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Abstract—In this paper, we present an upper
bound of O(20.1625n) for the minimum-weight exact
3-satisfiability problem (MINW-X3SAT) getting as
input 3-CNF formulas over n real-valued weighted
propositional variables. This problem is NP-hard and
the best previous result is an exact algorithm solving
MINW-XSAT with no restrictions on clause length in
time O(20.2441n) [9].
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1 Introduction

The propositional satisfiability problem (SAT) for con-
junctive normal form (CNF) formulas is a prominent
problem, namely one of the first problems that have been
proven to be NP-complete [3]. SAT has a wide range of
applications because many problems can be encoded as a
SAT problem. Weighted satisfiability problems, by which
we mean that the propositional variables are the weighted
objects, provide natural generalizations of SAT and also
have important applications, e.g. in the area of code gen-
eration [1, 7].
The present paper is devoted to study a variant of
weighted SAT, namely the weighted exact 3-satisfiability
problem. The corresponding decision problem X3SAT
is known to be NP-complete [11]. We investigate here
the computational time complexity of optimizing solu-
tions of X3SAT for weighted CNF formulas containing
no clauses of length greater than three (3-CNF) as input.
Note that the weighted variant of a search problem can
increase its computational complexity considerably as is
demonstrated by the transition from 2-SAT to variable
weighted 2-SAT generalizing the vertex-weighted vertex
cover problem. Thus we are motivated to consider the
weighted optimization variant of X3SAT.
Recently, XSAT and X3SAT attracted much attention
[2, 5, 10, 6]. However the first breakthrough-result [8]
dates back to the year 1980 and provides an algorithm
deciding XSAT in O(20.2441n) time, for input formulas
over n variables. Until 2003 this bound has been the
best known, then, based on the same techniques, it has
been improved to O(20.2325n) [2]. The best known result
for unweighted X3SAT provides a solution in O(20.1379n)
time [2]. The weighted optimization problem MINW-
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XSAT was treated for the first time in [9]. This algo-
rithm essentially uses the branching strategy provided
in [8], and benefits from simplification steps preserving
the minimum weight XSAT status of each intermediate
weighted formula. It solves MINW-XSAT in worst case
time O(20.2441n).
We want to use the restriction on the clause length
to reach some improvement for 3-CNF input instances.
Our algorithms are based on the same methods as the
one from [9], however, using certain branching steps we
achieve time O(20.1625n).

2 Basic definitions and notation

A literal is a Boolean variable a ∈ {0, 1} or its negation a.
We denote the complement of a literal l as l. A clause C
is the disjunction of different literals and is represented as
a literal set. A k-clause is a clause that contains exactly
k literals. A CNF formula F is a conjunction of differ-
ent clauses and is represented as a clause set. A k -CNF
formula is a formula that contains only clauses of a max-
imum length k. For a given formula F (resp. clause C),
we denote the set of contained variables by V (F ) (resp.
V (C)). Similarly, V (l) denotes the underlying variable
of a literal l. pol(l) denotes the polarity of a literal in a
fixed clause of a formula. By V+(F ) (resp. V−(F )) we
denote the set of all variables occurring positive (resp.
negated). We call a variable (resp. a literal correspond-
ing to it) unique if it occurs in the formula only once. We
distinguish between the length of a formula ‖F‖ and the
number of its clauses |F |. Let CNF denote the set of all
formulas and let CNF+ denote the set of positive mono-
tone formulas, i.e., each clause contains only unnegated
variables. F ∈ CNF+ is called a matching formula, if
each a ∈ V (F ) occurs at most twice in F . A CNF for-
mula F is called linear if each pair of distinct clauses F
has at most one variable in common. Given a formula F
and a variable a, the formula F [a ← 1] (resp. F [a ← 0])
is obtained from F by setting the value of a to 1 (resp.
0). The restriction of a mapping f : A → B to a subset
A0 ⊆ A is denoted as f |A0 .
The exact 3-satisfiability problem (X3SAT) asks in its
decision version, whether there exists a truth assignment
t : V (F ) ← {0, 1}, setting exact one literal to 1 in each
clause of F . We call such an assignment t an x-model,
and we denote with X3SAT the set of all exact satisfiable
3-CNF formulas. In the search version of X3SAT one has
to decide whether F ∈ X3SAT, and in the positive case to



find an x-model of F . We obtain an optimization variant
of X3SAT, when weights are assigned to the variables.
A weighted formula is a pair (F,w) consisting of F ∈
3-CNF and a weight function w : V (F ) → R. The prob-
lem MINW-X3SAT for a weighted formula (F,w) asks
whether F ∈ X3SAT, and in the positive case one has to
find a minimum x-model for F , i.e., an x-model t with
the least weight among all x-models of F . The weight of
a model is defined by w(t) =

∑
a∈V (F ) w(a)t(a). MINW-

X3SAT is an NP-hard optimization problem.
We observe that the empty set is also a formula (∅ ∈
CNF), which is exactly satisfiable. However, a formula F
containing the empty clause (� ∈ F ) cannot be exactly
satisfiable.

3 Structure of the Algorithm

The main method of our algorithm solving MINW-
X3SAT is branching. Branching is a technique, which, for
a given formula F , treats two new formulas F [a ← 0] and
F [a ← 1], where a ∈ V (F ) is a variable of F . Both new
formulas obviously contain at least one variable less than
F . Branching splits the original problem in two problems
with a smaller number of variables and treats these recur-
sively. We note that F is exact satisfiable if and only if
one of the smaller formulas F [a ← 0] or F [a ← 1] is exact
satisfiable. Via recursive calls of branching steps we get a
binary tree structure. This branching tree is generated in
a depth first search manner. Its root corresponds to the
weighted input formula (F,w) and all other nodes corre-
spond to those weighted formulas that are calculated by
branching at a variable of its parent node formula and
simplifying afterwards. The leaf nodes of the tree cor-
respond to weighted matching formulas. For matching
formulas as input, we can solve MINW-X3SAT in poly-
nomial time (see Section 5).
Each leaf defines an unique path to the root in the branch-
ing tree. Suppose that each simplification step performed
at every weighted node formula preserves its minimum
weight X3SAT status, i.e., a minimum weight X3SAT so-
lution for the non-simplified formula can be obtained in
polynomial time from the minimum weight X3SAT so-
lution for the simplified one. Hence we want to traverse
each path bottom up to the root setting variables accord-
ing to the current path and performing the reverse simpli-
fication steps. This way we obtain a MINW-X3SAT so-
lution with respect to the current path. A global MINW-
X3SAT solution can be obtained by simply comparing
the weights of path solutions.
By storing the branching and simplification information
on a stack we are able to obtain the correct inverse trans-
formations for each step in constant time when traversing
bottom up along that path to the root node.
The algorithm uses two parameters currsol and sol for
storing the current local, resp. the current global so-
lution. Both parameters are initialized with nil. The
weights of corresponding solutions, i.e., currsol weight

and sol weight, are initialized with ∞. Further, a stack S
is used for storing the history of the path from the root
to the current node in the branching tree. For a current
node, this history consists of the simplifications made in
each predecessor node during a Procedure Simplify and
also by assignments of the branching variables.
If the current formula is a matching formula, then a leaf
of the tree is reached. The Procedure MinPerfMatch
searches for a minimum weight X3SAT solution for the
current weighted matching formula. Afterwards, in the
Procedure ReturnToRoot, the operations stored on the
stack are performed on the found local solution inversely
and in reversed order yielding a minimum solution with
respect to the current branching tree path.

Algorithm MINW-X3SAT
Input: F ∈ 3-CNF; w : V (F ) → R

Output: Solution for (F, w) if F ∈ X3SAT, else nil.
(01) if contradiction in variable assignment then return nil

(02) Simplify(F, w, currsol, S);

(03) if � ∈ F then return nil

(04) if F is a matching formula then

(05) MinPerfMatch(F, w, currsol, S);

(06) if currsol �= nil then ReturnToRoot(F, w, currsol, S);

(07) if sol weight > currsol weight then sol ← currsol;

(08) if ∃a ∈ V (F ) occurring ≥ 4 times then

(09) MINW-X3SAT(F [a ← 1], w, currsol, S);

(10) MINW-X3SAT(F [a ← 0], w, currsol, S);

(11) if {ā, x1, y1}, {a, x2, y2}, {a, x3, y3} ∈ F then

(12) MINW-X3SAT(F [a ← 1], w, currsol, S);

(13) MINW-X3SAT(F [a ← 0], w, currsol, S);

(14) if {a, x1, y1}, {a, x2, y2}, {a, x3, y3}, {x3, l1, l2}, {x1, x2, z}∈F

s.t. V (pi) = V (xi), i = 1, 2,V (z) ∈ {V (x3), V (y3)} then

(15) MINW-X3SAT(F [x3 ← 1], w, currsol, S);

(16) MINW-X3SAT(F [x3 ← 0], w, currsol, S);

(17) if {a, x1, y1}, {a, x2, y2}, {a, x3, y3} ∈ F then

(18) MINW-X3SAT(F [a ← 1], w, currsol, S);

(19) MINW-X3SAT(F [a ← 0], w, currsol, S);

4 Procedure Simplify

This section is devoted to state the transformation rules
used in our algorithm. Each rule performs a transforma-
tion on a weighted formula, which is a pair (F, w)
Before beginning, we state an easy but useful assertion
proved in [9]. Let T (F ) denote the set of all x-models of
F . Similarly, for a given weight function w : V (F ) → R,
let Tmin(F, w) ⊂ T (F ) denote the set of all minimum
x-models of (F, w).

Lemma 1 [9] For F, F ′ ∈ CNF and two weight functions
w : V (F ) → R, w′ : V (F ′) → R, assume that there exists
a bijection B : T (F ) → T (F ′), t 
→ t′ such that

(∗) : w(t) = w′(t′) + α,

where α ∈ R is a constant independent of t, t′.



Then Bmin := B|Tmin(F,w) is a bijection between the
two sets Tmin(F,w) and Tmin(F ′, w′); and so we have
|Tmin(F,w)| = |Tmin(F ′, w′)|.

Next we state the rules used in our Simplify procedure.
Each rule provides a transformation from formula F to
formula F ′. The corresponding transformation modify-
ing the weight function w to w′ accordingly is presented
in a Lemma, in each case.
The transformations performed in the Procedure Simplify
are invertible and preserve the minimum weight X3SAT
status of weighted formulas. It is understood, without
explicitly mentioning, that all transformations are man-
aged by the stack.
Each rule followed by a Lemma stating This lemma pro-
poses that there exists a bijection between minimum x-
models of (F,w) and (F ′, w′). Hence, a minimum solution
for (F,w) can be obtained from a minimum solution for
(F ′, w′).
Rule (1): If a clause C occurs in F more than once, all
except for one occurrences of C should be removed.
Rule (2): If a clause C ∈ F contains the same literal l
twice or more, then l must be set to 0 in F ′.
Rule (3): If C ∈ F contains only one literal l, then l
must be set to 1 in F ′.
Rule (4): If a ∈ V (F ) occurs only negated, then substi-
tute a ← a.

Lemma 2 Given F ∈ 3-CNF, w : V (F ) → R. Let
a ∈ V (F ) be a variable occuring in the formula F only
negated. Let F ′ be a formula obtained from F by the sub-
stitution a ← a and w′ : V (F ′) = V (F ) → R the same
weight function as w, except w′(a) := −w(a).
Then we have |Tmin(F,w)| = |Tmin(F ′, w′)|.

Proof. F ∈ X3SAT iff F ′ ∈ X3SAT, because an x-model
t′ : V (F ′) → {0, 1} explicitly defines the x-model t :
V (F ) → {0, 1} by

t(v) :=
{

1 − t′(a), v = a
t′(v), otherwise

Relation (∗) from Lemma 1 can be established as follows:

w(t) = w(a)t(a) +
∑

v∈V (F )−{a}
w(v)t(v)

= −w′(a)(1 − t′(a)) +
∑

v∈V (F ′)−{a}
w′(v)t′(v)

=
∑

v∈V (F ′)

w′(v)t′(v) − w′(a)

= w′(t′) − w′(a) �

Rule (5): If a clause C ∈ F contains more than one
unique variable, then we set these variables to 0 in F ′

except one with minimum weight.
Rule (6): For a 2-clause C = {x, y} ∈ F with V (x) �=

V (y), we can set x ← y in F ′. The following lemma
demonstrates that these transformations preserve the
minimum weight X3SAT status.

Lemma 3 Given F ∈ 3-CNF, w : V (F ) → R and C =
{x, y} ∈ F . Then there exists a weighted formula (F ′, w′)
such that C is no more in F ′ and every t′ ∈ Tmin(F ′, w′)
defines exactly one t ∈ Tmin(F, w).

Proof. Let V (x) = a and V (y) = b. We know that
V (C)∩V (F−C) �= ∅, because otherwise C would contain
two unique variables, which is not permitted by Rule (5).
We define F ′ as the formula obtained from F by removing
C and substituting either y := x or y := x. Then we
have V (F ′) = V (F ) − {b} and (†)F ∈ X3SAT iff F ′ ∈
X3SAT because an assignment to a explicitly defines an
assignment to b, so that the clause C is exact satisfiable.
We distinguish two cases to define w′:
Case (a): C = {a, b} (analog: C = {a, b}). Then each
x-model t of F necessarily fulfills t(a) = t(b). We define
w′ as

w′(v) :=
{

w(a) + w(b), v = a
w(v), v ∈ V (F ′) − {a}

Now we define a bijection B : T (F ) → T (F ′) as fol-
lows: for each assignment t ∈ T (F ), let B(t) := t′ =
t|V (F ′) ∈ T (F ′) and, for each assignment t′ ∈ T (F ′), we
set B−1(t′) := t with

t(v) :=
{

t′(v), v ∈ V (F ′)
t′(a), v = b

∈ T (F )

Notice that the map B is well defined because of (†) and
is a bijection, because for every given t the value B(t) is
uniquely determined.
Now we prove that the relation (∗) in Lemma 1 holds
true. Let t ∈ T (F ), then we have with t(a) = t(b):

w(t) = w(a)t(a) + w(b)t(b) +
∑

v∈V (F )−{a,b}
w(v)t(v)

= [w(a) + w(b)]t′(a) +
∑

v∈V (F ′)−{a}
w(v)t′(v)

= w′(t′)

The preconditions of Lemma 1 are fulfilled, so Bmin :=
B|Tmin(F,w) is the bijection between Tmin(F, w) and
Tmin(F ′, w′).
Case (b): C = {a, b} (analogous: C = {a, b}). Then each
x-model t of F necessarily fulfills t(a) = 1 − t(b). We
define w′ as

w′(v) :=
{

w(a) − w(b), v = a
w(v), v ∈ V (F ′) − {a}

Similar to (a), we define a map B : T (F ) → T (F ′) by
B(t) := t′ = t|V (F ′) ∈ T (F ′) and B−1(t′) := t with

t(v) :=
{

t′(v), v ∈ V (F ′)
1 − t′(a), v = b

∈ T (F )



This map is also well defined and a bijection. We check
now the relation (∗) from Lemma 1:

w(t) = w(a)t(a) + w(b)t(b) +
X

v∈V (F )−{a,b}
w(v)t(v)

= w(a)t′(a) + w(b)(1 − t′(a)) +
X

v∈V (F ′)−{a}
w(v)t′(v)

= [w(a) − w(b)]t′(a) +
X

v∈V (F ′)−{a}
w(v)t′(v) + w(b)

= w′(t′) + w(b)

finishing the proof.�

Rule (7): If a clause C ∈ F with |C| = 3 contains a
complemented pair of variables x, x, set the third literal
y to 0 in F ′ and C does not occur in F ′.

Lemma 4 For F ∈ 3-CNF and w : V (F ) → R, let C =
{x, x, y} ∈ F be a clause containing a complemented pair
of variables. Let F ′ be a formula obtained from F by the
substitution y ← 0 and the weight function is defined as
follows: w′ : V (F ′) → R with w′ = w|V (F ′). Then we
have |Tmin(F,w)| = |Tmin(F ′, w′)|.

Proof. Let a = V (y). We have F ′: V (F ′) = V (F )\{a},
because of the definition of F ′, and F ∈ X3SAT iff F ′ ∈
X3SAT, because an x-model t′ : V (F ′) → {0, 1} of F ′

explicitly defines an x-model t : V (F ) → {0, 1} of F ,
namely:

t(v) :=

⎧⎨
⎩

0, v = a = y
1, v = a = y
t′(v), otherwise

We check now the relation (∗) from Lemma 1. We dis-
tinguish two cases: (1) y = a, the third literal in C is
unnegated, hence t(a) = 0. Then:

w(t) = w(a)t(a) +
∑

v∈V (F )−{a}
w(v)t(v) = w′(t′)

(2) y = a, the third literal in C is negated, hence t(a) = 1.
Then:

w(t) = w(a)t(a) +
∑

v∈V (F )−{a}
w(v)t(v) = w′(t′) + w(a)

For both cases (∗) holds, therefore the assertion of this
lemma is true. �

Rule (8): If F contains the clauses {a, x1, y1},
{a, x2, y2}, {a, x3, y3} and C with C ∈ {{x1, x2, x3},
{x1, x2, x3}, {x1, x2, x3}}, then set a to 0 in F ′.
To guarantee that F ∈ X3SAT, one of the literals x1, x2

or x3 must be set to 1. Thus we must set a ← 0. The
following lemma proves that the MINW-X3SAT status
holds. The proof of this lemma is similar to the one of
Lemma 4.

Lemma 5 For a formula F ∈ 3-CNF and a function
w : V (F ) → R, let {a, x1, y1}, {a, x2, y2}, {a, x3, y3} and
C be clauses in F with C ∈ {{x1, x2, x3}, {x1, x2, x3},
{x1, x2, x3}}. Let F ′ be a formula obtained from F by the
substitution a ← 0 and the weight function w′ : V (F ′) →
R is defined as follows: w′ = w|V (F ′). Then we have
|Tmin(F, w)| = |Tmin(F ′, w′)|.

Rule (9): If F contains clauses {x, y, l1} and {x, y, l2},
then set l1 ← l2 in F ′.

Lemma 6 Let F ∈ 3-CNF, w : V (F ) → R,
{x, y, l1}, {x, y, l2} ∈ F . Then there exists a weighted for-
mula (F ′, w′) such w′ : V (F ′) → R, V (l1) does not occur
in F ′ and, for each t′ ∈ Tmin(F ′, w′), exists exactly one
t ∈ Tmin(F, w).

Rule (10): If a formula F contains clauses {x, y, l1} and
{x, y, l2}, so set l1 ← x, l2 ← x and y ← 0 in F ′.

Lemma 7 Let F ∈ 3-CNF, w : V (F ) → R and
{x, y, l1}, {x, y, l2} ∈ F . Then there exists a weighted
formula (F ′, w′) such that the variables V ({l1, l2, y}) do
not occur in F ′ and, for each t′ ∈ Tmin(F ′, w′), ex-
ists exactly one t ∈ Tmin(F, w) and vice versa, for each
t ∈ Tmin(F, w), exists exactly one t′ ∈ Tmin(F ′, w′).

Rule (11): If a formula F contains clauses {x, y, l1} and
{x, y, l2}, set l1 ← 0, l2 ← 0 and x ← y in F ′.
The following lemma can be proved similarly to Lemma 3.

Lemma 8 Let F ∈ 3-CNF, w : V (F ) → R and
{x, y, l1}, {x, y, l2} ∈ F . Let F ′ be a formula obtained
from F by the substitution l1 ← 0, l2 ← 0, x ← y and the
weight function is defined as follows:

w′(v) :=

8<
:

w(b) + w(a), v = b; pol(x) �= pol(y)
w(b) − w(a), v = b; pol(x) = pol(y)
w(v), v ∈ V (F ′) \ {b}

with V (x) = a and V (y) = b. Then we have
|Tmin(F, w)| = |Tmin(F ′, w′)|.

Rule (12): If F ′ is an independent subformula of F , i.e.,
V (F ′) ∩ V (F − F ′) = ∅ with |V (F ′)| ≤ 10, then we can
solve MINW-X3SAT for F ′ in constant time, for example
by brute force. It is clear that a MINW-X3SAT solution
for the formula F is the union of MINW-X3SAT solutions
for F ′ and F − F ′. Thus replace F with F − F ′, if F ′ is
exact satisfiable.

5 Treating Matching Formulas

This section describes how to find a MINW-X3SAT so-
lution for a matching formula F ∈ 3-CNF in polyno-
mial time. First, the Procedure MinPerfMatch converts a



matching formula into a positive linear matching formula,
so that the MINW-X3SAT status is preserved. Then we
construct a certain graph GF corresponding to the for-
mula F , called formula graph, in a way that the mini-
mum perfect matching of GF corresponds to the MINW-
X3SAT solution of F . It is known that the minimum
perfect matching problem is solvable in polynomial time
[4]. Hence, we can also solve the MINW-X3SAT problem
for matching formulas in polynomial time. Primarily, we
want to eliminate all occurrences of negated literals in F .
The resulting formula F ′ is not necessarily in 3-CNF. It is
only important that a minimum x-model of F ′ explicitly
defines a minimum x-model of F .
The following lemma describes a transformation called
weighted simple resolution. The weighted simple resolu-
tion for XSAT is due to [9].

Lemma 9 Let F = {C1, C2, . . . , Cr} ∈ CNF be a match-
ing formula and w : V (F ) → R be a weight function. Fur-
ther, let Ci = C ′

i∪{a} and Cj = C ′
j∪{a} be clauses in F .

We define a new clause C ′ := C ′
i ⊕ C ′

j, where ⊕ denotes
the symmetrical difference of two clauses, i.e., C ′ con-
tains the literals occurring only in one clause C ′

i or C ′
j.

We define a new formula F ′ := F \{Ci, Cj}∪{C ′}. Fur-
thermore, let w′ : V (F ′) → R be a weight function. We
distinguish two cases to construct w′: (1) C ′ = C ′

i ⊕ C ′
j

contains a complementary pair b, b. Then we define w′

as follows:

w′(v) :=

⎧⎨
⎩

w(v), v ∈ V (F ′) \ {b}
w(v) + w(a), v = b and b ∈ C ′

i, b ∈ C ′
j

w(v) − w(a), v = b and b ∈ C ′
j , b ∈ C ′

i

(2) C ′ = C ′
i ⊕C ′

j does not contain a complementary pair.
Then we define w′ as follows:

w′(v) :=

⎧⎨
⎩

w(v), v ∈ V (F ′ \ C ′
i)

w(v) + w(a), v ∈ V−(C ′
i \ C ′

j)
w(v) − w(a), v ∈ V+(C ′

i \ C ′
j)

Then we have |Tmin(F,w)| = |Tmin(F ′, w′)|.

Now we want to transform a positive matching formula
F into a linear positive matching formula F ′. This trans-
formation has to ensure that for each minimum x-model
of F ′ a minimum x-model of F can be constructed.

Lemma 10 Let F = {C1, C2, . . . , Cr} ∈ CNF be a posi-
tive matching formula with a weight function w : V (F ) →
R. Assume that Ci, Cj ∈ F contain the same variables
v1, v2, . . . , vk with k ≥ 2. Without loss of generality, let
v1 be a variable with the least weight, i.e., w(v1) ≤ w(vi)
for all i ∈ {2, 3, . . . , k}. We define new clauses C ′

i :=
Ci \ {v2, v3 . . . , vk}, C ′

j := Cj \ {v2, v3 . . . , vk} and a new
formula F ′ := F \ {Ci, Cj} ∪ {C ′

i} ∪ {C ′
j} with a weight

function w′ : V (F ′) → R, w′ := w|V (F ′).
Then, for each t′ ∈ Tmin(F ′, w′), we can find at least one
t ∈ Tmin(F,w).

Proof. According to the definition of F ′ we have
V (F ′) = V (F ) \ {v2, v3 . . . , vk}. F ∈ XSAT iff F ′ ∈
XSAT, because an x-model t′ : V (F ′) → {0, 1} explic-
itly defines an x-model t : V (F ) → {0, 1} by

t(v) :=
{

t′(v), v ∈ V (F ′)
0, v ∈ {v2, v3 . . . , vk}

And vice versa, we can obtain an x-model t′ : V (F ′) →
{0, 1} of F ′ from one of F :

t′(v) :=

⎧⎨
⎩

t(v), v ∈ V (F ′) \ {v1}
1, v = v1,∃i ∈ {1, 2, . . . , k}t(vi) = 1
0, v = v1,∀i ∈ {1, 2, . . . , k}t(vi) = 0

Let t′ ∈ Tmin(F ′, w′). We want to prove that

t(v) =
{

t′(v), v ∈ V (F ′)
0, v ∈ {v2, v3 . . . , vk} ∈ Tmin(F,w).

Obviously, t is an x-model of F and w(t) = w′(t′). We
demostrate that t is minimal. Assumed, there exists t0 ∈
T (F ) with t0 �= t and w(t0) < w(t). We define t′0 as
follows:

t′0(v) =

⎧⎨
⎩

t0(v), v ∈ V (F ′) \ {v1}
1, v = v1,∃i ∈ {1, 2, . . . , k}t0(vi) = 1
0, v = v1,∀i ∈ {1, 2, . . . , k}t0(vi) = 0

t′0 is an x-model of F ′, because t0 ∈ T (F ). It must
be fulfilled w′(t′0) ≤ w(t0), because w′(v1) = w(v1) ≤
w(vi), ∀i ∈ {2, 3, . . . , k}. Generally it follows that
w′(t′0) ≤ w(t0) < w(t) = w′(t′) ⇒ w′(t′0) < w′(t′),
That means that we have an x-model of F ′ with less
weight than t′. This is a contradiction to the assump-
tion t′ ∈ Tmin(F ′, w′). So our assumption is false and
t ∈ Tmin(F, w). �

At first, we apply Lemma 9 and, afterwards, the Rules (2)
and (7) as often as possible, i.e., until no more negated
variables occur in the current formula. After that, we
apply Lemma 10 to the resulting formula, until linearity
is achieved. Then we can construct a formula graph GF ,
whose minimum perfect matching yields a minimum x-
model for the final formula F .

6 Running Time

In this section we analyse the time complexity of the
Algorithm MINW-X3SAT. The running time of the al-
gorithm is generally determined by the running time of
recursive calls of itself. Hence, except a polynomial fac-
tor, the total running time T (n) is defined by the number
of leaves of the branching tree. The maximum number
of leaves is determined by the maximum of the solutions
of the recurrence inequalities, which correspond to the
branching steps.
For each branching step we want to determine the num-
ber of deleted variables. Then we can construct and solve



the corresponding recurrences. The dominating recur-
rence yields the running time of the algorithm which is
T (n) ≤ T (n− 9) + T (n− 4) according to the next result.

Lemma 11 regarding the branching steps in Algorithm
MINW-X3SAT one obtains the following recurrences: (1)
lines 09-10: T (n) ≤ T (n − 9) + T (n − 5),
(2) lines 12-13: T (n) ≤ T (n − 7) + T (n − 6),
(3) lines 15-16: T (n) ≤ T (n − 9) + T (n − 5),
(4) lines 18-19: T (n) ≤ T (n − 9) + T (n − 4).

Theorem 1 Algorithm MINW-X3SAT is correct and
has worst case time complexity O(20.16254n).

Proof. Correctness. The correctness of the algorithm
follows from the correctness of the simplifying trans-
formations and the branching. The correctness of the
branching remains to be shown. I.e., after a branching
step, we want to obtain the MINW-X3SAT solution t for
(F,w) from the solutions t′0 for (F [a ← 0], w(V (F [a ←
0]))) and t′1 for (F [a ← 1], w(V (F [a ← 1]))). We set t, so
that w(t) = min{w(t0), w(t1)} with

ti(x) =
{

t′i(x), x ∈ V (F ) \ {a}
i, x = a

, i = 0, 1.

If there are no solutions for both formulas (F [a ←
0], w(V (F [a ← 0])) and (F [a ← 1], w(V (F [a ← 1])), then
there is no solution for the formula (F,w). We assume
that there exists a model t′ ∈ T (F ) with w(t) < w(t′).
We distinguish two cases:
(1) t′(a) = 0. Then w(t′) ≥ w(t0), because of t0(a) = 0
and t0|V (F [a←0]) = t′0 ∈ Tmin(F [a ← 0], w|V (F [a←0])).
Furthermore, by definition of t, we have w(t) ≤ w(t0).
Hence, w(t′) ≥ w(t0) ≥ w(t) is a contradiction to the
assumption.
(2) t′(a) = 1. Then, similarly as above, w(t′) ≥ w(t1),
because of t1(a) = 1 and t1|V (F [a←1]) = t′1 ∈ Tmin(F [a ←
1], w|V (F [a←1])). We must also have t: w(t) ≤ w(t1).
Hence, w(t′) ≥ w(t1) ≥ w(t) is a contradiction to the
assumption.
So, our assumption is false and t ∈ Tmin(F,w). The cor-
rectness of the algorithm follows by induction based on
the invariant above.
Running time. The recurrence T (n) ≤ T (n − 9) +
T (n−4) dominates all other recurrences yielding T (n) =
1.119252667n = 20.16254n. �

7 Concluding Remarks and Open Prob-
lems

In this paper we developed an algorithm solving min-
imum weight exact 3-satisfiability in time O(20.16254n),
where n is the number of weighted variables. The pre-
sented algorithm significantly improves on the previously
known time bound O(20.2441n) for unrestricted variable-
weighted CNF’s.

However the up to now best bound for deciding (un-
weighted) X3SAT is O(20.1379n) [2]. So the investigation
whether this bound can also be achieved for the mini-
mization problem MINW-X3SAT is left for future work.
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