
Design and Implementation of Multi-Context
Rewriting Induction

Haruhiko Sato and Masahito Kurihara ∗

Abstract—Inductive theorem proving plays an im-
portant role in the field of formal verification of sys-
tems. The rewriting induction (RI) is a method for
inductive theorem proving proposed by Reddy. In or-
der to obtain successful proofs, it is very important to
choose appropriate contexts (such as in which direc-
tion each equation should be oriented) when apply-
ing RI inference rules. If the choice is not appropri-
ate, the procedure may diverge or the users have to
come up with several lemmas to prove together with
the main theorem. Therefore we have a good rea-
son to consider parallel execution of several instances
of the rewriting induction procedure, each in charge
of a distinguished single context in search of a suc-
cessful proof. In this paper, we propose a new pro-
cedure, called multi-context rewriting induction, which
efficiently simulates parallel execution of rewriting in-
duction procedures in a single process, based on the
idea of the multi-completion procedure. By the exper-
iments with a well-known problem set, we discuss the
effectiveness of the proposed procedure when search-
ing along various contexts for a successful inductive
proof.

Keywords: term rewriting systems, inductive theorem

proving, rewriting induction

1 Introduction

An inductive theorem is a proposition which holds on
recursively-defined data structures, such as natural num-
bers or lists, and can be proved using the well-founded in-
duction. In the field of formal verification of information
systems, inductive theorem proving plays an important
role. In order to automatically prove inductive theorems
in equational logic, various methods [5] have been pro-
posed based on the theory of term rewriting systems [4].
Among them is a method called the rewriting induction
(RI) proposed by Reddy [7], which is a principle general-
izing and refining several procedures for proving inductive
theorems based on term rewriting. The RI method relies
on the termination of the given term rewriting systems
representing the axioms, because if we have a terminat-
ing term rewriting system (i.e. there exists no infinite
rewrite sequence), then we can use the transitive closure

∗Graduate School of Information Science and Technol-
ogy, Hokkaido University; haru@complex.eng.hokudai.ac.jp, kuri-
hara@ist.hokudai.ac.jp; This work was partially supported by JSPS
Grant-in-Aid for Scientific Research (C), No. 19500020.

of the corresponding rewrite relation of the system as
a well-founded order over terms for the basis of induc-
tion. However, there exist strategic issues coming from
the nondeterminism in constructing proofs, and therefore
for guiding this procedure to success, we need to choose
appropriate proof steps. There are at least three kinds
of strategic issues: (1) in which direction hypothetical
equations should be oriented, (2) which (axiomatic or hy-
pothetical) rules should be employed for rewriting, and
(3) which variables should be instantiated for induction.
In general, it is difficult to choose appropriate strategies
leading to success and if we chose an inappropriate one,
the inductive theorem prover would easily diverge. In
the standard RI procedure, the strategy for (1) is fixed
before starting the reasoning steps by specifying a reduc-
tion order, which is used to ensure the termination of
the axiomatic rewrite system and decide the direction of
hypothetical equations. The reduction order should be
given by the user as an input. This means that the user
needs to decide a most difficult part of the strategy be-
forehand and this has been making it really hard to fully
automate the RI-based inductive theorem proving.

In order to solve this problem, Aoto [2] proposed a vari-
ant of RI, called the rewriting induction with termination
checker (RIt), which, based on the work of Wehrman, et
al. [10], uses an external automated termination checker
instead of a specific reduction order. In this method,
the users need to provide no reduction orders. Moreover,
they can implicitly exploit modern termination proving
methods more powerful than the classical, simply param-
eterized reduction orders (such as recursive path orders
and polynomial orders). From the viewpoint of strategy,
the use of termination checkers gives us more flexibility in
the orientation strategy, because they increase the pos-
sibility of success in the orientation and we can decide
the direction of the equations dynamically. In order to
prove inductive theorems as automatic as possible, we
can strengthen this flexibility by trying various strategies
in parallel. However, if we physically created and ran a
number of parallel processes, such naive parallelization
would cause serious inefficiency.

In this paper, we present a new variant of rewriting in-
duction procedures, called multi-context rewriting induc-
tion (MRIt), based on the idea of the multi-completion
[6, 8, 9]. Our procedure efficiently simulates execution of



parallel RIt processes in a single process. By the exper-
iments, we will see that the procedure is actually useful
for trying various strategies and contexts in parallel and
thus guiding some of the promising processes to success.
In particular, we demonstrate that there are inductive
theorems which are easily proved by MRIt but were not
proved by the standard RI or RIt unless the strategies
and contexts were chosen correct or else auxiliary lem-
mas were discovered and supplied.

2 Rewriting Induction

The rewriting induction (RI), proposed by Reddy [7], is
a principle for proving inductive theorems in equational
logic. Before describing RI, let us briefly review basic
notions. A term is a basic term if its root symbol is a
defined symbol and its arguments are constructor terms.
We denote all basic subterms of t by B(t). A TRS R
is quasi-reducible (also called ground-reducible) if every
ground basic term is reducible in R. An equation s = t
is an inductive theorem of R if all its ground instances
sσ = tσ are equational consequences of R (regarded as a
set of equations), i.e., sσ ↔∗

R tσ.

RI is represented as an inference system working on a
pair of a set of equations E and a set of rewrite rules
H. Intuitively, E represents conjectures (i.e., theorems
and lemmas) to be proved and H represents inductive
hypotheses applicable to E . Fig.1 shows the inference
rules of RI proposed in [1].

Delete 〈E ⊎ {s = s},H〉 ⊢ 〈E ,H〉
Simplify 〈E ⊎ {s = t},H〉 ⊢ 〈E ∪ {s′ = t},H〉

if s →R∪H s′

Expand 〈E ⊎ {s = t},H〉 ⊢
〈E ∪ Expdu(s, t),H ∪ {s → t}〉
if u ∈ B(s) and s ≻ t

Figure 1: Inference rules of RI

In Fig.1, R denotes a set of rewrite rules representing the
axioms, ≻ is a reduction order containing R, and Expd
denotes the function defined by

Expdu(s, t) =
{C[r]σ = tσ | s ≡ C[u], l → r ∈ R,

σ = mgu(u, l), l : basic}.

The delete rule removes the trivial equation. The
simplify rule reduces an equation using a rule of R
and H. The expand rule is the heart of RI. It ex-
pands a conjecture into several new conjectures, stor-
ing the expanded one in H as an inductive hypothesis
used later as a rewrite rule. Given a set of equations
E0, a quasi-reducible terminating TRS R, and a reduc-
tion order ≻ containing R, if we have a derivation se-
quence 〈E0,H0〉 ⊢RI 〈E1,H1〉 ⊢RI · · · ⊢RI 〈En,Hn〉 where

H0 = En = ∅, then all equations in E0 are inductive theo-
rems of R. It is known that quasi-reducibility is decidable
and there is a simply exponential algorithm for it. The
possible derivation depends on the choice of the reduc-
tion order ≻. It means that its choice is important for
the success of inductive theorem proving with the rewrit-
ing induction.

In general, it is not straightforward to provide a suitable
reduction order and choose appropriate inference rules to
be applied in the reasoning steps.

Aoto [2] proposed a variant of the rewriting induction,
using an arbitrary termination checker instead of a re-
duction order. The new system, called RIt, is defined by
modifying the expand rule as in Fig. 2. It allows us
to use more powerful termination checking techniques.
However, the neccessity of approprite choice of the di-
rection of the equation in applying the expand rule still
remains, because we can often orient an equation in both
directions.

Expand: 〈E ⊎ {s = t},H〉 ⊢
〈E ∪ Expdu(s, t),H ∪ {s → t}〉
if u ∈ B(s) and R∪H ∪ {s → t} terminates

Figure 2: Expand rule of RIt

3 Multi-Context Rewriting Induction

In this section, we show some examples in which the re-
sults of inductive theorem proving with RI are different,
depending on the ways of applying inference rules. Then
we present a new MKB-like procedure which enables us
to follow multiple reasoning paths in parallel.

3.1 Examples of Strategic Issues in RI

In this section, we show examples in which the choice of
appropriate contexts is important.

Example 3.1 Let us consider the following TRS [7].

R =



f(0) → 0
f(s(0)) → s(0)

f(s(s(x))) → f(s(x))+f(x)
g(0) → 〈s(0), 0〉

g(s(x)) → np(g(x))
np(〈x, y〉) → 〈x+y, x〉

This example defines Fibonacci numbers in two ways: a
naive definition by f and an iterative definition by g. The
following equation, which represents the correctness of
the iterative definition with respect to the naive defini-
tion, is an inductive theorem in R.

g(x) = 〈f(s(x)), f(x)〉



This conjecture can be proved in RI if we orient it from
left to right by choosing as a reduction order an appropri-
ate one such as the lexicographic path order (LPO) over
the precedence g > f > np > 〈〉 > + > s > 0.

Actually, expanding this equation by overlapping its left-
hand side with the fourth and fifth rules of R, we get

〈s(0), 0〉 = 〈f(s(0)), f(0)〉
np(g(x)) = 〈f(s(s(x))), f(s(x))〉,

both of which are simplified to trivial equations and
deleted. However, the RI procedure will diverge, if we
orient the original conjecture from right to left by choos-
ing the LPO with the precedence f > g > np > 〈〉 > + >
s > 0. In general, it is not a trivial task to provide an ap-
propriate reduction order, particularly when it should be
automated. When the ordering is inappropriate, we will
often have to supply additional conjectures as lemmas,
such as

sum(g(x)) = f(s(x)) + f(x)

in addition to some axioms such as

sum(〈x, y〉) → x+y

in our case. This examples demonstrates that appropri-
ate (and automated) choice of the direction in the orienta-
tion can sometimes reduce the burden of lemma discovery
imposed on the users.

Example 3.2 We show another example [5] where we
need to choose appropriate orientation of conjectures.

R =



@([], ys) → ys
@(xs, []) → xs

@(x : xs, ys) → x : @(xs, ys)
iter([], x) → []

iter(y : ys, x) → x : iter(ys, x)
dcons(x, []) → []

dcons(x, y : ys) → (x : y) : dcons(x, ys)
vm([]) → []

vm(x : xs) → (x : xs) :
dcons(x, vm(xs))

itvm([], z, ys) → ys
itvm(x : xs, z, ys) → itvm(xs, z, z : ys)

The function iter(ys, x) replaces each element in ys with
x. The function dcons(x, ys) replaces each element y in
ys with x : y. The function vm(xs) replaces each element
in xs with xs, that is, it is the same as iter(xs, xs).

The itvm function is an iterative definition of the vm
function. In the following conjectures, the first two con-
jectures represent the correctness of the iterative defini-
tion and the last three conjectures are lemmas needed for

proving them.

E =


itvm(xs, xs, []) = iter(xs, xs)

vm(xs) = iter(xs, xs)
dcons(x, iter(ys, z)) = iter(ys, x : z)

itvm(xs, z, ys) = iter(xs, z)@ys
iter(xs, y)@(y : zs) = y : iter(xs, y)@zs

When we want to prove these theorems, we have 20 ways
of possible combinations of orientations. However, only
one of them, which orients all conjectures from left to
right, can lead to successful proofs.

Example 3.3 We show an example [5] where the reduc-
tion strategy plays an important role.

R =



[]@ys → ys
(x : xs)@ys → x : (xs@ys)

r([]) → []
r(x : xs) → r(xs)@[x]

b([]) → []
b(x : xs) → b1(x, xs) : b2(x, xs)
b1(x, []) → x

b1(x, y : ys) → b1(y, ys)
b2(x, []) → []

b2(x, y : ys) → b(x : b(b2(y, ys)))

In this example, we denote the singleton list x : [] by
[x]. Since both functions r and b calculate the reverse of
the given list, the following two equations are inductive
theorems in R.

E =
{

r(xs) = b(xs)
b(b(xs)) = xs

These conjectures are proved in a mutually inductive way.
By expanding both equations with left-to-right orientation
and applying the simplification as much as possible, we
have the following two conjectures

b1(x, xs) : b2(x, xs) = b(xs)@[x],
b1(b1(x, xs), b2(x, xs)) : b2(b1(x, xs), b2(x, xs))

= x : xs

and two hypotheses {r(xs) → b(xs), b(b(xs)) → xs}.
Expansion of the first conjecture from left to right at
u ≡ b1(x, xs) followed by four steps of simplification with
R-rules yields the equation

b1(y, ys) : (b(b(b2(y, ys)))@[x]) =
(b1(y, ys) : b2(y, ys))@[x]

and the third hypothesis

b1(x, xs) : b2(x, xs) → b(xs)@[x].

Moreover, simplification of this equation with the second
hypothesis yields the following equation

b1(y, ys) : (b2(y, ys)@[x]) = (b1(y, ys) : b2(y, ys))@[x].



At this point, if we reduce the whole term of the right-
hand side with the second rule of R, we will succeed in
proving the conjecture. However, if we apply the third
inductive hypothesis to the underlined part, the procedure
will diverge. Some people might think that when they want
to apply a rewrite rule in the simplification, it seems that
an effective strategy would be to give precedence to the
inductive hypotheses (in H) over the axiomatic rules (in
R). In our example, however, the strategy failed. Note
that R∪H is not confluent in general. Therefore, it is a
non-trivial task to choose appropriate simplification rules
to apply.

3.2 Branching processes

As we have seen in the previous section, it is important
but difficult to choose appropriate contexts for obtain-
ing successful results. Some contexts lead to failure, and
others to divergence. Therefore, it makes sense to pur-
sue multiple contexts in parallel. In order to do it ef-
ficiently, we adapt the idea of the multi-completion to
the rewriting induction. The most basic idea is inher-
ited without difficulty: we can reuse the node structure
〈s : t,H1,H2, E〉 and represent the state of n multiple RI
processes 〈E1,H1〉, . . . , 〈En,Hn〉 by a set of nodes. Then
we define the inference rules which simulate a lot of RI-
inferences made in different processes.

The difference from the standard multi-completion pro-
cedure is that we cannot decide the number of processes
and strategies statically (before running the procedure),
while in the multi-completion the number is decided by
the size of the given set of reduction orders. In the multi-
completion, we were only concerned about the way of
orientation and it was simple enough to represent it by
a predetermined, single object, i.e., a reduction order.
Meanwhile, in the rewriting induction, we also have to
deal strategies such as how we simplify a term, as shown
in Example 3.3. Compared with the orientation, such
strategies are not easily enumerated beforehand.

For this reason, we do not fix the number of processes in
the new procedure, and allow it to dynamically change.
When a process encounters n nondeterministic choices,
we will have it fork into n different processes, with each
process associated with one of the choices. Stated in
terms of the tree-search algorithms, each process explores
one of the possible n branches. To distinguish such pro-
cesses, we represent the identifier of each process (called
index) as a sequence of natural numbers a1a2 . . . ak, which
can be interpreted as a position in a tree. If the pro-
cess with the index p = a1a2 . . . ak have n possible
choices of contexts, we have it fork into n processes:
a1a2 . . . ak1, a1a2 . . . ak2, . . . , a1a2 . . . akn. Based on the
label representation, we can simulate the fork operation
by replacing p with the set of n identifiers p1, . . . , pn in
all labels of all nodes.

For the purpose of formal treatment, we introduce the
fork function. Let us define the set I of all indexes as
the set N∗ of sequences of natural numbers. We do not
distinguish between a process and its index.

Definition 3.4 Fork function ψ : I → N maps each
process index to a natural number which represents the
number of processes to be created from the given process
by the fork operation. The fork function over a given set
P of processes, denoted by ψP : I → P(I), is defined as
follows:

ψP (p) =
{

{p.1, p.2, . . . , p.ψ(p)} if p ∈ P
{p} otherwise

where P(I) denotes the powerset of I. This function will
be used to fork all processes in P , while remaining other
processes untouched. The domain of the function is lifted
to labels, nodes, and sets of nodes as follows:

ψP (L) =
∪
p∈L

ψP (p)

ψP (〈s : t,H1,H2, E〉) = 〈s : t, ψP (H1), ψP (H2), ψP (E)〉

ψP (N) = {ψP (n) | n ∈ N}

3.3 Multi-context rewriting induction

In this section, we present a new procedure, the multi-
context rewriting induction procedure with termination
checkers (MRIt), which simulates execution of multiple
RIt processes based on the framework of MKB. Like
MKB, MRIt is represented by an inference system work-
ing on a set of nodes. A node is a 4-tuple 〈s : t, H1,H2, E〉
consisting of an ordered pair of terms s : t, three sets
of indexes of processes H1,H2, E, where each index is a
sequence of natural numbers. Note that the set of pos-
sible indexes I is infinite in MRIt, while it was finite in
MKB because the number of processes was fixed before-
hand, given the number of reduction orders. In MRIt,
the number of running processes is not fixed: the pro-
cedure starts with one (root) process and in the course
of the execution, adds new processes created by forking
existing processes as necessary, when we have nondeter-
ministic choices in applying inference rules. Intuitively,
E represents all processes containing s = t as a conjec-
ture to be proved, and H1(H2) represents all processes
containing s → t(t → s) as an inductive hypothesis.

Definition 3.5 (E- and H-projections) Let n = 〈s :
t,H1, H2, E〉 be a node, and i be an index. The E- and
H-projections of n onto i are defined as follows:

E [n, i] =
{

{s = t}, if i ∈ E,
∅, otherwise.



H[n, i] =

 {s → t}, if i ∈ H1,
{t → s}, if i ∈ H2,

∅, otherwise.

The definitions are extended for a set N of nodes as fol-
lows:

E [N, i] =
∪

n∈N

E [n, i], H[N, i] =
∪

n∈N

H[n, i]

E [N, p] is interpreted as a set of conjectures the process
p holds in the state represented by N . Similarly, H[N, p]
is interpreted as a set of inductive hypotheses held in the
process p.

Based on the intended interpretation described above, we
have developed inference rules of MRIt as shown in Fig.
3. In the inference rules, sub(N,L) = {〈s : t,H1 \L,H2 \
L,E \ L〉 | 〈s : t,H1,H2, E〉 ∈ N}.

The role of each inference rule is as follows. Delete
simulates its counterpart of RI. Gc, subsume, and
subsume-p are optional rules for efficiency and the first
two play the same role as in MKB. The third optional rule
stops redundant processes, which have the same state as
other existing processes. Simplify-R and simplify-H
simulate the simplify rule of RI. The difference is that
simplify-R applies a rule of R, which is common among
all processes, while simplify-H applies an inductive hy-
pothesis of H, which may exist only in some distinguished
processes. Fork, newly introduced in this system, en-
ables us to produce new copies of existing processes to
make nondeterministic choices in parallel. In the next
section, we will show some strategies to exploit this rule
in connection with other inference rules involving nonde-
terminism.

Let N and N ′ be two sets of nodes. We write N ⊢ N ′ if
the latter is obtained from the former by one application
of an inference rule of MRIt. Given a set E0 of equations
and a quasi-reducible terminating TRS R, MRIt starts
from the initial set of nodes N0 = {〈s : t, ∅, ∅, {ϵ}〉 | s =
t ∈ E0}, since we want to start with the single (root) sim-
ulated process denoted by the empty sequence ϵ. MRIt
generates a sequence N0 ⊢ N1 ⊢ · · · .

Finally, we state the soundness of MRIt. The following
proposition claims the soundness of fork, that is, the
fork function itself has virtually no effect on the semantics
of our procedure, as it only generates copies of existing
processes.

Proposition 3.6 Let N and N ′ be two sets of nodes and
P be a set of indexes such that N ′ = ψP (N). If p ∈ I and
q ∈ ψP (p), then 〈E [N, p],H[N, p]〉 = 〈E [N ′, q],H[N ′, q]〉.

The following proposition states that other inference rules
either simulate RI rules (in the strict, ⊢RI part) or have
no effect (the reflexive, = part).

Proposition 3.7 If N ′ is obtained from N by apply-
ing inference rules in MRIt other than fork, then
(E [N, p],H[N, p]) ⊢=

RI (E [N ′, p],H[N ′, p]) for all p ∈ I.

Delete: N ∪ {〈s : s,H1,H2, E〉} ⊢ N
Expand: N ∪ {〈s : t,H1,H2, E ⊎ E′, 〉} ⊢

N ∪ {〈s : t,H1 ∪ E′,H2, E〉}∪
{〈s′ : t, ∅, ∅, E′〉 | s′ = t ∈ Expdu(s, t)}
if E′ ̸= ∅, u ∈ B(s) and H[N, i] ∪R∪
{s → t} terminates for all i ∈ E′

Simplify-R: N ∪ {〈s : t,H1,H2, E〉} ⊢

N ∪
{

〈s : t,H1,H2, ∅〉
〈s′ : t, ∅, ∅, E〉

}
if E ̸= ∅ and s →R s′

Simplify-H: N ∪ {〈s : t,H1,H2, E〉} ⊢

N ∪
{

〈s : t,H1,H2, E \ H〉
〈s′ : t, ∅, ∅, E ∩ H〉

}
if E ∩ H ̸= ∅, 〈l : r,H, . . . , . . . 〉 ∈ N,
and s →{l→r} s′,

Fork: N ⊢ ψP (N)
Gc: N ∪ {〈s : t, ∅, ∅, ∅〉} ⊢ N

Subsume: N ∪
{

〈s : t,H0,H1, E〉,
〈s′ : t′,H ′

0,H
′
1, E

′〉

}
⊢

N ∪ {〈s : t,H0 ∪ H ′
0,H1 ∪ H ′

1, E
′′〉}

if s : t and s′ : t′ are variants and
E′′ = (E \ (H ′

0∪H ′
1)) ∪ (E′ \ (H0∪H1))

Subsume-p: N ⊢ sub(N ′, L)
if ∀p ∈ L, ∃p′ ̸∈ L :
(E [N, p],H[N, p]) = (E [N, p′],H[N, p′])

Figure 3: Inference rules of MRIt

4 Experiments

In this section, we report some experimental results. In
the implementation of MRIt, we used a built-in termi-
nation checker (developed by ourselves) based on the
dependency-pair method [3]. Moreover, in order to find
reduction orders for ensuring termination, we used the
combination of polynomial interpretation and SAT solv-
ing. All experiments were performed on a workstation
equipped with Intel Xeon 2.13GHz CPU and 1GB sys-
tem memory.

4.1 Effectiveness in trying various strategies

In order to discuss the effectiveness of MRIt in choos-
ing appropriate inference steps for obtaining successful
proofs, we experimented with examples discussed in Sect.
3.1. The results are shown in Table 1. The ”Total” col-
umn shows the total time (in seconds), the ”Term” col-
umn shows the time consumed by the termination check-
ing in the expand rule, and the ”Simpilfy” column shows
the time consumed by the simplify-H and simplify-R
rules. The ”# of proc” column shows the number of pro-



cesses which existed when one of the processes succeeded
in proving all conjectures.

Table 1: Computation time for examples in Sect. 3.1

Problem Total Term Simplify # of proc.
Ex. 3.1 0.009 0.002 0.005 3
Ex. 3.2 0.409 0.255 0.080 20
Ex. 3.3 0.262 0.130 0.097 10

In all examples, only one process was in a successful state
when the whole system stopped. Moreover, when we con-
tinued to run the remaining processes not yet in a suc-
cessful state, almost no processes (precisely no process
in the case of Example 3.2) succeeded because of the di-
vergence. In example 3.3, the number of processes kept
increasing (by forking) and among them, less than 20%
were those which eventually led to success, and the oth-
ers seemed to be diverging. From the results, we can see
that MRIt is effective in choosing appropriate contexts
for obtaining successful proofs.

4.2 Efficiency

We experimented with Dream Corpus examples1, which
are standard examples for inductive theorem proving. In
those examples, there were 69 unconditional equational
problems suitable for the input to our system. Among
them, 35 problems were successfully solved by our system.
The results are shown in Table 2, where we only show the
results which required more than 0.01sec computation
time. The bottommost row indicates the total time of
all the 35 problems solved, including those with less than
0.01sec CPU time.

Table 2: Computation time of Dream Corpus examples

Problem Total Term Simplify # of proc.
109 0.347 0.281 0.043 6
301 0.305 0.244 0.044 6
115 0.042 0.026 0.010 1

1018 0.028 0.014 0.009 3
216 0.014 0.003 0.010 2

total 0.876 0.627 0.169

We can see that our system can solve those example prob-
lems in practical time. They required a relatively small
number of contexts, but it was nice for us to be able
to run the system efficiently enough without any care of
reduction orders and sophisticated strategies.

1The examples are available at: http://kussharo.complex.

eng.hokudai.ac.jp/∼haru/mrit/ (modified from the originals cre-
ated by the Mathematical Reasoning Group, University of Edin-
burgh)

5 Conclusion

In this paper, we have presented MRIt, the multi-context
rewriting induction procedure, which simulates parallel
execution of rewriting induction procedures. We have
reported that MRIt was effective in trying various strate-
gies for obtaining successful proofs efficiently. As future
work, we are planning to study extensions for handling
non-orientable equations.

References

[1] T. Aoto, “Dealing with Non-orientable Equations
in Rewriting Induction,” Proc. 17th International
Conference on Rewriting Techniques and Applica-
tions, vol. 4098 of Lecture Notes in Computer Sci-
ence, pp.242–256, 2006.

[2] T. Aoto, “Rewriting induction using termination
checker,” JSSST 24th Annual Conference, 3C-3,
2007 (in Japanese).

[3] T. Arts and J. Giesl, “Termination of term rewrit-
ing using dependency pairs,” Theoretical Computer
Science, vol.236, pp.133–178, 2000.

[4] F. Baader and T. Nipkow, Term Rewriting and All
That, Cambridge University Press, 1998.

[5] G. Huet and J.-M. Hullot, “Proofs by induction
in equational theories with constructor,” Journal
of Computer and System Sciences, vol.25, no.2,
pp.239–266, 1982.

[6] M. Kurihara and H. Kondo, “Completion for multi-
ple reduction orderings,” Journal of Automated Rea-
soning, vol.23, no.1, pp.25–42, 1999.

[7] U. Reddy, “Term rewriting induction,” 10th Int.
Conf. on Automated Deduction, vol.814 of Lecture
Notes in Computer Science, pp.162–177, 1990.

[8] H. Sato, S. Winkler, M. Kurihara, and A. Mid-
deldorp, “Multi-completion with termination tools
(system description),” Proc. 4th International Joint
Conference on Automated Reasoning, vol.5195 of
Lecture Notes in Artificial Intelligence, pp.306–312,
2008.

[9] H. Sato, M. Kurihara, S. Winkler, and A. Mid-
deldorp, “Constraint-based multi-completion proce-
dures for term rewriting systems,” IEICE Trans-
actions on Information and Systems, vol.E92-D,
pp.220–234, 2009.

[10] I. Wehrman, A. Stump, and E. Westbrook,
”Slothrop: Knuth-Bendix completion with a mod-
ern termination checker,” Proc. 17th International
Conference on Rewriting Techniques and Applica-
tions, vol.4098 of Lecture Notes in Computer Sci-
ence, pp.287–296, 2006.




