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Abstract—Data clustering is a powerful technique designed 

specifically for discerning the structure of and simplifying the 

complexity of large scale data. It is a technique commonly used 

for statistical data analysis, and is also used in many other fields, 

including machine learning, data mining, pattern recognition, 

image analysis, and bioinformatics, in which the distribution of 

information can be of any size and shape. An improved 

technique combining linearly decreasing weight particle swarm 

optimization (LDWPSO) with an acceleration strategy is 

proposed in this paper. Accelerated linearly decreasing weight 

particle swarm optimization (ALDWPSO) searches for cluster 

centers in an arbitrary data set and can effectively indentify the 

global optima. ALDWPSO is tested on six experimental data 

sets, and its performance is compared to the performance of 

PSO, NM-PSO, K-PSO, K-NM-PSO, LDWPSO and K-means 

clustering. Results indicate that ALDWPSO is both robust and 

suitable for solving data clustering problem. 

 
Index Terms—data clustering, linearly decreasing weight, 

particle swarm optimization. 

 

I. INTRODUCTION 

Machine learning techniques are mainly categorized into 

two kinds, supervised learning and unsupervised learning. 

Clustering analysis is a typical and very popular 

unsupervised learning technique. Clustering analysis is the 

process of grouping a set of objects into clusters so that 

objects within a cluster are similar to each other but are 

dissimilar to objects in other clusters [1] [2] [3]. When used 

on a set of objects, it helps identify some inherent structures 

present in the objects. The purpose of cluster analysis is to 

classify the clusters into subsets that have some meaning in 

the context of a particular problem. More specifically, a set of 

patterns, usually vectors in a multi-dimensional space, are 

grouped into some clusters. When the number of clusters, K, 

is known a priori, clustering may be formulated as the 

distribution of n objects in an N-dimensional space among K 

groups in such a way that the objects in the same group are 

more similar in some sense than those in the different groups 

[4]. This involves minimization of some extrinsic 

optimization criteria. The well-known K-means [5] algorithm, 

which has been successfully applied to many practical 
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clustering problems, suffers from several drawbacks due to 

its choice of initializations. The objective function of the 

K-means is not convex and hence it may contain many local 

minima. In recent years, many clustering algorithms based on 

evolutionary computing, such as genetic algorithms [6] [7] 

and particle swarm optimization [8],  have been introduced. 

Genetic algorithms typically sets out with some candidate 

solutions to the optimization problem, and then the 

candidates evolve towards a better solution through selection, 

crossover and mutation. Particle swarm optimization (PSO) 

is a population-based algorithm [9]. It simulates the behavior 

of naturally occurring swarm, e.g., a school fish, to achieve a 

self-evolving system. It searches automatically for the 

optimum solution in the search space, and the involved 

search process is not random. Depending on the nature of 

different problems, a fitness function decides the best way to 

conduct the search. The PSO algorithm has rapidly become 

popular and has been applied in neural network optimization 

[10], data clustering [11] [12], engineering design [13], etc. 

Although evolutionary computation techniques do eventually 

locate the desired solution, practical use of these techniques 

in solving complex optimization problems is severely limited 

by the high computational cost associated with the slow 

convergence rate. 

PSO applied to the clustering multi-dimensional space has 

shown outstanding performance. However, the rate of 

convergence when searching for global optima is still not 

sufficient [14]. A linearly decreasing weight particle swarm 

optimization (LDWPSO), in which a linearly decreasing 

inertia factor is introduced into the velocity update equation 

of the original PSO [15] is proposed in this study to solve this 

problem. The performance of LDWPSO is significantly 

improved over the original PSO because LDWPSO 

effectively balances the global and local search abilities of 

the swarm. The accelerated linearly decreasing weight 

particle swarm optimization (ALDWPSO) algorithm can be 

adapted to cluster arbitrary data by evolving the appropriate 

cluster centers in an attempt to optimize a given clustering 

metric. Results of the conducted experimental studies on a 

variety of data sets taken from several real-life situations 

demonstrate that ALDWPSO is superior to the K-means, 

PSO, LDWPSO, K-PSO, and K-NM-PSO algorithms. 

This work is organized as follows. In Section 2, the PSO 

algorithm, linearly decreasing weight and ALDWPSO 

clustering are described. In Section 3, experimental results 

and a discussion thereof are provided. Finally, concluding 

remarks are offered in Section 4. 

II. METHODS 
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A. Particle Swarm Optimization 

The robust and efficient PSO evolutionary computation 

learning algorithm was developed by Kennedy and Eberhart 

(1995) [9]. In the original PSO, each particle is analogous to 

an individual fish in a school of fish. It is a population-based 

optimization technique, where a population is called a swarm. 

A swarm consists of N particles moving around in a 

D-dimensional search space.  

The position of the ith particle can be represented by xi = 

(xi1, xi2, …, xiD). The velocity for the ith particle can be written 

as vi = (vi1, vi2, …, viD). The positions and velocities of the 

particles are confined within [Xmin, Xmax]
D
 and [Vmin, Vmax]

D
, 

respectively. Each particle coexists and evolves 

simultaneously based on knowledge shared with 

neighbouring particles. It makes use of its own memory and 

knowledge gained by the swarm as a whole to find the best 

solution.  

The best previously encountered position of the ith particle 

is denoted its individual best position pi = (pi1, pi2,..., piD), a 

value called pbesti. The best value of the all individual pbesti 

values is denoted the global best position g = (g1, g2, …, gD) 

and called gbest. The PSO process is initialized with a 

population of random particles, and the algorithm then 

executes a search for optimal solutions by continuously 

updating generations. At each generation, the position and 

velocity of the ith particle are updated by pbesti and gbest of 

the swarm population. The update equations can be 

formulated as: 
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where r1 and r2 are random numbers between (0, 1), and c1 

and c2 are acceleration constants that control how far a 

particle moves in a single generation. Velocities new

idv  and old

idv  

denote the velocities of the new and old particle, respectively. 
old

idx  is the current particle position, and new

idx  is the new, 

updated particle position. Eberhart et al. [16] [17] suggested 

values of c1 = c2 = 2. The inertia weight w controls the impact 

of the previous velocity of a particle on its current one. It is 

defined in Eq. (3). 
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In Eq. (3), rand is a randomly generated number between 

zero and one. 

 

B. Linearly Decreasing Weight Particle Swarm 

Optimization 

Shi and Eberhart proposed a linearly decreasing weight 

particle swarm optimization (LDWPSO), in which a linearly 

decreasing inertia factor was introduced into the velocity 

update equation of the original PSO [15]. The performance of 

LDWPSO is significantly improved over the original PSO 

because LDWPSO effectively balances the global and local 

search abilities of the swarm. In LDWPSO, wLDW is the 

inertia weight which linearly decreases from 0.9 to 0.4 

through the search process [15]. The equation for the linear 

decrease can be written as: 
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In Eq. (4), wmax is 0.9, wmin is 0.4 and Iterationmax is the 

maximum number of allowed iterations. 

 

C. ALDWPSO Clustering 

Although PSO has been successfully applied to many 

practical clustering problems, its convergence rate is rather 

slow and the global search ability for optimum solutions 

needs to be improved. We thus propose a combination of a 

linearly decreasing weight and an acceleration strategy to 

improve the performance of PSO. ALDWPSO consists of 

four major processes, namely the encoding and initialization 

of the particle, the acceleration strategy, the velocity and 

position update, and the fitness evaluation. The ALDWPSO 

procedure for data clustering is described below: 

 

Step1). Initial population and encoding: 3N particles are 

randomly generated, where each particle represents a feasible 

solution (cluster center) of the problem. N is computed as 

follows: 

dKN   (5) 

 

where d is the data set dimension and K is the anticipated 

number of clusters.  

A possible encoding of a particle for a two-dimensional 

problem with three clusters is illustrated in Fig. 1. The three 

cluster centers represented by this particle are (1.5, 2.7), (3, 

4.5), and (-5, -6). 

 

Step2). Acceleration strategy: In the initial steps, one-third 

of the particles are used to accelerate the convergence rate of 

the particles. The one-third of particles has been set after 

several experiments. The distances between data vectors 

within a cluster and the center of the cluster are defined in Eq. 

(6). The acceleration strategy recalculates the cluster center 

vectors using Eq. (7) and yields mean centers. The mean 

clusters then replace the original centers. The new position of 

the particle is thus given by:  
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Fig. 1. Encoding of a single particle in PSO 
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Fig. 2. Flowchart of the ALDWPSO clustering algorithm 
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where zj denotes the center vector of cluster j, xp denotes the 

p
th

 data vector, the subscript d is the number of features of 

each center vector, nj is the number of data vectors in cluster j 

and Cj is the subset of data vectors that form cluster j. 

 

Step3). Velocity and position update: The particles are 

moving through the search space in each iteration. The 

parameters wLDW are modified by the linearly decreasing 

weight based on Eq. (4). The particles’ velocity and position 

are dynamically updated by Eq. (8) and Eq. (2). 
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Step4). Fitness evaluation: The fitness value of each 

particle can be computed by following the fitness function. 

, ..., n j, ..., K, ,  iZX ij 11 fitness   (9) 

 

where K and n are the numbers of clusters and data sets, 

respectively. Zi is the cluster center i and Xj is the data point j. 

The pbesti and gbest values are updated if the new value is 

better than the old one. Step 3) is repeated until the 

termination condition is met. The flowchart of ALDWPSO is 

shown in Fig. 2. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

A. Data sets 

Six experimental data sets were used to validate our 

method. These data sets, named Vowel, Iris, Crude oil, CMC, 

ancer, and Wine, cover examples of data of low, medium and 

high dimensions. All data sets are available at 

ftp://ftp.ics.uci.edu/pub/machine-learning-databases/. Table 

1 summarizes the characteristics of these data sets. Given a 

data set with three features that is to be grouped into two 

clusters,  the number of parameters to be optimized in order 

to find the two optimal cluster center vectors is equal to the 

product of the number of clusters and the number of features, 

N = k × d = 2 × 3 = 6. The six real-life data sets are described 

below: 

 

(1) The Vowel data set (n = 871, d = 3, k = 6) consists of 871 

Indian Telugu vowel sounds. The data set has three 

features corresponding to the first, second, and third 

vowel frequencies and six overlapping classes {d (72 

objects), a (89 objects), i (172 objects), u (151 objects), e 

(207 objects), o (180 objects)}. 

(2) Fisher’s iris data set (n = 150, d = 4, k = 3) consists of 

three different species of iris flowers: Iris setosa, Iris 

virginica, and Iris versicolour. For each species, 50 

samples with four features each (sepal length, sepal width, 

petal length, and petal width) were collected. 

(3) The Crude oil data set (n = 56, d = 5, k = 3) consists of 56 

objects characterized by five features: vanadium, iron, 

beryllium, saturated hydrocarbons, and aromatic 

hydrocarbons. Three crude-oil samples from three zones 

of sandstone (Wilhelm has 7 objects, Sub-Mulnia has 11 

objects, and Upper has 38 objects) were used. 

(4) Contraceptive Method Choice (denoted CMC with n = 

1473, d = 9, k = 3). This data set is a subset of the 1987 

National Indonesia Contraceptive Prevalence Survey. 

The samples consist married women who either were not 

pregnant or did not know if they were pregnant at the time 

interviews were conducted. The problem is to predict the 

choice of the current contraceptive method (no 

contraception has 629 objects, long-term methods have 

334 objects, and short-term methods have 510 objects) of 

a woman based on her demographic and socioeconomic 

characteristics. 

(5) The Wisconsin breast cancer data set (n = 683, d = 9, k = 2) 

consists of 683 objects characterized by nine features: 

clump thickness, cell size uniformity, cell shape 

uniformity, marginal adhesion, single epithelial cell size, 

bare nuclei, bland chromatin, normal nucleoli, and 

mitoses. There are two categories in the data malignant  



 

 

 

Table 1. Characteristics of the used data sets 

Name of data set Number of classes Number of features Size of data set (size of classes in parentheses) 

Vowel 6 3 871 (72, 89, 172, 151, 207, 180) 

Iris 3 4 150 (50, 50, 50) 

Crude Oil 3 5 56 (7, 11, 38) 

CMC 3 9 1473 (629, 334, 510) 

Cancer 2 9 683(444, 239) 

Wine 3 13 178 (59, 71, 48) 

 

(444 objects) and benign (239 objects) tumors. 

(6) The Wine data set (n = 178, d = 13, k = 3) consists of 178 

objects characterized by 13 features, namely alcohol, 

malic acid, ash content, alcalinity of ash, concentration of 

magnesium, total phenols, flavanoids, nonflavanoid 

phenols, proanthocyanins, color intensity, hue, and 

OD280/OD315 of diluted wines and pralines. The results 

were obtained by chemical analysis of wines produced in 

the same region in Italy but derived from three different 

cultivars. The quantities of objects in the three categories 

of the data are: class 1 (59 objects), class 2 (71 objects), 

and class 3 (48 objects).  

 

B. Results and discussion 

In order to demonstrate the power of ALDWPSO, we 

compared our results to results obtained with the following 

methods: K-means, PSO, NM-PSO, K-PSO, K-NM-PSO and 

LDWPSO. The quality of the respective clustering was also 

compared, where quality is measured by the following two 

criteria: 

 

1. The sum of the intra-cluster distances, i.e. the distances 

between data vectors within a cluster and the centroid of 

the cluster, as defined in Eq. (6). A higher quality of 

clustering is indicated if the sum is relatively small. 

2. Error rate: the number of misplaced points divided by the 

total number of points, as shown in Eq. (10): 
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where n denotes the total number of points. Ai and Bi denote 

the data sets of which the ith point is a member before and 

after clustering, respectively. In Table 2 an example is shown, 

in which two data points (2, 6) and (1, 7) out of clusters 1 and 

2 are misplaced and the error rate is 2/5, i.e., 40%. 

The reported results are averages of 20 simulation runs, 

details of which are given below. The algorithms were 

implemented using Java. For each run, 10 × N iterations were 

carried out on each of the six data sets for every algorithm 

when solving an N-dimensional problem. The criterion 10 × 

N was adopted as it has been used in many previous 

experiments with great success in terms of effectiveness [14]. 

Table 3 summarizes the intra-cluster distances obtained 

from the seven clustering algorithms for the above data sets. 

The values reported are averages of the sums of intra-cluster 

distances over 20 simulations with standard deviations given 

in parentheses to indicate the range of values that the 

algorithms span, and the best fitness solution from the 20 

simulations. For all the experimental data sets, ALDWPSO 

outperformed the other five methods, as born out by a smaller 

difference between the averages and a smaller standard 

deviation. Please note that in terms of the best distance, PSO, 

NM-PSO, K-PSO, K-NM-PSO and LDWPSO all have a 

larger standard deviation than does ALDWPSO even though 

they may achieve a global optimum. This means that PSO, 

NM-PSO, K-PSO, K-NM-PSO and LDWPSO are weaker 

search tools for global optima than ALDWPSO if all methods 

are executed just once. It follows that ALDWPSO is more 

effective for finding global optimum solutions than the other 

five methods. 

Table 4 shows the mean error rates, standard deviations, 

and the best solution of the error rates from the 20 

simulations. For all the real life data sets except Crude Oil, 

ALDWPSO exhibited a significantly smaller mean and 

standard deviation compared to K-means, PSO, NM-PSO, 

K-PSO, K-NM-PSO and LDWPSO. Again, ALDWPSO is 

superior to the other five methods with respect to the 

intra-cluster distance. However, it does not compare 

favorably with the other methods for the Vowel, Iris, Crude 

Oil, and CMC data sets in terms of the best error rate as there 

is no absolute correlation between the intra-cluster distance 

and the error rate [14]. 

 

Table 2. Error rate calculations 

I Data point Ai Bi Not misplaced (0)/Misplaced (1) 

1 (2, 6) 2 1 1 

2 (6, 3) 2 2 0 

3 (1, 7) 2 1 1 

4 (5, 4) 1 1 0 

5 (8, 7) 1 1 0 

Number of misplaced point：2 



 

 

 

Table 3. Comparison of intra-cluster distances for the seven clustering algorithms 

Data set Criteria K-means PSO NM-PSO K-PSO K-NM-PSO LDWPSO ALDWPSO 

Vowel Average 159242.87 168477.00 151983.91 149375.70 149141.40 152392.6 148985.50 
 (Std) (916) (3715.73) (4386.43) (155.56) (120.38) (4935.466) (30.67) 
 Best 149422.26 163882.00 149240.02 149206.10 149005.00 149041.3 148967.20 
         
Iris Average 106.05 103.51 100.72 96.76 96.67 96.67 96.66 
 (Std) (14.11) (9.69) (5.82) (0.07) (0.008) (0.03) (0.0009) 
 Best 97.33 96.66 96.66 96.66 96.66 96.66 96.66 
         
Crude Oil Average 287.36 285.51 277.59 277.77 277.29 277.24 277.24 
 (Std) (25.41) (10.31) (0.37) (0.33) (0.095) (0.043) (0.039) 
 Best 279.20 279.07 277.19 277.45 277.15 277.21 277.21 
         
CMC Average 5693.60 5734.20 5563.40 5532.90 5532.70 5532.18 5532.18 
 (Std) (473.14) (289.00) (30.27) (0.09) (0.23) (9.5E-05) (2E-06) 
 Best 5542.20 5538.50 5537.30 5532.88 5532.40 5532.18 5532.18 
         
Cancer Average 2988.30 3334.60 2977.70 2965.80 2964.70 2964.39 2964.39 
 (Std) (0.46) (357.66) (13.73) (1.63) (0.15) (0.0001) (6.8E-06) 
 Best 2987 2976.30 2965.59 2964.50 2964.50 2964.39 2964.39 
         
Wine Average 18061.00 16311.00 16303.00 16294.00 16293.00 16292.68 16292.38 
 (Std) (793.21) (22.98) (4.28) (1.70) (0.46) (0.64) (0.24) 
 Best 16555.68 16294.00 16292.00 16292.00 16292.00 16292.19 16292.19 
Legend : Clustering results over 20 runs of the seven different algorithms for six data sets; the best average values are indicated in bold type. 

The results of K-means, PSO, NM-PSO, K-PSO,  K-NM-PSO can be found in [14]. 

 

Table 4. Comparison of error rates for the seven clustering algorithms 

Data set Criteria 
K-means 
(%) 

PSO  
(%) 

NM-PSO 
(%) 

K-PSO  
(%) 

K-NM-PSO 
(%) 

LDWPSO 
(%) 

ALDWPSO 
(%) 

Vowel Average 44.26 44.65 41.96 42.24 41.94 42.25 41.83 
 (Std) (2.15) (2.55) (0.98) (0.95) (0.95) (1.47) (0.32) 
 Best 42.02 41.45 40.07 40.64 40.64 40.18 40.87 
         
Iris Average 17.80 12.53 11.13 10.20 10.07 10.13 10.00 
 (Std) (10.72) (5.38) (3.02) (0.32) (0.21) (0.27) (0.00) 
 Best 10.67 10.00 8.00 10.00 10.00 10.00 10.00 
         
Crude Oil Average 24.46 24.64 24.29 24.29 23.93 26.52 26.34 
 (Std) (1.21) (1.73) (0.75) (0.92) (0.72) (0.66) (0.79) 
 Best 23.21 23.21 23.21 23.21 23.21 25.00 25.00 
         
CMC Average 54.49 54.41 54.47 54.38 54.38 54.38 54.38 
 (Std) (0.04) (0.13) (0.06) (0.00) (0.054) (0.00) (0.00) 
 Best 54.45 54.24 54.38 54.38 54.31 54.38 54.38 
         
Cancer Average 4.08 5.11 4.28 3.66 3.66 3.51 3.51 
 (Std) (0.46) (1.32) (1.10) (0.00) (0.00) (9.1E-16) (9.1E-16) 
 Best 3.95 3.66 3.66 3.66 3.66 3.51 3.51 
         
Wine Average 31.12 28.71 28.48 28.48 28.37 28.51 28.31 
 (Std) (0.71) (0.27) (0.27) (0.40) (0.27) (0.40) (0.28) 
 Best 29.78 28.09 28.09 28.09 28.09 28.09 28.08 

Legend : Clustering results over 20 runs of the seven different algorithms for six data sets; the best average values are indicated in bold type. 

The results of K-means, PSO, NM-PSO, K-PSO,  K-NM-PSO can be found in [14]. 

 

Table 5 lists the numbers of objective function 

evaluations required for the five methods after 10 × N 

iterations. The population size of PSO and K-PSO was 5N, 

of NM-PSO and K-NM-PSO it was 3N+1, and of LDWPSO 

and ALDWPSO it was 3N. The population size of 

ALDWPSO was smaller than the population of the other 

algorithms. This results in the lower computational cost of 

ALDWPSO. As an average of all data sets, the K-means 

algorithm needed the fewest function evaluations; however 

its results are also less than satisfactory as it tends to get 

trapped in a local optimum Tables 3 and 4. ALDWPSO and 

LDWPSO need fewer function evaluations than PSO, NM-P 



 

 

 

Table 5. The number of function evaluations for each clustering algorithm 

Data set K-means PSO NM-PSO K-PSO K-NM-PSO LDWPSO ALDWPSO 
 
Vowel 180 16,290 10,501 15,133 9,291 9,720 9,720 
 
Iris 120 7,260 4,836 6,906 4,556 4,320 4,320 
 
Crude Oil 150 11,325 7,394 10,807 7,057 6,750 6,750 
 
CMC 270 36,585 23,027 34,843 21,597 21,870 21,870 
 
Cancer 180 16,290 10,485 15,756 10,149 9,720 9,720 
 
Wine 390 73,245 47,309 74,305 46,459 45,630 45,630 
 

Average 215 26,833 17,259 26,292 16,519 16,335 16,335 

Legend : The best average values are indicated in bold type. The results for K-means, PSO, NM-PSO, K-PSO,  K-NM-PSO can be found in 

[14]. 

 

SO, K-PSO, and K-NM-PSO, and produce better outcomes 

than the other methods. K-NM-PSO is a hybrid technique 

that combines the K-means algorithm, Nelder-Mead simplex 

search [18], and PSO. In a direct comparison the 

performance of ALDWPSO proved to be better than the 

performance of K-NM-PSO. All the evidence of the 

simulations demonstrates that ALDWPSO converges to 

global optima with a smaller error rate and fewer function 

evaluations, which leads naturally to the conclusion that 

ALDWPSO is a viable and robust technique for data 

clustering. 

 

IV. CONCLUSIONS 

This article proposes a novel method for solving data 

clustering problem called ALDWPSO. The performance of 

the ALDWPSO clustering algorithm has been demonstrated 

on six publicly available data sets. ALDWPSO uses 

minimum intra-cluster distances as the metric, and searches 

the robust data cluster centers in an N-dimensional 

Euclidean space. Under the same metric, PSO, NM-PSO, 

K-PSO, and K-NM-PSOSO need more iterations to achieve 

a global optimum. The K-means algorithm may get stuck in 

a local optimum, depending on the choice of the initial 

cluster centers. The experimental results indicate that 

ALDWPSO reached a minimal error rate faster than the 

other methods, and thus reduces computational cost. In the 

future, we will employ ALDWPSO to other clustering 

problem in bioinformatics. We intend to develop a hybrid 

technique based on other clustering algorithms to enhance 

the performance of ALDWPSO. 
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