness of HSSOR-RB in solving path planning 

problem. With Red-Black ordering, first loop starting at the 
even row of bottom left, then going up to next even row and 
so on, see Eq. (6). Then when all points on even rows are 
finished, do the computation for points on odd rows, again 
starting on odd row of bottom left. This particular ordering is 
very interesting, since it is completely parallel within the red 
points (points on even rows) and within the black points 
(points on odd row).  

Computation of red points at domain RΩ  

ni

UUUUUU k
ji

k
ji

k
ji

k
ji

k
ji

k
ji

,...6,4,2

,)1()(
4 ,1,11,11,11,1

1
,

=

−++++= +++−−+−−
+ ωω

 (6)
 

 
Computation of black points at domain BΩ  
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The iterative process of Eq. (6) and Eq. (7) is only 

terminated when there is no change of any node point from 
one iteration to the next. In this process, a very high precision 
of computation is required to avoid flat area in the final 
solution. Once the temperature values of all black node points 
are obtained, approximate values of the remaining node 
points will be obtained directly by direct methods. 
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Figure 3: The paths generated with HSSOR iterative method. (a) and (b) One obstacle. (c) and (d) Two obstacles. (e) and (f) 

Three obstacles. 

Table 1.  Performance comparison of the several numerical techniques with varying number of obstacles. 

 FSGS 
(one obstacle) 

FSGS-RB 
(one obstacle) 

HSGS-RB 
(one obstacle) 

HSSOR-RB 
(one obstacle) 

HSSOR -RB 
(two obstacles) 

HSSOR-RB 
(three obstacles) 

Number of 
iterations 19,716 19,067 8,436 546 477 296 

Maximum 
error 9.999-10 9.993-10 9.986-10 9.712-10 9.959-10 9.880-10 

Period in 
seconds 177.3 131.7 29.2 1.95 1.74 1.09 

 



 
 

 

 

B.  Simulation 
The experiment considered a static environment that 

consists of a goal point, three starting points and varying 
number of obstacles (Box shape object, L and T shape 
objects). Initially, the outer boundaries (walls) and obstacles 
were fixed with high temperature values. Goal point was set 
to very low temperature. All other free spaces were set to zero 
temperature value. Then, the iteration process was run on 
Intel Core 2 Duo CPU running at 1.83GHz speed with 1GB 
of RAM to compute temperature values numerically at all 
points in the environment. The iteration process was 
terminated when there was no more changes in temperature 
values, where it converged to zero error solution. The highest 
precision of solution was required to avoid flat area that 
would cause the path generation algorithm to fail to reach the 
goal point. A major improvement in this study was 
discovered by relaxing the requirement of zero error solution 
as reported in earlier work [19]. Instead of setting maximum 
error to zero, the value was set to very small value of 1.0-10. It 
was found that by setting such very small tolerance, it was 
sufficient to avoid flat area in the resulting temperature 
values. Moreover, the setting had reduced the number of 
iteration tremendously, thus produced the generated paths 
very rapidly.  

Table 1 shows the number of iterations, maximum error 
and period in seconds required to compute all temperature 
values in the environment for all numerical techniques 
compared in the experiment. For HSSOR-RB method, 
several weight values were tested to observe its effect in 
reducing the number of iterations, but 9.1=ω  were chosen 
for its best performance. Clearly, HSSOR-RB iterative 
method proved to be very fast compared to the previous 
methods. Note that the speed of computation gets faster as the 
number of obstacles increases. This is due to less number of 
nodes to be computed, since nodes occupied by obstacles are 
ignored during computation. 

Once the temperature values were obtained, the path was 
generated by performing steepest descent search from start 
points to goal point. In all experiments, all three paths were 
successfully generated. The process of generating the paths 
was very fast. From the current point, the algorithm simply 
picked the lowest temperature value from its four 
neighbourhood points. This process continues, until the 
generated path reached the goal point.   

Figure 3 (a) and (b) shows the generated paths in 
one-obstacle environment, Figure 3 (c) and (d) for 
two-obstacle environment and Figure 3 (e) and (f) for 
three-obstacle environment. As shown in Figure 3, the 
boundaries and obstacles temperature values are raised up for 
visualization purpose. The lowest temperature indicates the 
goal point. All other areas are almost flat due to very small 
difference in temperature values, except for the area close to 
the goal point. Note that FSGS-RB and HSGS-RB iterative 
methods produced very similar visual to one-obstacle 
HSSOR-RB method as shown in Figure 3 (a) and (b). 

The environment shown in Figure 3 represents an area of 
approximately 120x120 units. As shown in Figure 3, the 
three generated paths started from three different locations. 
In the experiment, all of them successfully ended at the same 
goal point with different obstacles setting, although they 

were differed in speed to reach the goal point. The generated 
paths successfully avoided the various shapes of obstacles in 
the environment. The somewhat jagged nature of the paths 
was due to the fact that no interpolation was performed here. 
Interpolation of the gradient would provide smoother paths. 

I. CONCLUSION 
The experiment in this study shows that solving robot path 

planning problem using numerical techniques are indeed 
very attractive and feasible due to the recent advanced and 
new found techniques, as well as the availability of fast 
machine nowadays. In this paper, it is shown that error 
tolerance can be set to a very small value to speed up the 
convergence rate. Such setting is sufficient to avoid flat areas 
that will cause the generated path to fail to reach the goal 
point. As shown in Table 1, the HSSOR-RB iterative method 
proved to be very fast (less than two seconds) compared to 
previous FSGS-RB and HSGS-RB methods.  
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