
An Architectural Framework For

Quantum Algorithms Processing Unit (QAPU)

Mohammad Reza Soltan Aghaei, Zuriati Ahmad Zukarnain, Ali Mamat, and Hishamuddin Zainuddin

Abstract- The focus of this study is developing a framework

of Quantum Algorithm Processing Unit (QAPU). The

framework shows a general plan for the architecture of

quantum processor that is able to run quantum algorithms.

The framework is used to increase the implementation

performance of quantum algorithms and design Quantum

Processing Unit (QPU). QAPU can be applied as a quantum

node to design quantum multicomputer. At first, the hybrid

architecture is designed for the quantum algorithms. Then, the

relationships between the classical and quantum parts of the

hybrid algorithms are extracted and the main stages of the

hybrid architecture are determined. Next, the framework of

QAPU is designed and developed. Some gates and connections

are projected in the framework that can be applied for future

quantum algorithms. Furthermore, the framework is

implemented and simulated for the existing quantum

algorithms on a classic computer. It is shown that the

framework is appropriate for the quantum algorithms.

Keywords: Computer Systems, Computer Architecture,

Quantum Algorithm, Quantum Computing, Multi Computer.

I. INTRODUCTION

A quantum computer is a device that takes advantage of

quantum mechanical effects to perform certain
computations faster than a purely classical machine does. A

quantum computer operates by manipulating those quantum

bits or qubits with a fixed sequence of logic gates and

performs it exponentially. The theory of quantum

complexity determines when quantum computers may offer

a computational speed-up over classical computers. At

present, there are only a few general well-known techniques

in the field of quantum computing and finding the problems

that are amenable to quantum speedups is a high priority.

M.R. Soltan Aghaei is faculty member in Dep. of Computer Eng.,
Islamic Azad University of Khorasgan, Isfahan, Iran, and PhD candidate in

Faculty of Computer Science and Information Technology, University

Putra Malaysia 43400 UPM Serdang, Selangor, Malaysia (e-mail:

msoltanaghaii@yahoo.com).

Zuriati A. Z. is with Dep. Of Communication Technology and

Network, Faculty of Computer Science and Information Technology,

University Putra Malaysia 43400 UPM Serdang, Selangor, Malaysia,

www.fsktm.upm.edu.my (e-mail: zuriati@fsktm.upm.edu.my).

Ali Mamat is with Faculty of Computer Science and Information

Technology, University Putra Malaysia 43400 UPM Serdang, Selangor,

Malaysia, (e-mail: ali@fsktm.upm.edu.my).

Hishamuddin Z. is with Laboratory of Computational Sciences and

Informatics, Institute for Mathematical Research, Universiti Putra

Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia (e-mail:

hisham@fsas.upm.edu.my).

The Quantum Processing Unit (QPU) is the processor of

quantum computer that is able to do quantum computations.

A typical component in QPU is a quantum device that runs

quantum algorithms; namely Quantum Algorithm

Processing Unit (QAPU). This device can also be applied as

a quantum node in quantum multicomputer. A quantum

multicomputer is a distributed system that is composed of

quantum computers connected through a quantum network.
The nodes can be connected by creating an entangled state

among them as well. The focus of this study is developing a

framework of QAPU. QAPU can be used as a quantum

node to design quantum multicomputer. At first, it was

necessary to design the hybrid architecture for the quantum

algorithms. This, however, required the analysis of the

existing quantum algorithms as presented in the next

section. Meanwhile, the relationship between the classical

and quantum parts of the hybrid algorithms, and the main

stages of the hybrid algorithm were determined.

Furthermore, the framework was implemented and

simulated for the existing quantum algorithms on a classic
computer.

II. RELATED WORKS

Nowadays, many researchers focus on designing a

quantum computer by implementing quantum algorithms.

There are a few efficient quantum algorithms; David

Deutsch and Richard Jozsa showed an algorithm that could
be run in poly-log time on a quantum computer, but

required linear time on a deterministic Turing machine [1].

This may have been the first example of a quantum

computer being shown to be exponentially faster than a

deterministic Turing machine. Unfortunately, for the

quantum computer, the problem could also be solved in

poly-log time in a probabilistic Turing machine, a Turing

machine which is capable of making a random choice.

 In 1994 Peter W. Shor showed quantum factoring

algorithm is a polynomial time algorithm for prime

factorization and discrete Logarithms on a quantum

computer [2]. All known algorithms for factoring an n-bit
number on a classical computer take time proportional to

O 2𝑛 time and in the best known algorithm to

O(exp(n1/3)) time. But Shor’s algorithm for factoring on a

quantum computer takes time proportional to O(𝑛2 log(n)).
Lov Grover in 1996 discovered the quantum search

algorithm. It is used to solve NP-hard problem [3].
Grover’s search algorithm can search an unstructured space

of N possibilities in O(𝑁) time, and the classical computer

can do search on average in O 𝑁 . It is sometimes referred

to as amplitude amplification and has been found to be

useful for quantum counting, and as a wrapper for other

algorithms [4, 5]. The speedup of Grover’s algorithm is

achieved by exploiting both quantum parallelism and the

fact that in quantum theory a probability is the square of the

probability amplitude. Bennett and co-workers [6] and

Zalka [7] showed that Grover’s algorithm is optimal. No

classical or quantum algorithm can solve this problem faster

than a time of order.

Furthermore, other algorithms are Simon’s algorithm to

finds the hidden string [8], Hallgren’s algorithm to solve

the Pell’s equation [9], or the topic of quantum random

walks [10, 11]. Nonetheless, efficient quantum algorithms

are very limited in number and scope; no real breakthrough

has yet been achieved in physical implementations. Most

importantly, these algorithms are not still matured

adequately to be applied in real quantum computations.

The main objective of this study was to design and

analyze a framework for the processor architecture of a

quantum computer which executes the quantum algorithms.
At first, the quantum algorithms were analyzed to find the

hybrid architecture and a framework for the quantum

algorithms. Meanwhile, the hybrid architecture was

designed for the quantum algorithms. Furthermore, the

relationship between the classical and quantum parts of the

hybrid algorithms, and the main stages of the hybrid

algorithm were determined as presented in next section.

Finally the designed framework was implemented and

simulated for the existing quantum algorithms on a classic

computer.

III. HYBRID ARCHITECTURE

In its simplest form, a quantum algorithm consists of a

unitary transformation and a subsequent measurement of

the resulting state. For the traditional computational tasks

which include searching or mathematical calculations,

efficient quantum implementations often have the form of

probabilistic algorithms.

The quantum algorithms such as Shor's algorithm consist
of two parts. The first part is a classical algorithm which

can be run on a classical computer, while the second part is

the quantum algorithms that can be run on a quantum

computer or simulated on a classical computer. Figure 1

shows the relationship between the classical part and the

quantum part of the hybrid architecture [12-15].

Figure 1. The relationship between the classical and quantum
parts of the hybrid architecture.

The quantum algorithms are also known as the hybrid

algorithms that consist of both the classical and quantum

components. Moreover, the quantum portion of many
algorithms is probabilistic; often need multiple runs to get

the desired result. The main stages of the hybrid

architecture can be done as follows:

1. Pre-calculate certain classical factors (initialize and run

the classical part of the algorithm).

2. Run the quantum algorithm on the quantum circuit:
a) Initialize the quantum node (Initialize quantum

circuit and define all gates, switches and unitary

function).

b) Prepare inputs state (store inputs on target and

control registers).

c) Execute the quantum portion of the algorithm

(apply gates and unitary transformation on the

input data).

d) Measure the output of Machine State (measure the

output registers of the quantum circuit).

e) Evaluate Measurement (If the desired result is
retrieved, then the post-processing in step 3 is

done).

f) Exit if the desired result is obtained (If a solution is

found, then exit from the quantum circuit, or else

step 2 is repeated).

3. Finish post-processing (run the second classical part of

the algorithm).

Steps 1 and 3 can be executed on a classical computer,

while step 2 can be executed on a quantum computer using

the quantum circuit. Measuring and evaluating of the
quantum circuit can be done on a classical computer

through a simulation work. The quantum circuit can also be

simulated on a classical computer. The diagram illustrated

in Figure 2 indicates the development of a general plan for

the hybrid algorithms simulated on a classical computer.

IV. THE FRAMEWORK OF QAPU

In next of this study, the designed framework of QAPU is
presented. This framework is shown in Figure 3. Some

gates and connections are projected in the framework that

can be applied for future quantum algorithms. Furthermore,

the framework is setup, implemented and simulated for the

existing quantum algorithms on a classic computer.

 In this quantum circuit, there are two inputs |𝑥 and |𝑦.
The inputs data require two registers that first register is

used to store |𝑥 named control register and second register

is used to store |𝑦 named target register. First register |𝑥 is

applied on the inputs of gate Gc and second register |𝑦 is

applied on the inputs of gate Gt. An n-qubit quantum

register can be in a superposition of all possible 2𝑛 states

|0 to |2𝑛 − 1 at the same time. This effect allows a

quantum computer to calculate a function on all possible

inputs at the same time, in a single pass. Therefore, the

regular functions for Gc and Gt are Hadamard Transform

and Quantum Furrier Transform (QFT). The most of the

quantum algorithms is used to same functions for gate Gc ,

therefore if Gc is QFT, then Gc is QFT-1.

Figure 2. The Classical and Quantum parts of the Hybrid
Architecture.

Figure 3. The framework of QAPU.

The common part in all quantum algorithms is the black

box or oracle function 𝑈𝑓 that is often used to model a

subroutine of calculations and is reversible. Classically, a

black-box function can be simply thought of as a box that

evaluates an unknown function f. The input is some n-bit

string |x and the output is given by an m-bit string 𝑓 𝑥 . In
quantum, such a box can only exist if it is reversible. To

create a reversible box, the input |𝑥 is output together with

𝑓 𝑥 . To make the box reversible, an additional m-bit input

|𝑦 is added and the output of the result is |𝑦⨁𝑓(𝑥) where

 denotes bitwise addition modulo 2. In particular, if |𝑦 is

fixed to be 𝑦 = 0 …0, the output is 𝑓 𝑥 . Note that 𝑈𝑓 now

induces a transformation on n+m-bit strings that can be

described by a permutation of the 2𝑛+𝑚 possible strings; in

particular it is unitary.

In some of the quantum algorithms, the execution of

some functions or operators is repeated and there is a

feedback that makes iteration. For example, in the Grover’s

algorithm, the operator 𝐺 = 𝐻𝑈0⊥𝐻𝑈𝑓 that can be applied

by the following sequence of transformations and the

feedback is iterated. In the framework, this feedback is

implemented with switches S0, S1, S2 and S3. In the

Grover’s algorithm, the switches S0 and S2 are closed for

O(𝑁) time, while S1 and S3 are always opened. On the

feedback, the operators Fi and Fj are prepared for future

quantum algorithms, but the existing quantum algorithms

do not require these operators.

V. RESULT

In this section, the results gathered from the

implementation and simulations of the framework for the

existing quantum algorithms are presented. In the quantum

algorithm circuit, two n-qubit inputs |𝑥 and |𝑦 are defined.

The inputs data require two registers that the control

register is used to store |𝑥 and the target register is used to

store |𝑦. Furthermore, the gates Gc , Gc , and Gt are

defined for each algorithm. First, the register |𝑥 is applied

on the inputs of gate Gc and the second register |𝑦 is

applied on the inputs of gate Gt. The usual functions for Gc

and Gt are Hadamard Transform and Quantum Furrier

Transform (QFT). Some of the quantum algorithms are

used to same functions for gate Gc . For example, both of

them are Hadamard gates or if Gc is QFT, then Gc is QFT-1.
In some of the quantum algorithms, the execution of some

functions or operators is repeated and there is a feedback

that makes the iteration. In the framework, this feedback is

implemented with switches S0, S1, S2 and S3. On the

feedback, operators Fi and Fj are prepared for the future

quantum algorithms, but the existing quantum algorithms

do not require these operators. Table 1 shows the values of
the inputs, gates and position of switches in the quantum

algorithms.

The initialization and setup of the existing quantum

algorithms have been demonstrated on the proposed

framework. In the next, the setting up of the framework for

the existing quantum algorithms is explained.

A. Setting up the framework for Deutsch Algorithm

Both inputs in the Deutsch's algorithm are 1-qubit. The

first input |x is initialized to |0 and the second input |y

with |1. Gates Gc , Gc and Gt are replaced with the 1-qubit

Hadamard gates. Any feedback does not require in this
algorithm and the switches S0, S1, S2 and S3 are opened. The

initialized framework for the Deutsch algorithm shows in

Figure 4.

Figure 4. Setting up the framework for Deutsch algorithm.

Initialize classical

part of algorithm

Run first part of

classical algorithm

Initialize Quantum

Circuit

Apply Gates and

Unitary

Transformation

Measure The

Output of

Machine State

Evaluate

Measurement

Yes No
Run second part of

classical algorithm

The Classical part of Algorithm The Quantum part of Algorithm

Execute Quantum
Operations by QPU

Execute
Classical

Operations

by CPU

Prepare Inputs

state

Start

Execute

Quantum

Part?

Start

Yes

No

Desired

Solution?

Repeat

Algorithm?

B. Setting up the framework for Deutsch-Jozsa Algorithm

The framework is initialized for Deutsch-Jozsa algorithm

similar to Deutsch's algorithm. The first input |x in this

algorithm is n qubits and second input |y is 1-qubit. The

input |x is initialized with |0⨂𝑛
 and the input |y with |1.

Any feedback does not require and the switches S0, S1, S2

and S3 are opened. The gates Gc and Gc are replaced with
the n-qubit Hadamard gates and Gt with the 1-qubit

Hadamard gate. The initialized framework for Deutsch-

Jozsa algorithm shows in Figure 5.

Figure 5. Setting up the framework for Deutsch-Jozsa algorithm.

C. Setting up the framework for Simon’s Algorithm

The inputs in the Simon’s algorithm are n-qubit. The

inputs |x and |y are initialized with the same value |0⨂𝑛
.

The gates Gc and Gc are replaced with n-qubit Hadamard
gates, but the gate Gt will be omitted on the framework, and

this means the second input will be applied to black bock

without any process. A feedback is needed to ensure the

iterate sequence transformations of 𝐻⨂𝑛𝑈𝑓𝐻
⨂𝑛 for n times.

The switches S0 and S3 will be closed (ON) and S1 and S2

will be opened (OFF). The condition of i<n-1 applies to the

switch S0 to provide the feedback is connected. The switch

S3 is always closed without any condition. When S0 is

opened, then the feedback will be disconnected. The

framework for Simon’s algorithm shows in Figure 6.

Figure 6. Setting up the framework for Simon’s algorithm.

D. Setting up the framework for Eigenvalue Estimation

Algorithm

The main quantum gate on the Eigenvalue Estimation

Algorithm is Quantum Fourier transform (QFT). QFT is

useful for the problem of quantum phase estimation, and

finding the period of periodic states. The phase estimation
will be applied in order to estimate eigenvalues of unitary

operators, and the eigenvalue estimation algorithm will be

applied in order to derive the quantum factoring algorithm,

and to solve the discrete logarithm problem. The hidden

subgroup problem encompasses both the order finding and

discrete logarithm problem as well as many others. The
framework is initialized for the circuit of eigenvalue

estimation as shown in Figure 7.

Figure 7. Setting up the framework for Eigenvalue Estimation
algorithm.

As long as this algorithm does not require the feedback,

the switches S0, S1, S2 and S3 are opened. An n-qubit input

|x is stored in the control register and an r-qubit |y in the

target register. As the quantum circuit of this algorithm, the

n-qubit control register is initialized to |0⨂𝑛
 and the r-qubit

target register to eigenstate |. The gate Gc is replaced with

n-qubit Quantum Fourier Transform (QFT) and the gate Gc
is replaced with n-qubit inverse of Quantum Fourier

Transform (QFT-1). The gate Gt will be omitted on the

framework, and this means the eigenstate | will be
applied to the black bock without any process.

E. Setting up the framework for finding orders problem for

Shor’s Algorithm

Shor's algorithm consists of two parts; first part is a

reduction of the factoring problem to the problem of order-

finding, which can be done on a classical computer. Second

part is a quantum algorithm to solve the order-finding

problem. The quantum part of algorithm is that in order to

find a factor of a number, it is sufficient to solve a problem
called period finding, the problem Shor's algorithm [2]. The

quantum part circuit of Order-Finding problem is similar to

the circuit of Eigenvalue Estimation algorithm, but the

second input is replaced with value |=|1=|00…01.
The period-finding method operates on two quantum

registers, namely the control register and the function result

register. In the end, the control register is actually measured

in order to find the period of the function. Figure 8 shows

how to initialize the framework for a quantum circuit for

sampling estimates to a random integer multiple of 1/r,

which can be used to solve the order-finding problem. As

long as this algorithm does not require the feedback, all the

switches S0, S1, S2 and S3 are opened. An n-qubit input |x is

stored in the control register and an r-qubit |y in the target

register. As the quantum circuit of this algorithm, an n-

qubit control register is initialized to |0⨂𝑛
 and an r-qubit

target register to |1=|00…01. The gate Gc is replaced with
the n-qubit Quantum Fourier Transform (QFT), while gate

Gc is replaced with the n-qubit inverse of the Quantum
Fourier Transform (QFT-1). The gate Gt will be omitted

from the framework, and this means the second input will

be applied to black bock without any process. The operator

𝑈𝑓 is defined as c-𝑈𝑎
𝑥 control.

Figure 8. Setting up the framework for Shor’s algorithm to solve
the period finding problem.

F. Setting up the framework for Grover’s Algorithm

The Grover’s algorithm includes two different inputs, |x

and |y. The n-qubit input |x is stored in the control register

and the 1-qubit |y in the target register. As the quantum

circuit of this algorithm, the n-qubit control register is

initialized to |0⨂𝑛
 and the 1-qubit target register to |1. The

gate Gc is replaced with the n-qubit Hadamard gate, while

Gt is replaced with the 1-qubit Hadamard gate. The gate Gc
is replaced with a sequence of operators 𝐻⨂𝑛𝑈0⊥𝐻⨂𝑛 .

Meanwhile, the Grover’s algorithm iterates the operator

𝐺 = 𝐺𝑐
′𝑈𝑓 = 𝐻⨂𝑛𝑈0⊥𝐻⨂𝑛𝑈𝑓 that is defined by the

following sequence of transformations and known as the

Grover Iterate. A feedback is needed to ensure the iteration

of these sequence transformations of G for O(𝑁) times.
This feedback can easily be implemented using switches S0,

S1, S2 and S3. This can be done by closing S0 and S3, while

leaving S1 and S2 open. The feedback is connected for

O(𝑁) times that the algorithm is executed. The feedback

loop can support the operators Fi and Fj for any future

quantum algorithms. However, a direct feedback was

employed in this design. The initialized framework for the

Grover’s algorithm is shown in Figure 9.

Figure 9. Setting up the framework for Grover’s algorithm.

VI. CONCLUSION

This study was proposed the framework of a device

which executes the quantum algorithms. This device can be

applied as a unit in the quantum processing unit (QPU),

namely Quantum Algorithm Processing Unit (QAPU). This

device can also be applied as the quantum node in the

quantum multicomputer. The quantum algorithms are

known as hybrid algorithms that consist of classical and

quantum components. Moreover, the quantum portion of

many algorithms is probabilistic; often need multiple runs

to get the desired result. Therefore, at first, the hybrid

architecture was designed for the quantum algorithms. The
relationship between the classical and quantum parts of the

hybrid algorithms was then extracted. After that the main

stages of the hybrid architecture algorithm were determined

as shown in Figure 2. Next, the framework of QAPU was

designed and developed. Some gates and connections were

projected in the framework which can be applied for the

future quantum algorithms as shown in Figure 3.

Furthermore, the framework was setup, implemented and

simulated for the existing quantum algorithms on a classic

computer. It is shown that the framework is appropriate for

the quantum algorithms. The framework is useful to design

of quantum processor for the quantum computer.

Table 1. Setting up the framework for the quantum algorithms.

Gate
Deutsch

Algorithm

Deutsch-Jozsa
Algorithm

Simon's
Algorithm

Shor's Algorithm
Grover's

Algorithm

|x |0 1-qubit |0
n

 n-qubits |0
n

 n-qubits |0
n

 n-qubits |0
n

 n-qubits

|y |1 1-qubit |1 1-qubit |0
n

 n-qubits |1=|00..1 r-qubits |1 1-qubit

Gc
H

Hadamard Gate
Hn n-qubits

Hadamard Gates

Hn n-qubits

Hadamard Gates

QFT n-qubits

Quantum Furrier Tr.
Hn n-qubits

Hadamard Gates

Gc
H

Hadamard Gate

Hn
 n-qubits

Hadamard Gates

Hn
 n-qubits

Hadamard Gates

QFT-1 n-qubits

Inverse QFT

Hn
U0

Hn
 n-qubits

Grover iterate

Gt
H

Hadamard Gate

H

Hadamard Gate
Null Null

H

Hadamard Gate

S0 Open Open
Close

with condition i  n
Open

Close for

O(𝑁) time, N=2n

S1 Open Open Open Open Open

S2 Open Open Open Open
Close for

O(𝑁) time, N=2n

S3 Open Open
Close with

condition i  n
Open Open

Fi Null Null Null Null Null

Fj Null Null Null Null Null

REFERENCE

[1] D. Deutsch and R. Jozsa, "Rapid Solution of Problems by
Quantum Computation," Proc. Royal Soc. London, vol. 439,
pp. 553-558, 1992.

[2] P. W. Shor, "Polynomial-Time Algorithms for Prime
Factorization and Discrete Logarithms on a Quantum
Computer," in 35th Ann. Symp. Foundations of Computer
Science Los Alamitos, Calif.: IEEE Computer Society Press,
1994, pp. 124-134.

[3] L. K. Grover, "A Fast Quantum Mechanical Algorithm for
Database Search," in 28th Annual ACM Symposium on the
Theory of Computation New York: ACM Press, 1996, pp.

212–219.
[4] L. K. Grover, "Fixed-point quantum search," Physical

Review Letters, vol. 95, 2005.
[5] G. Brassard, P. Høyer, and A. Tapp, "Quantum counting," in

25th Int. Colloquium on Automata, Languages and
Programming (ICALP’98): Springer, 1998, pp. 820–831.

[6] C. H. Bennett and others, "Strengths and Weaknesses of
Quantum Computing," SIAM J. Computing, vol. 26, pp.

1510-1523, 2001.
[7] C. Zalka, "Grover’s quantum searching algorithm is

optimal," Physical Review A, vol. 60, pp. 2746-2751, 1999.
[8] D. Simon, "On the power of quantum computation," in 35th

Ann. Symp. on Foundations Computer Science: ACM, 1994,
pp. 116–124.

[9] S. Hallgren, "Polynomial-time quantum algorithms for pell's
equation and the principal ideal problem," in 34th ACM

Symp. on Theory of Computing (STOC), 2002, pp. 653-658.
[10] Y. Aharonov, L. Davidovich, and N. Zagury, "Quantum

random walks," Physical Review A, vol. 48, pp. 1687–1690,
1993.

[11] J. Kempe, "Quantum random walks: an introductory
overview," Contemporary Physics, vol. 44, pp. 307-327,
2003.

[12] M. R. Soltan Aghaei, Zuriati Ahmad Zukarnain, Ali Mamat,

and H. Zainuddin, "A Quantum Algorithm for Minimal
Spanning Tree," in 3rd Int. Sym. on Information Technology
(ITsim08) Malaysia: Proc. IEEE, 2008.

[13] M. R. Soltan Aghaei, Zuriati Ahmad Zukarnain, Ali Mamat,
and H. Zainuddin, "A Hybrid Algorithm for the Shortest-
Path Problem in the Graph," in Int. Conf. on Advanced
Computer Theory and Engineering (ICACTE08) Phuket
Island, Thailand: IEEE Computer Society, 2008.

[14] M. R. Soltan Aghaei, Zuriati Ahmad Zukarnain, Ali Mamat,

and H. Zainuddin, "A Hybrid Algorithm for Finding
Shortest Path in Network Routing," Journal of Theoretical
and Applied Information Technology, vol. 5, 2009.

[15] M. R. Soltan Aghaei, Zuriati Ahmad Zukarnain, Ali Mamat,
and H. Zainuddin, "A Hybrid Architecture Approach for
Quantum Algorithms," Journal of Computer Science, vol. 5,
pp. 725-731, 2009.

