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Abstract—Extending the concept of ordered graphs,
we propose a new data structure to express rooted pla-
nar maps, which is called a planar map pattern. In or-
der to develop an efficient data mining method from a
dataset of rooted planar maps, we propose a polynomial
time algorithm for finding a minimally generalized pla-
nar map pattern, which represents maximal structural
features common to rooted planar maps. Moreover, we
show that the class of planar map patterns is polynomial
time learnable from positive data.
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1 Introduction

A planar map is a planar graph together with its em-
bedding in the plane [7]. There are many applications
of a geometric nature in which planar maps consisting
of line and curve segments are occurred. In particular,
measuring the similarity of patterns of planar maps is
a standard problem in geographic information systems,
CAGD (Computer Aided Geometric Design), computer
vision, etc. For example, Alt et al. [1] gave an algorithm
for geometrically measuring the similarity of two planar
maps. Knowledge representations for planar map data
structures are quite important to discover interesting fea-
tures which such structured data have.

A rooted planar map is a planar map in which a single
edge in the outer face is directed in a clockwise direction.
The directed edge is called the root edge, and the vertex
which is incident with the tail of the root edge is called
the root vertex (or simply the root). Enumeration tech-
niques of rooted or unrooted planar maps have been ex-
tensively studied [8]. There are several approaches to gen-
erate graphs for graph mining tasks [4, 6] and we have de-
veloped an efficient algorithm for generating all frequent
outerplanar graph structured patterns by a refinement-
based technique [9]. In this paper, we introduce a new
topological data structure, called a planar map pattern,
to represent common structural features of rooted pla-
nar maps. A planar map pattern is a graph structured
pattern having a rooted planar map structure and struc-
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tured variables. A variable can be replaced with arbitrary
rooted planar maps. We say that a planar map pattern
P matches a rooted planar map M if M is obtained from
P by substituting rooted planar maps for all variables
in P . The object of this paper is to propose an efficient
algorithm for finding, given a set of rooted planar maps
S, a planar map pattern which matches all elements in S
and cannot be further specialized to S.

For a planar map pattern P , the planar map pattern
language of P , denoted by L(P ), is the set of all rooted
planar maps which are matched by P . For a set of rooted
planar maps S, a planar map pattern P is said to be a
minimally generalized planar map pattern explaining S
if L(P ) contains all planar maps in S and is minimal
among all planar map pattern languages which contain
all planar maps in S. For considering learnabilities of
planar map pattern languages, we use the framework of
inductive inference. Angluin [2] and Shinohara [5] gave
the framework of inductive inference from positive data
and showed that if a concept class C has finite thickness,
and the membership problem and the minimal language
problem for C are computable in polynomial time then
C is polynomial time inductively inferable from positive
data. Based on this framework, in this paper, we consider
the polynomial time learnabilities of the class of planar
map pattern languages (CPMPL).

Jiang and Bunke introduced the concept of ordered
graphs and ordered graph isomorphism [3]. These graphs
have the particularity of having all edges incident to a
vertex uniquely ordered. For a rooted planar map or pla-
nar map pattern P , we assume that for every vertex v
of P , the ordering of the edges in the adjacency list of
v corresponds to the clockwise ordering of these edges
around v in the embedding. By using this idea, we give
two polynomial time algorithms for solving the follow-
ing two problems: (1) the membership problem which is,
given planar map M and planar map pattern P , to de-
cide whether or not L(P ) contains M , and (2) the mini-
mal language problem, MINL problem for short, which is,
given a set of rooted planar maps S, to find a minimally
generalized planar map pattern explaining S. Finally, we
show that the class of planar map pattern languages is
polynomial time inductively inferable from positive data.



2 Preliminaries

For a set or sequences r, the number of elements in r,
called the size of r, is denoted by |r|. For a sequence r =
[r1, r2, . . . , r|r|], we denote r[k] := rk (1 ≤ k ≤ |r|). Espe-
cially r[0] := r[|r|]. For two sequences r = [r1, r2, . . . , r|r|]
and s = [s1, s2, . . . , s|s|], r||s denotes the concatenation
of r and s, i.e., r||s := [r1, r2, . . . , r|r|, s1, s2, . . . , s|s|].
For a sequence r = [r1, r2, . . . , r|r|] and two integers i, j
(1 ≤ i < j ≤ |r|), we denote r(i, j) := [ri, ri+1, . . . , rj ].

In this paper, we treat a circularly-linked list as a se-
quence. Let r, s be circularly-linked lists at size k. We
say that r and s are isomorphic, denoted by r ∼= s,
if there exists an integer t (1 ≤ t ≤ k) such that
r(t, k)||r(1, t− 1) = s.

Definition 1 Let G = (VG, EG) be a plane graph with
vertex set VG ⊆ R2 and edge set EG ⊆ VG × VG. We
assume that G is biconnected. A rooted planar map M is
defined as a triplet M = (VM , EM , rM ), where VM = VG,
EM = EG. rM is one of the vertices which lie on the
outer boundary, called the root.

Let M = (VM , EM , rM ) be a rooted planar map. The
outer frame of M , denoted by RM , is a list of vertices vis-
ited in clockwise order around the outer boundary start-
ing from the root. A vertex in RM is called an outer
frame vertex. The rank of the outer frame vertex is de-
fined as the order of RM , where the rank of the root is 1.
For a vertex v, if v is an outer frame vertex then rank(v)
is the rank of v, otherwise rank(v) = 0. We say that an
edge (u, v) ∈ EM is an outer frame edge if u, v ∈ RM . For
a vertex v ∈ VM , the neighbors of v, denoted by LM (v),
is the circularly-linked list of adjacent vertices of v sorted
in clockwise order. LM is the set of the neighbors of all
vertices in M i.e., LM = {LM (v) | v ∈ VM}. The faces of
M are the regions bounded by edges. In this paper, we
treat a face as a circularly-linked list of vertices sorted
in clockwise order. Let (u, v) be an edge of M , the face
induced by (u, v) is the face such that its circularly-linked
list includes vertices u, v in this order. In Fig. 1, we give
an example of the rank of the outer frame vertices and
the face induced by an edge.

Definition 2 Let M1 = (V1, E1, r1) and M2 =
(V2, E2, r2) be rooted planar maps. Let R1, R2 be outer
frames of M1, M2 respectively and L1, L2 the sets of
neighbors of M1, M2 respectively. We say that M1 and
M2 are equivalent if there is a bijection φ from V1 to V2

satisfying the following conditions 1–4:

1. (u, v) ∈ E1 if and only if (φ(u), φ(v)) ∈ E2.

2. L1(v) = [u1, u2, . . . , uk] if and only if L2(φ(v)) =
[φ(u1), φ(u2), . . . , φ(uk)].

Figure 1: The rank of the outer frame vertex and the face
induced by (u, v)

Figure 2: An example of a decomposition of a rooted
planar map

3. φ(r1) = r2 i.e., the root of M1 is mapped to the root
of M2.

4. R1 = [u1, u2, . . . , uk] if and only if R2 =
[φ(u1), φ(u2), . . . , φ(uk)]

Definition 3 Let c be a face of M = (VM , EM , rM ). The

decomposition of M by c , denoted by
c

M , is a sequence
of rooted planar maps obtained from M by deleting outer
frame edges in c. The root of each rooted planar map is
defined as the outer frame vertex whose rank is least in
these outer frame vertices. The ordering of these rooted

planar maps in
c

M is defined in ascending order of the
rank of the roots of these rooted planar maps.

For any face in c in M , we compute the decomposition
of M by c in O(|V |) times. In Fig. 2, we give an example
of a decomposition of a rooted planar map.

Definition 4 Let M = (VM , EM , rM ) be a rooted planar
map. A planar map pattern P is defined as a 4-tuple
(VP , EP , AP , rP ) where

• VP = VM , EP = EM , and rM = rP .
• AP is a subset of VP . An element in AP is called a

variable.
• For x ∈ AP , the vertices of LP (x) consists a cycle.



• There does not exist a vertex which is adjacent to
two or more variables.

For a planar map pattern P and a variable x in P , the
variable face of x is the neighbors of x. In this paper, a
variable is drawn by a filled square.

A planar map pattern with no variable is called a
ground planar map pattern and considered to be a rooted
planar map. For a vertex v of a planar map pattern, the
degree of v is the number of edges incident to v. The
degree of v is denoted by deg(v).

We use the following notation to describe our algo-
rithm. Let P = (VP , EP , AP , rP ) be a planar map pat-
tern and v a vertex in AP . Let LP (v) = [u1, u2, . . . , u`]
be the neighbors of v. For two integers i, k (0 ≤ i, k ≤ `),
we define

NGBv
P (ui, k) =

{
ui+k if i + k ≤ `,
ui+k−` otherwise;

NGBv
P (ui,−k) =

{
ui−k if i− k ≥ 1,
ui−k+` otherwise;

When the context is clear, the subscript P on the
NGBu

P (ui, k) is dropped.

Let P = (VP , EP , AP , rP ) and M =
(VM , EM , AM , rM ) be planar map patterns and
RM = [u0, u1, . . . , u`] the outer frame of M . Let x
be a variable in P with LP (x) = [v0, v1, . . . , v`]. Then
the form x := M is called a binding for x. A new planar
map pattern P ′ is obtained by applying the binding
x := M to P in the following way. We attach M to P
by removing the variable x from AP and by identifying
the vertices v0, v1, . . . , v` with the vertices u0, u1, . . . , u`

of M in this order.

A substitution θ is a finite collection of bindings {x1 :=
M1, x2 := M2, . . . , xn := Mn}. The planar map pattern
Pθ, called the instance of P by θ, is obtained by applying
all the bindings {xi := Mi} in θ to P .

In Fig. 3, we give an example of a substitution for a
planar map pattern. Consider the example in Fig. 3.
There is a substitution θ = {x1 := M1, x2 := M2 x3 :=
M3}. The planar map pattern Pθ is equivalent to the
rooted planar map in Fig. 1.

We say that a planar map pattern P matches a rooted
planar map M if M is obtained from P by substituting
rooted planar maps for all variables in P .

Definition 5 For a planar map pattern P , the planar
map pattern language of P , denoted by L(P ), is the set
of all rooted planar maps which is matched by P .

Figure 3: An example of substitutions for a planar map
pattern

The class of planar map pattern languages (CPMPL)
is the set of all planar map pattern languages of all pla-
nar map patterns. We say that a planar map pattern
P explains a given set of rooted planar maps S if L(P )
contains all rooted planar maps in S. A minimally gener-
alized planar map pattern P explaining S is a planar map
pattern P such that P explains S and L(P ) is minimal
among all planar map pattern languages which contain
all rooted planar maps in S. For a set of rooted planar
maps S, there are possibly many minimally generalized
planar map patterns explaining S in general.

3 A Polynomial Time Algorithm for
Solving the Membership Problem

In this section, we give a polynomial time matching
algorithm for solving the following membership problem.

Membership Problem for CPMPL
Input: A rooted planar map M and a planar
map pattern P .
Problem: Decide whether or not M ∈ L(P ).

To solve the membership problem, we give Algorithm
Matching in Fig. 4. At first, this algorithm visits all
vertices of the input planar map pattern except variables.
Next, the algorithm visits the input rooted planar map
in the same order as in the planar map pattern.

Lemma 1 Algorithm Matching (Fig. 4) decides
whether a planar map pattern P matches a rooted planar
map M .

Proof. From Def. 4, there does not exist a vertex which
is adjacent to two or more variables, and the neighbors
of a variable consists a cycle. Therefore the planar map
pattern P ′ obtained from P by deleting all variables in
P is biconnected. Hence Algorithm Matching is able to
visit all vertices of P ′. If the algorithm visits all vertices
of M in the same order as in P ′, then P matches M .



Algorithm Matching(M,P );
input M = (VM , EM , rM ): a rooted planar map, P = (VP , EP , AP , rP ): a planar map pattern;
output “true” or “false”;
begin

Let RM be the outer frame of M and LM the set of neighbors of M ;
Let RP be the outer frame of P and LP the set of neighbors of P ;
P := (VP ∪ {ε}, EP ∪ {(vP , ε)}, AP , rP ) where ε lies on the outer boundary;
M := (VM ∪ {ε′}, EM ∪ {(vM , ε′)}, rM ) where ε′ lies on the outer boundary;
c := 1;
Let OPENP be a list of edges of P initialized to be [(vP , ε)];
Let OPENM be a list of edges of M initialized to be [(vM , ε′)];
while OPENP is not empty do begin

Let OPENP [1] = (u,w); OPENP := OPENP [2, . . .];
Let OPENM [1] = (u′, w′); OPENM := OPENM [2, . . .];
if u is adjacent to a variable x then begin

Let NGBw
P (u, p) = NGBw

P (u,−q) = x;
if deg(u′) < p + q then
return false;

for i := 1 to p− 1 do begin
if NGBw

P (u, i) is not attached any label then begin
if the label of NGBw

P (u, i) is not equal to the label of NGBw
M (u′, i) then return false

end else if OPENP does not contain NGBw
P (u, i) then begin

OPENP := OPENP &[(NGBw
P (u, i), u)];

OPENM := OPENM&[(NGBw
M (u′, i), u)]

end
end;
for i := 1 to q − 1 do begin
if NGBw

P (u,−i) is not attached any label then begin
if the label of NGBw

P (u,−i) is not equal to the label of NGBw
M (u′,−i) then return false

end else if OPENP does not contain NGBw
P (u,−i) then begin

OPENP := OPENP &[(NGBw
P (u,−i), u)];

OPENM := OPENM&[(NGBw
M (u′,−i), u)]

end
end

end else begin
if deg(u′) 6= deg(u) then return false;
for i := 1 to deg(u)− 1 do begin
if NGBw

P (u, i) is not attached any label then begin
if the label of NGBw

P (u, i) is not equal to the label of NGBw
M (u′, i) then return false

end else if OPENP does not contain NGBw
P (u, i) then begin

OPENP := OPENP &[(NGBw
P (u, i), u)];

OPENM := OPENM&[(NGBw
M (u′, i), u)]

end
end

end;
Attach label c to u and u′;
c := c + 1

end;
return true

end.

Figure 4: Algorithm Matching.



Thus Algorithm Matching correctly decides whether or
not P matches M . ¤

Lemma 2 Membership problem for CPMPL is solvable
in polynomial time.

Proof. The correctness follows from Lemma 1. Let |E|
be the number of edges of an input rooted planar map.
At each iteration of while-loop, the algorithm visits a new
vertex of the input rooted planar map and adds an edge
to OPEN list. This operation repeated at most O(|E|)
times. Therefore the total time of Algorithm Matching
(Fig. 4) is O(|E|) time. ¤

4 A Polynomial Time Algorithm for
Finding a Minimally Generalized Pla-
nar Map Pattern

In this section, we give a polynomial time algorithm
for solving the following minimal language problem.

Minimal Language (MINL) Problem for
CPMPL
Input: A nonempty finite set of rooted planar
maps S.
Output: A minimally generalized planar map
pattern explaining S.

Algorithm MINL (Fig. 5) finds a minimally general-
ized planar map pattern explaining given a set of rooted
planar maps all of whose lengths of the outer frame are
equal.

Lemma 3 For any two planar map patterns P1 and P2,
L(P1) ⊆ L(P2) if and only if P1 is obtained from P2 by
substituting rooted planar maps for variables in P2.

Proof. The ”if” part is obvious. We prove the ”only if”
part. Let k be an integer. We assume that k is more
than the number of vertices of P2. Let Pw be a ground
term tree obtained from P by replacing all the variables
in P1 with rooted planar maps consisting of 2 faces one
of which is bounded by k vertices. Since Pw ∈ L(P1)
and L(P1) ⊆ L(P2), Pw ∈ L(P2). Since a face bounded
by k vertices does not appear in P2, we have that P2 is
obtained from P1 by inverting the substitutions. ¤

Lemma 4 For an input set of rooted planar maps S, Al-
gorithm MINL (Fig. 5) outputs a minimally generalized
planar map pattern explaining S.

Proof. Let Mr be a planar map pattern computed by
Algorithm MINL (Fig. 5) for an input S. We show

that if there exists a planar map pattern Mb such that
S ⊆ L(Mb) ⊆ L(Mr), Mr and Mb are equivalent. By
Lemma 3, there exists a substitution θ such that Mrθ and
Mb are equivalent. Algorithm MINL finds all common
faces among the input rooted planar maps in S. Thus,
each planar map patterns in binding in θ consists of only
one variable face. Then, Mr and Mb are equivalent. ¤

Lemma 5 Minimal Language Problem for CPMPL is
computable in polynomial time.

Proof. The correctness follows from Lemma 4. Let
S = {M1, . . . , Mm} be an input set of rooted planar
maps, where Mi = (Vi, Ei, ri) (1 ≤ i ≤ m) and Ri is
the outer frame of Mi. Let Vmax = max1≤i≤m |Vi| and
` = max1≤i≤m |Ri|. Procedure MINL-sub is called re-
cursively at most O(Vmax) times in all. The procedure
needs totally O(`×m×Vmax) time. Hence the total time
for all executions in Algorithm MINL is O(`×m×V 2

max),
which is polynomial w.r.t. S. ¤

5 Polynomial Time Learnability of Pla-
nar Map Pattern Languages

In this section, we give a theoretical result for learning
planar map pattern languages. Angluin [2] and Shino-
hara [5] showed the following theorem.

Theorem 1 (Angluin, Shinohara) For a class C, if C
has finite thickness, and the membership problem and the
MINL problem for C are computable in polynomial time
then C is polynomial time inductive inferable from positive
data.

It is easy to see that the following lemma holds, that
is, for any nonempty finite set of rooted planar maps S,
the cardinality of the set {L | S ⊆ L} is finite.

Lemma 6 The class CPMPL has finite thickness.

Proof. Let S be a nonempty finite set of rooted planar
maps and M = (VM , EM , rM ) a rooted planar map in S.
If P = (VP , Ep, AP , rP ) is a planar map pattern such that
L(P ) includes M , then |VP | ≤ |VM |, |AP | ≤ 3|VP | and
|EP | ≤ |EM |. Hence |{P | M ⊆ L(P )}| is finite. Since
{P | S ⊆ L(P )} =

⋃
M∈S{P | M ⊆ L(P )}, |{L(P ) | S ⊆

L(P )}| is finite. Therefore the class CPMPL has finite
thickness. ¤

From Lemmas 2, 5, 6, and Theorem 1, we have the
following theorem.

Theorem 2 The class CPMPL is polynomial time in-
ductively inferable from positive data.



Algorithm MINL(M);
input M : array[1. . . ,m] of rooted planar maps;
output a minimally generalized planar map pattern explaining M ;
begin

Let P := M [1] be a temporary planar map pattern;
P :=MINL-sub(M,P );
return P

end.

Procedure MINL-sub(M, P );
input M : array[1. . . ,m] of rooted planar maps, P : a temporary planar map pattern;
begin

for t := 1 to m do c[t] := the outer frame of M [t];
Let ` be the length of outer frame;
for i := 1 to ` do begin

for j := 1 to m do begin
dj = [v0, v1, . . . , vn] is the face induced by (c[j][i− 1], c[j][i]) of M [j];
Let sj = [rank(v0), rank(v1), . . . , rank(vn)].

end;
if s1 = s2 = . . . = sm and si 6= ∅ (1 ≤ i ≤ m) then begin

for k := 1 to
∣∣∣∣

d1

M [1]
∣∣∣∣ do MINL-sub

([(
d1

M [1]
)

[k],
(

d2

M [2]
)

[k], . . . ,
(

dm

M [m]
)

[k]
]

, P

)
;

return P
end

end;
Add a new variable x in the face c[1] of P , and add edges from x to the all vertices of c[1].

end;

Figure 5: Algorithm MINL.

6 Conclusions

In this paper, we gave a polynomial time learning al-
gorithm for finding a characteristic structured patterns
in rooted planar maps. More precisely we showed that
the class of planar map pattern languages is polynomial
time inductively inferable from positive data. Even if
variables with the same variable label occur more than
once, we can give polynomial time algorithms for both
membership and MINL problems. A planar map pat-
tern represents an expressive graph structure embedded
in the plane. We are now developing graph mining meth-
ods for generating all frequent planar map patterns by a
refinement-based technique proposed in this paper.
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