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Abstract—The paper deals with a topology opti-
mization of electromagnetic media described by the
eddy current equations. This problem finds many ap-
plications in the design of modern high power elec-
tronic devices. The construction of a subtle layout of
the devices requires to avoid significant losses in the
power transmission due to parasitic inductivities. We
consider a minimization problem with an objective
function related to the energy dissipation given by the
Joule-Lenz law. Our purpose is to find the optimal
material distribution in the conductive medium with
a prescribed fluxes through the ports. The structural
boundary of the design domain changes during the op-
timization process. A level-set method is proposed for
an implicit representation of this boundary. The de-
scription includes the evolution of the scalar level-set
function and thus, the optimal propagation of the de-
sign boundary by solving the Hamilton-Jacobi equa-
tion. Another approach to find the optimal material
design is to consider the electromagnetic potentials
as state variables and the conductivity as a design
variable. This formulation gives rise to a nonlinear
minimization problem which we solve by the primal-
dual approach. Some numerical experiments by us-
ing the second approach applied to a two-dimensional
isotropic electromagnetic model are presented.

Keywords: eddy current equations, topology optimiza-

tion, level-set method, primal-dual approach

1 Introduction

During the past two decades, the problem to find the op-
timal structural design of material systems and devices
has attracted a lot of attention (cf., e.g., [1, 2, 4, 7, 8, 14,
17, 18]). Various techniques and efficient numerical meth-
ods have been developed and implemented especially in
the field of topology optimization of solid structures, see
e.g. [5] and the references therein. Typical for this type
of structural optimization, is the possible generating of
holes on the domain while finding an optimal placement
of material in space.

In this paper, we consider an optimal design of converter
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modules that are used as electric drives for high power
electromotors. The operational mode of such devices is
strongly dictated by the Maxwell equations. We focus
our attention on the design of electromagnetic media de-
scribed by the eddy current equations as a particular case
of Maxwell’s equations in the quasistationary approxima-
tion. Usually, eddy currents arise and build up inside
the bus bars causing parasitic inductivities that lead to
a considerable loss in power transmission. Therefore, our
research problem is to find a subtle design of the elec-
tric devices in such a way that the energy dissipation is
minimized.

Up to our knowledges, the topology optimization of elec-
tromagnetic systems described by the Maxwell equations
has been relatively less discussed in the literature (see,
e.g., [8, 12, 18]). The goal of this study is to present two
methods, the level-set and the primal-dual approach, for
topology optimization of eddy current systems. The op-
timization problem is formulated both in a level-set and
a primal-dual context.

Section 2 is devoted to the potential formulation of the
eddy current equations by means of the electric potential
and the magnetic potential. Our objective function fo-
cuses on minimization of electric energy dissipation given
by the Joule-Lenz law. We are interested in finding the
optimal material distribution in a design domain and, in
particular, to determine the places with material points
and respectively, the voids (no material). In Section 3 we
consider a simplified model for which the optimization
problem is subjected to a partial differential equation for
the electric potential and additional mass and box con-
straints for the conductivity treated as a design variable.

The level-set method, originally proposed in [11], is de-
scribed in Section 4 for representing the structural bound-
aries which move during the optimization to find the op-
timal shape design. In the recent years, this method has
found many applications, especially for elastic structures,
cf. [2, 4, 17]. In Section 5 we give a brief description of
the primal-dual approach implemented to the discrete op-
timization problem. The nonlinear equation arising from
the first-order necessary optimality conditions is solved
by inexact Newton method. In the last section we present
some numerical experiments and discuss the computa-
tional results.



2 The eddy current equations

In this section, we focus on electromagnetic fields in the
low frequency regime which can be described by the qua-
sistationary limit of Maxwell’s equations also known as
the eddy current equations

∂B
∂t

+ curlE = 0, divB = 0, curlH = J, (1)

B = µH , J = σ E. (2)

In the system of equations (1)-(2) we have denoted by
E and H the electric and the magnetic field and, respec-
tively, by B and J the magnetic induction and the current
density. The scalar parameters µ and σ refer to the mag-
netic permeability and the electric conductivity (see, e.g.,
[10]).

We consider a two-dimensional model with a current den-
sity given by

J = (J1(x1, x2, t), J2(x1, x2, t), 0),

which suggests, in particular, the following form of the
vector fields E, H, and B

E = (E1(x1, x2, t), E2(x1, x2, t), 0) ,

H = (0, 0, H(x1, x2, t)) ,

B = (0, 0, B(x1, x2, t)).

We consider now the alternative formulation in terms of
the electric (also called scalar) potential ϕ and the mag-
netic (also called vector) potential A according to

E = −gradϕ − ∂ A
∂ t

, B = curlA .

This model can be treated in a given spatial domain
Ω ⊂ Rd, d = 2, 3 with a boundary ∂Ω. Then, introdu-
cing the additional condition divA = 0 and taking into
account that divJ = 0 in the interior of the domain, (1)-
(2) give rise to the following coupled system of PDEs for
the electric potential ϕ and the magnetic potential A

div (σ gradϕ) = 0 in Ω , (3)

σ n · gradϕ =
{

Iν on Γν ⊂ ∂Ω
0 elsewhere , (4)

σ
∂A
∂t

+ curlµ−1curlA =
{ −σ gradϕ in Ω

0 in R3 \ Ω̄ .

(5)
In equation (4), we refer to Iν as the fluxes associated
with the contacts Γν ⊂ ∂Ω, 1 ≤ ν ≤ Nc with a total

number of contacts Nc. The fluxes have to satisfy the
compatibility condition

Nc∑
ν=1

Iν = 0. (6)

Note that the equation (5) is considered with appropriate
initial and boundary conditions.

The electric energy dissipation given by the Joule-Lenz
law reads as follows

f(ϕ, σ,A) :=
∫

Ω

J ·E dx . (7)

In the stationary regime, (7) reduces to

f(ϕ, σ) = −
∫

Ω

J · gradϕdx = −
∫

Ω

div(ϕJ) dx . (8)

The last equality in (8) follows from

div (ϕJ ) = J · gradϕ + ϕ divJ

with divJ = 0. Using the Gauss theorem and the Neu-
mann boundary conditions from (4) we get

f(ϕ, σ) = −
∫

∂Ω

n · Jϕds =
Nc∑
ν=1

∫

Γν

Iνϕds . (9)

The last expression is considered as an objective func-
tional in our optimization problem. Our purpose is to
minimize the electric energy dissipation.

3 The optimization problem

Define the equation for the electric potential (3) in a weak
formulation as follows

a(ϕ, v) = L(v), for v ∈ U, (10)

where the bilinear energy form is

a(ϕ, v) =
∫

Ω

grad v · σ gradϕdx,

L(v) is the linear load form and U is the space of all
admissible solutions of (3).

Then, the problem to minimize the energy dissipation
given by the objective functional (9) is to find

inf
ϕ,σ

f(ϕ, σ) = inf
ϕ,σ

Nc∑
ν=1

∫

Γν

Iνϕ ds, (11)

subject to the following constraints

a(ϕ, v) = L(v) with BCs from (4), (12)∫

Ω

σ dx = C (mass constraint),

σmin ≤ σ ≤ σmax (conductivity box constraint).



Here, σmin and σmax are a priori given positive limits
for the conductivity and C is a fixed given constant. In
general formulations of nonlinear programming problems,
the objective function f and the inequality constraints are
supposed to be twice continuously differentiable. This
requirement is obviously satisfied in our case.

Note that we solve the constrained optimization prob-
lem with the partial differential equation (3) for ϕ incor-
porated as a part of the constraints. By means of this
formulation, we arrive at the basic idea of the so called
one-shot methods which stand in contrast to many stan-
dard optimization approaches considering the optimiza-
tion process and the solution of the differential equation
separately. Our experience shows that this simultaneous
optimization approach together with a numerical solution
of the partial differential equation reduces essentially the
overall computational complexity of the resulting opti-
mization algorithm, see [13].

4 Level-set approach

As mentioned in the introduction, we are interested in
optimal distribution of the conductivity in a prescribed
structural domain Ω ⊂ Rd, d = 2, 3 whose topology can
be changed. To formulate the level-set approach for find-
ing the optimal design, we consider a fixed reference do-
main D ⊂ Rd and suppose that D always contains the
computational design domain Ω which changes within the
optimization process, i.e. Ω ⊆ D.

In the level-set framework, one defines a scalar function
Φ : D →R (also referred to as a level-set function) which
represents the design boundary ∂Ω implicitly by

∂Ω = {x|x ∈ D, Φ(x) = 0}.

Note that Φ(x) is one-dimensional higher function than
the represented boundary ∂Ω. Thus, one can determine
each part of the design domain as follows

Φ(x) = 0 , ∀x ∈ ∂Ω ∪D , (13)
Φ(x) > 0 , ∀x ∈ Ω \ ∂Ω , (14)
Φ(x) < 0 , ∀x ∈ D \ Ω. (15)

In particular, as shown in Fig. 1, the boundary is embed-
ded implicitly as the zero level-set (13) of Φ(x), while the
interior of the structure is presented by (14) and the exte-
rior by (15). Note that the boundary ∂Ω is totally mani-
pulated through the zero level-set function. Hence, all ad-
missible shapes have the form Ω = {x|x ∈ D, Φ(x) ≥ 0},
see Fig. 2.

If we suppose that the zero level-set moves in the normal
direction to itself, then the level-set function changes dy-
namically in time, i.e.

Φ(x(t), t) = k for any x ∈ Ω(t) , (16)
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Figure 1: Level-set representation
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Figure 2: a) Zero level-set: b) Design domain Ω ⊆ D

where k = 0 for x ∈ ∂Ω(t). By differentiation of (16)
with respect to time t and applying the chain rule, one
arrives at the so called Hamilton-Jacobi-type equation

∂Φ(x, t)
∂t

+∇Φ(x, t)
dx

dt
= 0 . (17)

The latter equation can also be written in the form

∂Φ(x, t)
∂t

= −∇Φ(x, t)
dx

dt
≡ −v∇Φ(x, t) , (18)

where v := dx/dt denotes the speed of the zero level-set,
which is related to the optimized objective functional.
Thus, the structural optimization process can be treated
as the movement of a point on the boundary which is
exactly driven by the objective. For recent implementa-
tions of this method in structural optimization, we refer
to [2, 4, 15, 17].

Our optimization problem described in Section 3 can be
formulated by means of level-set model as follows. Find:

inf
Φ

f(ϕ, σ,Φ) = inf
Φ

Nc∑
ν=1

∫

D

Iνϕ δ(Φ) |∇Φ| dx, (19)

subject to the following constraints

a(ϕ, v, Φ) = L(v, Φ) with BCs from (4) , (20)∫

D

σH̄(Φ) dx = C (mass constraint) ,

σmin ≤ σ ≤ σmax (conductivity box constraint).

The energy form is now defined as

a(ϕ, v, Φ) =
∫

D

grad v · σ gradϕ H̄(Φ) dx.



In this formulation we use minimization of the objective
functional with respect to the level-set function Φ, the
Heaviside function H̄(Φ), and the Dirac function δ(Φ),
cf., e.g., [17].

5 Primal-dual approach

Finite element discretization of the design domain Ω is
used to formulate the following discrete nonlinear pro-
gramming problem

inf
ϕ,σ

f(ϕ,σ), (21)

subject to

A(σ)ϕ− b = 0,
g(σ)− C = 0,

σ − σmine ≥ 0,
σmaxe− σ ≥ 0,

(22)

where e ∈ RN , e = (e1, . . . , eN )T , ei = 1, 1 ≤ i ≤ N.

Here, A is the finite element stiffness matrix correspond-
ing to (3), b is the discrete load vector, and σ = (σi)N

i=1

is the discrete conductivity vector. We have denoted by
N the number of degrees of freedom. Suppose that the
conductivity is a constant on each element, i.e., σi is the
value of σ on the ith element. Note that the lower bound
σmin plays a crucial role keeping the ellipticity of the dis-
crete problem.

The Lagrangian function associated with (21)-(22) is

L(ϕ, σ, λ, η, z,w) := f(ϕ, σ) (23)
+ λT(A(σ)ϕ− b) + η (g(σ)− C)
− zT(σ − σmine)−wT(σmaxe− σ).

Here, λ, η and z ≥ 0, w ≥ 0 are the Lagrange multipliers
for the equality and inequality constraints in (22), respec-
tively. The necessary first–order Karush–Kuhn–Tucker
(KKT) optimality conditions read as follows

∇ϕL = ∇ϕf + A(σ)Tλ = 0,

∇σL = ∂σ(λT A(σ)ϕ) + η∇g(σ)− z + w = 0,

∇λL = A(σ)ϕ− b = 0,

∇ηL = g(σ)− C = 0,

D1z = 0 and D2w = 0, z ≥ 0, w ≥ 0,

(24)

where D1 = diag(σi − σmin) and D2 = diag(σmax − σi)
denote diagonal matrices in the complementarity condi-
tions.

We use further the idea behind the interior-point meth-
ods, see e.g. [19]. The inequality constraints are treated
by using the logarithmic barrier functions. Thus, we get
the following sequence of minimization subproblems

inf
ϕ,σ

β(ϕ,σ, ρ) (25)

with a parameter-dependent objective function defined as

β(ϕ, σ, ρ) : = f(ϕ, σ)
− ρ (log(σ − σmine) + log(σmaxe− σ)) ,

subject to the equality constraints

A(σ) ϕ− b = 0 and g(σ)− C = 0, (26)

where β(ϕ,σ, ρ) is the barrier function and ρ > 0 is the
barrier parameter. We suppose here that σ > σmine and
σmaxe > σ, which is the idea behind the interior-point
methods.

Denote by Ψ := (ϕ,σ, λ, η, z,w) the solution of the op-
timization subproblem (25)-(26). The KKT conditions
(24) lead to the following nonlinear equation

F ρ(Ψ) :=




∇ϕf + A(σ)Tλ

∂σ(λT A(σ)ϕ) + η∇g(σ)− z + w
A(σ)ϕ− b
g(σ)− C
D1z− ρ e
D2w − ρ e




= 0,

(27)
where ∇zL = D1z− ρ e, ∇wL = D2w − ρ e.

For the nonlinear equation we apply an inexact Newton
method and an appropriate modification of the primal-
dual matrix. For more details of the iterative procedure
by the step-size approach, see [7].

6 Numerical experiments

In this section we present some computational results.
The design domain Ω is chosen as a rectangle occupied
by an isotropic conductive medium. The domain is de-
composed by uniform quadrilateral finite elements. The
rotated bilinear (also referred to Rannacher and Turek)
basis functions are used for the discrete model. Compa-
rable finite element formulations of eddy current systems
can be found in, cf. [3, 6, 9].

A quadrature rule (exact for polynomials of degree three)
has been used to compute the global stiffness matrix cor-
responding to the elliptic differential equation as a first
equality constraint. All the computations have been done
with preliminary given values for the range of the con-
ductivity. We have chosen σmin = 0.01, σmax = 1, and
a constant C computed according to an initial homoge-
neous distribution with a conductivity σ = 0.45. The pre-
conditioned conjugate gradient method (PCG) has been
applied to solve systems with the stiffness matrix.

The primal-dual interior-point method with logarithmic
barrier functions is implemented in the numerical exper-
iments. The solutions of the nonlinear equation (27) rep-
resent the so called central path

P : {Ψ |F ρ(Ψ) = 0, ρ > 0}.
Some computational approaches how to choose the bar-
rier parameter ρ are discussed in [7]. The optimization
process is computationally unstable when ρ is made too
small.



We have computed the material distribution for various
number of contacts Nc. Due to the compatibility condi-
tion (6), we always have that the current inflow at the
lower port(s) is equal to the current outflow at the upper
port(s).

The final optimal design is visualized in Fig. 3 for Nc = 2,
in Fig. 4 for Nc = 3, and in Fig. 5 for Nc = 6. In the
plane Oxy one can see the contour of the final design do-
main. On the axis Oz we observe the computed values
of the conductivity running from σmin up to σmax. For
comparable applications of topology optimization of eddy
current systems with different objectives, design param-
eters, and constraints we refer the reader to [8, 12, 16].
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Figure 3: Material distribution (50×50 mesh, 2 contacts)

7 Conclusions

In this paper, the level-set method and the primal-dual
approach are proposed for the topology optimization of
high power electric devices. The conductive electromag-
netic system is described by the particular eddy current
formulation of Maxwell’s equations considered in a qua-
sistationary approximation. The objective functional is
to minimize power losses due to parasitic inductivities
and thus, to find the optimal distribution of the mate-
rial. The optimal layout of the domain can be implicitly
represented by a successive moving boundary embedded
in a scalar (level-set) function of one dimension higher
than the represented boundary. The optimization prob-
lem is formulated by means of a level-set model and the
minimization is considered with respect to the level-set
function. Another approach is directly solving the mini-
mization problem with respect to the electric potential as
a state variable and the conductivity as a design variable.
Numerical results by using finite element discretization of
a two-dimensional domain and applications of the primal-
dual method are reported and discussed.
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Figure 4: Material distribution (50×50 mesh, 3 contacts)
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