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Abstract- The focus of this study is developing a framework 

of Quantum Algorithm Processing Unit (QAPU). The 

framework shows a general plan for the architecture of 

quantum processor that is able to run quantum algorithms. 

The framework is used to increase the implementation 

performance of quantum algorithms and design Quantum 

Processing Unit (QPU). QAPU can be applied as a quantum 

node to design quantum multicomputer. At first, the hybrid 

architecture is designed for the quantum algorithms. Then, the 

relationships between the classical and quantum parts of the 

hybrid algorithms are extracted and the main stages of the 

hybrid architecture are determined. Next, the framework of 

QAPU is designed and developed. Some gates and connections 

are projected in the framework that can be applied for future 

quantum algorithms. Furthermore, the framework is 

implemented and simulated for the existing quantum 

algorithms on a classic computer. It is shown that the 

framework is appropriate for the quantum algorithms.  
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I. INTRODUCTION 

A quantum computer is a device that takes advantage of 

quantum mechanical effects to perform certain 
computations faster than a purely classical machine does. A 

quantum computer operates by manipulating those quantum 

bits or qubits with a fixed sequence of logic gates and 

performs it exponentially. The theory of quantum 

complexity determines when quantum computers may offer 

a computational speed-up over classical computers. At 

present, there are only a few general well-known techniques 

in the field of quantum computing and finding the problems 

that are amenable to quantum speedups is a high priority. 
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The Quantum Processing Unit (QPU) is the processor of 

quantum computer that is able to do quantum computations. 

A typical component in QPU is a quantum device that runs 

quantum algorithms; namely Quantum Algorithm 

Processing Unit (QAPU). This device can also be applied as 

a quantum node in quantum multicomputer. A quantum 

multicomputer is a distributed system that is composed of 

quantum computers connected through a quantum network. 
The nodes can be connected by creating an entangled state 

among them as well. The focus of this study is developing a 

framework of QAPU. QAPU can be used as a quantum 

node to design quantum multicomputer. At first, it was 

necessary to design the hybrid architecture for the quantum 

algorithms. This, however, required the analysis of the 

existing quantum algorithms as presented in the next 

section. Meanwhile, the relationship between the classical 

and quantum parts of the hybrid algorithms, and the main 

stages of the hybrid algorithm were determined. 

Furthermore, the framework was implemented and 

simulated for the existing quantum algorithms on a classic 
computer.  

 

II. RELATED WORKS  

Nowadays, many researchers focus on designing a 

quantum computer by implementing quantum algorithms. 

There are a few efficient quantum algorithms; David 

Deutsch and Richard Jozsa  showed an algorithm that could 
be run in poly-log time on a quantum computer, but 

required linear time on a deterministic Turing machine [1]. 

This may have been the first example of a quantum 

computer being shown to be exponentially faster than a 

deterministic Turing machine. Unfortunately, for the 

quantum computer, the problem could also be solved in 

poly-log time in a probabilistic Turing machine, a Turing 

machine which is capable of making a random choice.  

 In 1994 Peter W. Shor showed quantum factoring 

algorithm is a polynomial time algorithm for prime 

factorization and discrete Logarithms on a quantum 

computer [2]. All known algorithms for factoring an n-bit 
number on a classical computer take time proportional to 

O 2𝑛   time and in the best known algorithm to 

O(exp(n1/3)) time. But Shor’s algorithm for factoring on a 

quantum computer takes time proportional to O(𝑛2  log(n)). 
Lov Grover in 1996 discovered the quantum search 

algorithm. It is used to solve NP-hard problem [3]. 
Grover’s search algorithm can search an unstructured space 

of N possibilities in O( 𝑁) time, and the classical computer 

can do search on average in O 𝑁 . It is sometimes referred 



to as amplitude amplification and has been found to be 

useful for quantum counting, and as a wrapper for other 

algorithms [4, 5]. The speedup of Grover’s algorithm is 

achieved by exploiting both quantum parallelism and the 

fact that in quantum theory a probability is the square of the 

probability amplitude. Bennett and co-workers [6] and 

Zalka [7] showed that Grover’s algorithm is optimal. No 

classical or quantum algorithm can solve this problem faster 

than a time of order. 

Furthermore, other algorithms are Simon’s algorithm to 

finds the hidden string [8], Hallgren’s algorithm to solve 

the Pell’s equation [9], or the topic of quantum random 

walks [10, 11]. Nonetheless, efficient quantum algorithms 

are very limited in number and scope; no real breakthrough 

has yet been achieved in physical implementations. Most 

importantly, these algorithms are not still matured 

adequately to be applied in real quantum computations. 

The main objective of this study was to design and 

analyze a framework for the processor architecture of a 

quantum computer which executes the quantum algorithms. 
At first, the quantum algorithms were analyzed to find the 

hybrid architecture and a framework for the quantum 

algorithms. Meanwhile, the hybrid architecture was 

designed for the quantum algorithms. Furthermore, the 

relationship between the classical and quantum parts of the 

hybrid algorithms, and the main stages of the hybrid 

algorithm were determined as presented in next section. 

Finally the designed framework was implemented and 

simulated for the existing quantum algorithms on a classic 

computer.  

 

III. HYBRID ARCHITECTURE  

In its simplest form, a quantum algorithm consists of a 

unitary transformation and a subsequent measurement of 

the resulting state. For the traditional computational tasks 

which include searching or mathematical calculations, 

efficient quantum implementations often have the form of 

probabilistic algorithms. 

The quantum algorithms such as Shor's algorithm consist 
of two parts. The first part is a classical algorithm which 

can be run on a classical computer, while the second part is 

the quantum algorithms that can be run on a quantum 

computer or simulated on a classical computer. Figure 1 

shows the relationship between the classical part and the 

quantum part of the hybrid architecture [12-15]. 

 

 

 

Figure 1. The relationship between the classical and quantum 
parts of the hybrid architecture. 

 

The quantum algorithms are also known as the hybrid 

algorithms that consist of both the classical and quantum 

components. Moreover, the quantum portion of many 
algorithms is probabilistic; often need multiple runs to get 

the desired result. The main stages of the hybrid 

architecture can be done as follows: 

 
1. Pre-calculate certain classical factors (initialize and run 

the classical part of the algorithm). 

2. Run the quantum algorithm on the quantum circuit: 
a) Initialize the quantum node (Initialize quantum 

circuit and define all gates, switches and unitary 

function). 

b) Prepare inputs state (store inputs on target and 

control registers). 

c) Execute the quantum portion of the algorithm 

(apply gates and unitary transformation on the 

input data). 

d) Measure the output of Machine State (measure the 

output registers of the quantum circuit). 

e) Evaluate Measurement (If the desired result is 
retrieved, then the post-processing in step 3 is 

done). 

f) Exit if the desired result is obtained (If a solution is 

found, then exit from the quantum circuit, or else 

step 2 is repeated). 

3. Finish post-processing (run the second classical part of 

the algorithm). 

 

Steps 1 and 3 can be executed on a classical computer, 

while step 2 can be executed on a quantum computer using 

the quantum circuit. Measuring and evaluating of the 
quantum circuit can be done on a classical computer 

through a simulation work. The quantum circuit can also be 

simulated on a classical computer. The diagram illustrated 

in Figure 2 indicates the development of a general plan for 

the hybrid algorithms simulated on a classical computer. 

 

IV. THE FRAMEWORK OF QAPU 

In next of this study, the designed framework of QAPU is 
presented. This framework is shown in Figure 3. Some 

gates and connections are projected in the framework that 

can be applied for future quantum algorithms. Furthermore, 

the framework is setup, implemented and simulated for the 

existing quantum algorithms on a classic computer. 

 In this quantum circuit, there are two inputs |𝑥 and |𝑦. 
The inputs data require two registers that first register is 

used to store |𝑥 named control register and second register 

is used to store |𝑦 named target register. First register |𝑥 is 

applied on the inputs of gate Gc and second register |𝑦 is 

applied on the inputs of gate Gt. An n-qubit quantum 

register can be in a superposition of all possible 2𝑛  states 

|0 to |2𝑛 − 1 at the same time. This effect allows a 

quantum computer to calculate a function on all possible 

inputs at the same time, in a single pass. Therefore, the 

regular functions for Gc and Gt are Hadamard Transform 

and Quantum Furrier Transform (QFT). The most of the 

quantum algorithms is used to same functions for gate Gc , 

therefore if Gc is QFT, then Gc is QFT-1. 
 



 

Figure 2. The Classical and Quantum parts of the Hybrid 
Architecture. 

 

 

 

Figure 3. The framework of QAPU. 

 

The common part in all quantum algorithms is the black 

box or oracle function 𝑈𝑓  that is often used to model a 

subroutine of calculations and is reversible. Classically, a 

black-box function can be simply thought of as a box that 

evaluates an unknown function f. The input is some n-bit 

string |x and the output is given by an m-bit string 𝑓 𝑥 . In 
quantum, such a box can only exist if it is reversible. To 

create a reversible box, the input |𝑥 is output together with 

𝑓 𝑥 . To make the box reversible, an additional m-bit input 

|𝑦 is added and the output of the result is |𝑦⨁𝑓(𝑥) where 

 denotes bitwise addition modulo 2. In particular, if |𝑦 is 

fixed to be 𝑦 = 0 …0, the output is 𝑓 𝑥 . Note that 𝑈𝑓  now 

induces a transformation on n+m-bit strings that can be 

described by a permutation of the 2𝑛+𝑚  possible strings; in 

particular it is unitary. 

In some of the quantum algorithms, the execution of 

some functions or operators is repeated and there is a 

feedback that makes iteration. For example, in the Grover’s 

algorithm, the operator 𝐺 =  𝐻𝑈0⊥𝐻𝑈𝑓 that can be applied 

by the following sequence of transformations and the 

feedback is iterated. In the framework, this feedback is 

implemented with switches S0, S1, S2 and S3. In the 

Grover’s algorithm, the switches S0 and S2 are closed for 

O( 𝑁) time, while S1 and S3 are always opened. On the 

feedback, the operators Fi and Fj are prepared for future 

quantum algorithms, but the existing quantum algorithms 

do not require these operators. 

 

V. RESULT 

In this section, the results gathered from the 

implementation and simulations of the framework for the 

existing quantum algorithms are presented. In the quantum 

algorithm circuit, two n-qubit inputs |𝑥 and |𝑦 are defined. 

The inputs data require two registers that the control 

register is used to store |𝑥 and the target register is used to 

store |𝑦. Furthermore, the gates Gc , Gc , and Gt are 

defined for each algorithm. First, the register |𝑥 is applied 

on the inputs of gate Gc and the second register |𝑦 is 

applied on the inputs of gate Gt. The usual functions for Gc 

and Gt are Hadamard Transform and Quantum Furrier 

Transform (QFT). Some of the quantum algorithms are 

used to same functions for gate Gc . For example, both of 

them are Hadamard gates or if Gc is QFT, then Gc is QFT-1. 
In some of the quantum algorithms, the execution of some 

functions or operators is repeated and there is a feedback 

that makes the iteration. In the framework, this feedback is 

implemented with switches S0, S1, S2 and S3. On the 

feedback, operators Fi and Fj are prepared for the future 

quantum algorithms, but the existing quantum algorithms 

do not require these operators. Table 1 shows the values of 
the inputs, gates and position of switches in the quantum 

algorithms.  

The initialization and setup of the existing quantum 

algorithms have been demonstrated on the proposed 

framework. In the next, the setting up of the framework for 

the existing quantum algorithms is explained. 

A. Setting up the framework for Deutsch Algorithm 

Both inputs in the Deutsch's algorithm are 1-qubit. The 

first input |x is initialized to |0 and the second input |y 

with |1. Gates Gc , Gc and Gt are replaced with the 1-qubit 

Hadamard gates. Any feedback does not require in this 
algorithm and the switches S0, S1, S2 and S3 are opened. The 

initialized framework for the Deutsch algorithm shows in 

Figure 4. 
 

 

Figure 4. Setting up the framework for Deutsch algorithm. 
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B. Setting up the framework for Deutsch-Jozsa Algorithm 

The framework is initialized for Deutsch-Jozsa algorithm 

similar to Deutsch's algorithm.  The first input |x in this 

algorithm is n qubits and second input |y is 1-qubit. The 

input |x is initialized with |0⨂𝑛
 and the input |y with |1. 

Any feedback does not require and the switches S0, S1, S2 

and S3 are opened. The gates Gc and Gc are replaced with 
the n-qubit Hadamard gates and Gt with the 1-qubit 

Hadamard gate. The initialized framework for Deutsch-

Jozsa algorithm shows in Figure 5. 

 

 

Figure 5. Setting up the framework for Deutsch-Jozsa algorithm. 

C. Setting up the framework for Simon’s Algorithm 

The inputs in the Simon’s algorithm are n-qubit. The 

inputs |x and |y are initialized with the same value |0⨂𝑛
. 

The gates Gc and Gc are replaced with n-qubit Hadamard 
gates, but the gate Gt will be omitted on the framework, and 

this means the second input will be applied to black bock 

without any process. A feedback is needed to ensure the 

iterate sequence transformations of  𝐻⨂𝑛𝑈𝑓𝐻
⨂𝑛  for n times. 

The switches S0 and S3 will be closed (ON) and S1 and S2 

will be opened (OFF). The condition of i<n-1 applies to the 

switch S0 to provide the feedback is connected. The switch 

S3 is always closed without any condition. When S0 is 

opened, then the feedback will be disconnected. The 

framework for Simon’s algorithm shows in Figure 6. 

 

 

Figure 6. Setting up the framework for Simon’s algorithm. 

D. Setting up the framework for Eigenvalue Estimation 

Algorithm 

The main quantum gate on the Eigenvalue Estimation 

Algorithm is Quantum Fourier transform (QFT). QFT is 

useful for the problem of quantum phase estimation, and 

finding the period of periodic states. The phase estimation 
will be applied in order to estimate eigenvalues of unitary 

operators, and the eigenvalue estimation algorithm will be 

applied in order to derive the quantum factoring algorithm, 

and to solve the discrete logarithm problem. The hidden 

subgroup problem encompasses both the order finding and 

discrete logarithm problem as well as many others. The 
framework is initialized for the circuit of eigenvalue 

estimation as shown in Figure 7.  

 

 

Figure 7.  Setting up the framework for Eigenvalue Estimation 
algorithm. 

As long as this algorithm does not require the feedback, 

the switches S0, S1, S2 and S3 are opened. An n-qubit input 

|x  is stored in the control register and an r-qubit |y in the 

target register.  As the quantum circuit of this algorithm, the 

n-qubit control register is initialized to |0⨂𝑛
 and the r-qubit 

target register to eigenstate |. The gate Gc is replaced with 

n-qubit Quantum Fourier Transform (QFT) and the gate Gc 
is replaced with n-qubit inverse of Quantum Fourier 

Transform (QFT-1).  The gate Gt will be omitted on the 

framework, and this means the eigenstate | will be 
applied to the black bock without any process.  

E. Setting up the framework for finding orders problem for 

Shor’s Algorithm  

Shor's algorithm consists of two parts; first part is a 

reduction of the factoring problem to the problem of order-

finding, which can be done on a classical computer. Second 

part is a quantum algorithm to solve the order-finding 

problem. The quantum part of algorithm is that in order to 

find a factor of a number, it is sufficient to solve a problem 
called period finding, the problem Shor's algorithm [2]. The 

quantum part circuit of Order-Finding problem is similar to 

the circuit of Eigenvalue Estimation algorithm, but the 

second input is replaced with value |=|1=|00…01.  
The period-finding method operates on two quantum 

registers, namely the control register and the function result 

register. In the end, the control register is actually measured 

in order to find the period of the function. Figure 8 shows 

how to initialize the framework for a quantum circuit for 

sampling estimates to a random integer multiple of 1/r, 

which can be used to solve the order-finding problem. As 

long as this algorithm does not require the feedback, all the 

switches S0, S1, S2 and S3 are opened. An n-qubit input |x is 

stored in the control register and an r-qubit |y in the target 

register. As the quantum circuit of this algorithm, an n-

qubit control register is initialized to |0⨂𝑛
 and an r-qubit 

target register to |1=|00…01. The gate Gc is replaced with 
the n-qubit Quantum Fourier Transform (QFT), while gate 

Gc is replaced with the n-qubit inverse of the Quantum 
Fourier Transform (QFT-1). The gate Gt will be omitted 

from the framework, and this means the second input will 



be applied to black bock without any process. The operator 

𝑈𝑓  is defined as c-𝑈𝑎
𝑥  control. 

 

 

Figure 8. Setting up the framework for Shor’s algorithm to solve 
the period finding problem. 

F. Setting up the framework for Grover’s Algorithm 

The Grover’s algorithm includes two different inputs, |x 

and |y. The n-qubit input |x is stored in the control register 

and the 1-qubit |y in the target register. As the quantum 

circuit of this algorithm, the n-qubit control register is 

initialized to |0⨂𝑛
 and the 1-qubit target register to |1. The 

gate Gc is replaced with the n-qubit Hadamard gate, while 

Gt is replaced with the 1-qubit Hadamard gate. The gate Gc 
is replaced with a sequence of operators 𝐻⨂𝑛𝑈0⊥𝐻⨂𝑛  . 

Meanwhile, the Grover’s algorithm iterates the operator 

𝐺 = 𝐺𝑐
′𝑈𝑓 = 𝐻⨂𝑛𝑈0⊥𝐻⨂𝑛𝑈𝑓 that is defined by the 

following sequence of transformations and known as the 

Grover Iterate. A feedback is needed to ensure the iteration 

of these sequence transformations of G for O( 𝑁) times. 
This feedback can easily be implemented using switches S0, 

S1, S2 and S3. This can be done by closing S0 and S3, while 

leaving S1 and S2 open. The feedback is connected for 

O( 𝑁) times that the algorithm is executed. The feedback 

loop can support the operators Fi and Fj for any future 

quantum algorithms. However, a direct feedback was 

employed in this design.  The initialized framework for the 

Grover’s algorithm is shown in Figure 9. 
 

 

Figure 9. Setting up the framework for Grover’s algorithm. 

 

VI. CONCLUSION 

This study was proposed the framework of a device 

which executes the quantum algorithms. This device can be 

applied as a unit in the quantum processing unit (QPU), 

namely Quantum Algorithm Processing Unit (QAPU). This 

device can also be applied as the quantum node in the 

quantum multicomputer. The quantum algorithms are 

known as hybrid algorithms that consist of classical and 

quantum components. Moreover, the quantum portion of 

many algorithms is probabilistic; often need multiple runs 

to get the desired result. Therefore, at first, the hybrid 

architecture was designed for the quantum algorithms. The 
relationship between the classical and quantum parts of the 

hybrid algorithms was then extracted. After that the main 

stages of the hybrid architecture algorithm were determined 

as shown in Figure 2. Next, the framework of QAPU was 

designed and developed. Some gates and connections were 

projected in the framework which can be applied for the 

future quantum algorithms as shown in Figure 3. 

Furthermore, the framework was setup, implemented and 

simulated for the existing quantum algorithms on a classic 

computer. It is shown that the framework is appropriate for 

the quantum algorithms. The framework is useful to design 

of quantum processor for the quantum computer.  

Table 1. Setting up the framework for the quantum algorithms.  

Gate 
Deutsch 

Algorithm 

Deutsch-Jozsa 
Algorithm 

Simon's 
Algorithm 

Shor's Algorithm 
Grover's 

Algorithm 

|x |0   1-qubit |0
n

    n-qubits |0
n

    n-qubits |0
n

   n-qubits |0
n

   n-qubits 

|y |1   1-qubit |1       1-qubit |0
n

    n-qubits |1=|00..1 r-qubits |1       1-qubit 

Gc 
H 

Hadamard Gate 
Hn     n-qubits 

Hadamard Gates 

Hn      n-qubits 

Hadamard Gates 

QFT   n-qubits  

Quantum Furrier Tr. 
Hn     n-qubits 

Hadamard Gates 

Gc 
H 

Hadamard Gate 

Hn
     n-qubits 

Hadamard Gates 

Hn
   n-qubits 

Hadamard Gates 

QFT-1   n-qubits  

Inverse QFT 

Hn
U0

Hn
 n-qubits 

Grover iterate 

Gt 
H 

Hadamard Gate 

H 

Hadamard Gate 
Null Null 

H 

Hadamard Gate 

S0 Open Open 
Close 

with condition i  n 
Open 

Close for 

O( 𝑁) time, N=2n 

S1 Open Open Open Open Open 

S2 Open Open Open Open 
Close for 

O( 𝑁) time, N=2n 

S3 Open Open 
Close with 

condition i  n 
Open Open 

Fi Null Null Null Null Null 

Fj Null Null Null Null Null 
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