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Abstract— An outerplanar graph is a planar graph
which can be embedded in the plane in such a way that
all of vertices lie on the outer boundary. Many chemical
compounds are known to be expressed by outerplanar
graphs. An externally extensible outerplanar graph
pattern (eeo-graph pattern for short) represents a graph
pattern common to a finite set of outerplanar graphs
like a dataset of chemical compounds. The eeo-graph
pattern can express a substructure common to blocks
which appear in outerplanar graph structured data. In
this paper, we propose a polynomial time algorithm
of deciding whether or not a given eeo-graph pattern
matches a given connected outerplanar graph.
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1 Introduction

Large amount of data having graph structures, such
as map data, CAD, biomolecular, chemical molecules,
the World Wide Web, are stored in databases. For
example, HTML/XML documents can be expressed by
ordered trees, and almost chemical compounds in the
NCI dataset [5], which is one of the popular graph min-
ing datasets, are known to be expressed by outerplanar
graphs. Outerplanar graphs are planar graphs embed-
ded in the plane in such a way that all of vertices lie
on the outer boundary. In Fig. 1, we give graphs g1,
g2, g3, G, and H as examples of outerplanar graphs.
Many researchers are interested in knowledge discovery
from data having structures such as sequences, trees, or
graphs [1, 2, 6]. Horváth et al. [3] proposed a frequent
subgraph mining algorithm for outerplanar graphs. For
graph mining algorithms, graph pattern matching algo-
rithms play a key role throughout the computations. In
this paper, we present polynomial time matching algo-
rithms for graph patterns having outerplanar graph struc-
tures.

For a graph G, we call a maximal biconnected subgraph
of G a block of G if it has at least three vertices. For
example, in Fig. 1, B1, . . . , B8 are blocks. A block of
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an outerplanar graph has a unique planar embedding up
to the mirror image. Thus the edges of an outerplanar
graph are classified into two types, external and internal .
External edges lie on the external face, while internal
edges do not lie on the external face. An external edge
which does not belong to any block is called a bridge.
Because an internal edge must belong to a block, it is
also called a diagonal of the block.

For an integer d ≥ 0, an outerplanar graph is said
to be d-tenuous if each of its blocks contains at most d
diagonals. Horváth et al. [3] proposed an Apriori-like
algorithm for enumerating all frequent d-tenuous outer-
planar subgraphs in a finite set of outerplanar graphs.
Their algorithm works in incremental polynomial time
(i.e., in polynomial time with respect to the combined
size of the input and the output so far computed). In [8],
we introduced a graph-structured pattern, called a block
preserving outerplanar graph pattern (bpo-graph pattern
for short), which is an outerplanar graph with structured
variables, and proposed a refinement-based technique for
enumerating all maximal frequent bpo-graph patterns in
a finite set of outerplanar graphs. A bpo-graph pattern
effectively represents connection patterns between differ-
ent blocks.

Our final object of this research is to propose an effi-
cient data mining method for extracting more expressive
outerplanar graph-structured patterns, which simultane-
ously represent connection patterns and internal struc-
tured patterns common to different blocks. First, we in-
troduce a new graph pattern having structured variables,
called an externally extensible outerplanar graph pattern
(eeo-graph pattern for short). A variable of an eeo-graph
pattern is a vertex pair that does not currently exist in the
graph and that becomes an external edge if added as an
edge to the graph. Then a variable of an eeo-graph pat-
tern is called an external variable. External variables can
be replaced with arbitrary connected outerplanar graphs
having at least two vertices. In Fig. 1, a graph pattern p
is an example of eeo-graph patterns, and an outerplanar
graph G is obtained from p by removing variables h1, h2,
and h3, and identifying vertex pairs [u1, u2], [u3, u4], and
[u5, u6] of p with [v1, v2] of g1, [w1, w2] of g2, and [z1, z2] of
g3, respectively. In this paper, we propose a polynomial
time algorithm for deciding whether or not there is such
a variable replacement by which a given connected outer-
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Figure 1: An eeo-graph pattern p and outerplanar graphs g1, g2, g3, G, and H over a vertex label set {a, b, c, d}: A
variable is drawn by a box with lines to its elements.

planar graph is obtained from a given eeo-graph pattern.

This paper is organized as follows. In Sec. 2, we give
a formal definition of eeo-graph patterns. In Sec. 3, we
propose a polynomial time pattern matching algorithm
for eeo-graph patterns. In Sec. 4, we conclude this paper
with our future work.

2 Externally Extensible Outerplanar
Graph Patterns

This paper deals with undirected simple graphs whose
vertices and edges are labeled. Let Λ and ∆ be two alpha-
bets each of whose elements is called a vertex label and
an edge label , respectively. A list is denoted by a collec-
tion of elements enclosed in parentheses, e.g. [u1, u2, u3].
The k-th element in a list σ is denoted by σ[k]. A graph
pattern is defined as a graph-structured pattern with in-
ternal variables, which represents characteristic common
structures in graph-structured data. In [7], Uchida et al.
introduced a general graph-structured pattern, called a
term graph pattern, in order to design efficient algorithms
for computational problems on graphs.

Definition 1 Let G = (V, E) be a graph whose ver-
tices and edges are labeled with elements in Λ and ∆,
respectively. Let X be a finite alphabet whose elements
are called variable labels. A variable of G is a list
[u1, u2, . . . , u`] of distinct ` vertices of V where ` ≥ 1.
Variables are labeled with elements in X so that variables
of different length have different variable labels. Then, a
triple p = (V, E,H) is called a graph pattern if (V, E) is
a graph and H is a set of variables

For a graph pattern p, V (p), E(p) and H(p) denote the
sets of all vertices, edges and variables of p, respectively.
And λp(u), δp(e) and xp(h) denote the vertex label of
u ∈ V (p), the edge label of e ∈ E(p) and the variable
label of h ∈ H(p), respectively.

Definition 2 Let p and q be graph patterns. We say
that p is isomorphic to q if there exists a bijection ψ :
V (p) → V (q) satisfying the following conditions: (1) ψ is
a graph isomorphism from (V (p), E(p)) to (V (q), E(q)),
(2) [v1, . . . , v`] ∈ H(p) if and only if [ψ(v1), . . . , ψ(v`)] ∈
H(q), where ` ≥ 1, and (3) for any two variables
[v1, . . . , v`] and [v′1, . . . , v

′
`] ∈ H(p), xp([v1, . . . , v`]) =

xp([v′1, . . . , v
′
`]) if and only if xq([ψ(v1), . . . , ψ(v`)]) =

xq([ψ(v′1), . . . , ψ(v′`)]).

A graph pattern p′ is said to be a subgraph pattern of p
if V (p′) ⊆ V (p), E(p′) ⊆ E(p), and H(p′) ⊆ H(p). We
say that p is subgraph isomorphic to q if p is isomorphic
to a subgraph pattern of q.

In an outerplanar embedding of an outerplanar graph
G, an edge of G is external if it has a border with the
outer face, that is, it is not a diagonal of any block. We
note that a bridge of G is an external edge, and an exter-
nal edge which is not a bridge belongs to the outer cycle
of a block.

Definition 3 A graph pattern p is said to be an exter-
nally extensible outerplanar graph pattern (eeo-graph pat-
tern for short) if p satisfies the following conditions.

1. Any variable has just 2 vertices.
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Figure 2: A graph pattern p and graphs g1, g2, G over a vertex label set {a, b, c, d}.

2. E(p) ∩ EH(p) = ∅, where EH(p) = {(u, v) | [u, v] ∈
H(p)}.

3. The graph Gp = (V (p), E(p) ∪EH(p)) of p is a con-
nected outerplanar graph, and all edges in EH(p) are
external edges.

4. All variable labels of variables in H(p) are mutually
distinct.

A variable h in p is called a block variable if h is not a
bridge variable, that is, h is contained in a block of p.

Definition 4 Let x be a variable label in X. Let p and
q be eeo-graph patterns and h = [v1, v2] a variable of p
labeled with x. Let σ = [u1, u2] be a list of distinct two
vertices in q. The form x := [q, σ] is called an eeo-binding
for x if

1. λq(u1) = λp(v1) and λq(u2) = λp(v2), and

2. if h is a block variable of p, all edges on a path be-
tween u1 and u2 are bridges.

The eeo-binding x := [q, σ] is an operation for a variable
h labeled with x in which we assign h with q by identify-
ing σ[i] with h[i] for each i (i = 1, 2) and removing the
variable h from H(p).

Let p, q1, . . . , qm be eeo-graph patterns. A eeo-
substitution for p is a finite collection of eeo-bindings
{x1 := [q1, σ1], . . . , xm := [qm, σm]} where x1, . . . , xm

are mutually distinct variable labels in X and each gi

(1 ≤ i ≤ m) has no variable labeled with a variable la-
bel in {x1, . . . , xm}. For an eeo-graph pattern p and an
eeo-substitution θ for p, pθ denotes the eeo-graph pattern
obtained from p and θ by applying all the eeo-bindings in
θ to p simultaneously.

We give an example of eeo-substitutions. In Fig. 2,
we give a graph pattern p having variables h1 = [u1, u2]
and h2 = [u3, u4], so that the graph p{xp(h1) :=
[g1, [v1, v2]], xp(h2) := [g2, [w1, w2]]} is isomorphic to G.

Let θ = {x1 := [q1, σ1], . . . , xm := [qm, σm]} and τ =
{y1 := [r1, σ

′
1], . . . , yn := [rn, σ′n]} be eeo-substitutions.

Then the composition θτ of θ and τ is the eeo-
substitution obtained from {x1 := [q1τ, σ1], . . . , xm :=
[qmτ, σm], y1 := [r1, σ

′
1], . . . , yn := [rn, σ′n]} by deleting

(i) xi := [qiτ, σi] which is trivial, and (ii) yj := [rj , σ
′
j ]

with yj = xk for some k (1 ≤ k ≤ m). Then we have the
following proposition.

Proposition 1 Let θ, τ and γ be eeo-substitutions.
(1) θτ is an eeo-substitution.
(2) (pθ)τ = p(θτ) for any eeo-graph pattern p.
(3) (θτ)γ = θ(τγ).

The reason why we restrict the number of vertices in
a variable is that the pattern matching problem for a
graph pattern which has variables with more than 3 vari-
ables is hard to solve in polynomial time, because the pat-
tern matching problem for a tree-structured term graph,
called a term tree, is NP-complete [4].

Given a graph pattern p and a graph G, an opera-
tor which decides whether or not p matches G is called
a matching operator. Because the subgraph isomor-
phism problem for outerplanar graphs is known to be
NP-complete, it is hard to solve for deciding whether a
graph pattern matches an outerplanar graph by using a
subgraph isomorphism matching operator. In this paper,
we employ a restricted subgraph isomorphism introduced
by [3] as a matching operator.

Definition 5 For two graphs G and H, we say that G is
bridge and block preserving (BBP) subgraph isomorphic
to H if there exists a subgraph isomorphism ψ from G
to H which maps (i) the set of bridges of G to the set
of bridges of H and (ii) different blocks of G to different
blocks of H.

We denote by OΛ,∆ the set of all connected outerplanar
graphs over a vertex label set Λ and an edge label set ∆,
and denote by EOPΛ,∆ the set of all eeo-graph patterns
over a vertex label set Λ and an edge label set ∆.



Definition 6 For an eeo-graph pattern p ∈ EOPΛ,∆ and
an outerplanar graph G ∈ OΛ,∆, we say that p matches
G if there is an eeo-substitution θ such that pθ is BBP
subgraph isomorphic to G.

For example, in Fig. 1, from p and θ =
{xp(h1) := [g1, [v1, v2]], xp(h2) := [g2, [w1, w2]], xp(h3) :=
[g3, [z1, z2]]}, we obtain the outerplanar graph pθ which
is isomorphic to G. The graph G is BBP subgraph iso-
morphic to H such that blocks B1, B2, B3, and B4 of
G correspond to B5, B6, B7, and B8 of H, respectively.
Therefore, p matches both G and H.

3 A Pattern Matching Algorithm for
EEO-Graph Patterns

In this section, we give a polynomial time matching
algorithm for solving the following problem.

Matching Problem for EOPΛ,∆

Input: An eeo-graph pattern p ∈ EOPΛ,∆ and an outer-
planar graph G ∈ OΛ,∆.
Problem: Decide whether or not p matches G.

For eeo-graph patterns p and q in EOPΛ,∆, and ver-
tices r ∈ V (p) and r′ ∈ V (q), we say that the rooted
eeo-graph pattern pr is BBP subgraph isomorphic to the
rooted eeo-graph pattern qr′ if there exists a BBP sub-
graph isomorphism ψ : V (p) → V (q) such that ψ(r) = r′.
Let G be an outerplanar graph in OΛ,∆ and s a vertex in
V (G). For a rooted eeo-graph pattern pr and a rooted
outerplanar graph Gs, we say that pr matches Gs if there
exists an eeo-substitution θ such that prθ (= (pθ)r) is
BBP subgraph isomorphic to Gs.

The idea of our algorithm for the matching problem is
similar to the matching algorithm for bpo-graph patterns
in [8]. First we fix one vertex of p as its root. Next, for
every vertex of G, we specify it as the root of G, and pro-
ceed to construct correspondences between all vertices of
p and G in bottom up manner, that is, from the leaves to
the root of G. If p is a bpo-graph pattern, in a process of
the algorithm, we decide whether or not a block of G is
isomorphic to a block of p. However, if p is an eeo-graph
pattern, we have to decide whether or not a block of G is
matched by a block of p having block variables. There-
fore, in this paper, we focus on the following subproblem
and give a polynomial time algorithm for solving it.

Matching Problem for Biconnected EEO-Graph
Patterns
Input: A rooted biconnected eeo-graph pattern pr and
a rooted biconnected outerplanar graph Gs.
Problem: Decide whether or not pr matches Gs.

A sequence of vertices [u1, u2, . . . , uk] of a graph pat-
tern p is called a path (resp. cycle) of p if it forms a path

(resp. cycle) of the underlying graph of p. For a rooted
biconnected eeo-graph pattern pr, we identify vertices on
the outer cycle of pr (i.e., the boundary of an outerplanar
embedding of the underlying graph of pr) with numbers
1, . . . , |V (pr)| in the clockwise or counterclockwise order
such that r is identified as 1.

Lemma 1 Let pr (resp. Gs) be a rooted biconnected
eeo-graph pattern (resp. rooted biconnected outerplanar
graph) with vertices identified with numbers 1, 2, . . . , n
(resp. 1, 2, . . . , N) such that r (resp. s) is identified as
1 and the vertex sequence 1, 2, . . . , n (resp. 1, 2, . . . , N)
forms the outer cycle of pr (resp. Gs). If pr matches Gs,
there exists an eeo-substitution θ for pr, and a subgraph
isomorphism ψ : V (pθ) → V (G) such that ψ(1) = 1 (i.e.,
ψ(r) = s) and the vertex sequence ψ(2), ψ(3), . . . , ψ(n)
is either an increasing number sequence or a decreasing
number sequence.

Proof. Let C be a simple cycle (i.e., cycle with no re-
peated vertex) [i1, i2, . . . , im] of Gs such that i1 = 1. We
assume that there exists an index k such that 2 < k < m,
i2, . . . , ik is an increasing number sequence and ik+1 < ik.
Then, there exists an index h such that 1 ≤ h < k and
ih < ik+1 < ih+1. On the outer cycle of Gs, there ex-
ists a path reaching from ih to ik+1, denoted by P1, and
a path reaching from ik+1 to ih+1, denoted by P2. Let
P3 be the path [ik+1, . . . , im, i1] on C, and P4 the path
[ik, ik + 1, . . . , N, 1] on the outer cycle of Gs. Since the
outer cycle of Gs and C are simple cycles, P3 does not
contain ik and P4 does not contain ik+1. Since P3 and
P4 share at least one vertex, let ` be the first cross point
of P3 and P4. Let P5 be a path consisting of `, . . . , N on
the outer cycle of Gs and i1, . . . , ih+1 on C.

Suppose that k 6= h+1. We note that P5 does not con-
tain ik and ik+1. Let P6 be the path [ih+1, ih+2, . . . , ik] on
C. Then, a subgraph of Gs consisting of P2, P3, P4, P5,
P6 and the edge (ik, ik+1) is homeomorphic to K4 (the
complete graph on four vertices). It is well-known fact
that any outerplanar graph contains no subgraph home-
omorphic to K4. Suppose that k = h + 1. We note that
ih > i1 and ih 6= `. Then, a subgraph of Gs consisting of
P1, P3, P4, P5, and the edge (ik, ik+1) is homeomorphic
to K4. It contradicts the fact that Gs is an outerpla-
nar graph. Therefore, i2, . . . , im is either an increasing
number sequence or a decreasing number sequence.

From this fact, for any biconnected outerplanar sub-
graph g of Gs containing s, the outer cycle of g has the
vertex sequence as an increasing number sequence. From
the definition of eeo-graph patterns, since the order of
vertices of the outer cycle of pr is not changed by any
eeo-substitution, consequently, the lemma holds. ¤

Hereafter, we suppose that all vertices in pr and Gs

are identified as 1, 2, . . . , n and 1, 2, . . . , N , respectively,
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Figure 3: A rooted biconnected eeo-graph pattern and its
subgraph patterns.

in the clockwise order or counterclockwise order of bound-
aries of outerplanar embeddings of pr and Gs.

For vertices i and i′ (i < i′) in pr, pr[i, i′] denotes the
subgraph pattern obtained from the induced subgraph
p[{i, i + 1, . . . , i′}] by removing a variable [i, i′] ∈ H(p) if
it exists. For example, in Fig. 3 we give a rooted bicon-
nected eeo-graph pattern pr and its subgraph patterns
pr[1, 5] and pr[5, 8]. For vertices i and i′ (i < i′) in pr,
and vertices j and j′ (j < j′) in Gs, we say that pr[i, i′]
matches Gs[j, j′] if there exists an eeo-substitution θ for
pr[i, i′] and a subgraph isomorphism ψ : V (pr[i, i′]θ) →
V (Gs[j, j′]) such that ψ(i) = j and ψ(i′) = j′. For ver-
tices i and i′ (i < i′) in pr, the correspondence-set (C-set
for short) of the pair (i, i′), denoted by CS (i, i′), is the
set of all pairs (j, j′) of vertices in Gs such that pr[i, i′]
matches Gs[j, j′].

Lemma 2 For a vertex i in pr where 1 ≤ i < n, and
vertices j and j′ (j < j′) in Gs, (j, j′) ∈ CS (i, i + 1) if
and only if either of the following conditions holds.

(1) (i, i + 1) ∈ E(pr), (j, j′) ∈ E(Gs), λp(i) = λG(j),
λp(i + 1) = λG(j′), and δp((i, i + 1)) = δG((j, j′)).

(2) [i, i + 1] ∈ H(pr), λp(i) = λG(j), and λp(i + 1) =
λ(j′).

Proof. If (i, i + 1) ∈ E(pr), it is easy to see that state-
ment (1) holds. If [i, i+1] ∈ H(pr), pr[i, i+1] consists of
two vertices i and i+1, and has no edge and no variable.
Therefore, statement (2) holds. ¤

Statement (2) of the above lemma means a variable
[i, i + 1] supplements any subgraph Gs[j, j′] such that
λp(i) = λG(j) and λp(i + 1) = λ(j′). We note that any
variable in pr forms either [i, i + 1] (1 ≤ i < n) or [1, n].

Let i and i′ be vertices in pr such that i′ − i > 1 and
they border on a same inner face, in other words, if an
edge (i, i′) exists, (i, i′) keeps outerplanarity of pr. The
chordless path of pr[i, i′], denoted by P (pr[i, i′]), is a sim-
ple path [i1, i2, . . . , im] such that i1, i2, . . . , im is an in-

creasing number sequence satisfying that m > 2, i1 = i,
im = i′, and, except for edges and variables constitut-
ing the path, there is possibly only one edge (i1, im) or
variable [i1, im] between all vertices in the path.

For example, in Fig. 3, we can see that chordless paths
of pr[1, 5] and pr[5, 8] are [1, 2, 3, 5] and [5, 6, 8], respec-
tively.

Proposition 2 Let i and i′ be vertices in pr such that
i′ − i > 1 and they border on a same inner face, and let
P (pr[i, i′]) = [i1, i2, . . . , im]. If (i, i′) 6∈ E(pr), then the
vertices i1, i2, . . . , im are cutpoints of pr[i, i′].

Lemma 3 Let i and i′ be vertices in pr such that i′ −
i > 1 and they border on a same inner face, and j and
j′ vertices in Gs such that j < j′. Let P (pr[i, i′]) =
[i1, i2, . . . , im]. Then, (j, j′) ∈ CS (i, i′) if and only if the
following conditions hold.

(1) If (i, i′) ∈ E(pr), (j, j′) ∈ E(Gs) and δp((i, i′)) =
δG((j, j′)).

(2) There exists a vertex j′′ in Gs such that j < j′′ < j′,
(j, j′′) ∈ CS (i1, im−1) and (j′′, j′) ∈ CS (im−1, im).

Proof. Suppose that the if-statement holds. There ex-
ists an eeo-substitution θ1 for pr[i1, im−1] (resp. θ2 for
pr[im−1, im]), and a subgraph isomorphism ψ1 from g1

to Gs[j, j′′] where g1 = pr[i1, im−1]θ1 (resp. ψ2 from
g2 to Gs[j′′, j′] where g2 = pr[im−1, im]θ2) such that
ψ1(i1) = j and ψ1(im−1) = j′′ (resp. ψ2(im−1) = j′′

and ψ2(im) = j′). Let θ be the union of θ1 and θ2,
and g = pr[i, i′]θ. Let ψ be the injection from V (g) to
V (Gs[j, j′]) such that ψ(k) = ψ1(k) for each k ∈ V (g1)
and ψ(k) = ψ2(k) for each k ∈ V (g2). Because state-
ment (1) holds and, from Proposition 2, there is pos-
sibly only one edge (i, i′) between V (g1) \ {im−1} and
V (g2) \ {im−1}, we see that for each vertices k and k′

in g, if (k, k′) ∈ E(g) then (ψ(k), ψ(k′)) ∈ E(Gs) where
δg((k, k′)) = δG((ψ(k), ψ(k′))). Therefore, ψ is a sub-
graph isomorphism from g to Gs[j, j′].

Conversely, suppose that there exists an eeo-
substitution θ for pr[i, i′], and a subgraph isomorphism ψ
from g to Gs[j, j′] where g = pr[i, i′]θ, such that ψ(i) = j
and ψ(i′) = j′. It is easy to see that statement (1) holds.
By assuming (i, i′) ∈ E(pr), we regard g and Gs[j, j′]
as biconnected outerplanar graphs. We suppose that all
vertices on the outer cycle of g are identified as 1, 2, . . . , `
such that i and i′ are identified as 1 and `, respectively,
and im−1 is identified as `′ in g. From Lemma 1, the ver-
tex sequence ψ(1), ψ(2), . . . , ψ(`) is an increasing num-
ber sequence. Let j′′ = ψ(`′), g[1, `′] and g[`′, `] are
subgraph isomorphic to Gs[j, j′′] and Gs[j′′, j′], respec-
tively. Let θ1 and θ2 be subsets of θ which consist of all



eeo-bindings for variables in pr[i1, im−1] and pr[im−1, im],
respectively. Then, g[1, `′] (resp. g[`′, `]) is obtained
from pr[i1, im−1] and θ1 (resp. pr[im−1, im] and θ2). Ac-
cordingly, pr[i1, im−1] matches Gs[j, j′′] and pr[im−1, im]
matches Gs[j′′, j′]. ¤

Lemma 4 Let (i, i′) ∈ E(pr) be a diagonal in pr such
that i < i′, and j and j′ vertices in Gs such that
j < j′. Let P (pr[i, i′]) = [i1, i2, . . . , im]. Then, (j, j′) ∈
CS (i, i′) if and only if (j, j′) ∈ E(Gs) where δp((i, i′)) =
δG((j, j′)) and there exists an increasing number sequence
j1, j2, . . . , jm satisfying that j1 = j, jm = j′, and
(jk, jk+1) ∈ CS (ik, ik+1) for each k (1 ≤ k < m).

Proof. It is immediate from Lemma 3. ¤

Lemma 5 Let pr (resp. Gs) be a rooted biconnected
eeo-graph pattern (resp. rooted biconnected outerplanar
graph) with vertices on the outer cycle identified with
numbers 1, 2, . . . , n (resp. 1, 2, . . . , N) such that r = 1
(resp. s = 1). Then, pr matches Gs and the vertex se-
quence 1, 2, . . . , n is mapped to an increasing number se-
quence by an subgraph isomorphism ψ : V (prθ) → V (Gs)
for an eeo-substitution θ if and only if (1, i) ∈ CS (1, n)
for a vertex i ∈ V (Gs).

Proof. If (1, n) ∈ E(pr), it is easy to see that the lemma
holds. If [1, n] ∈ H(pr), the variable [1, n] can supplement
the path [i, i + 1, . . . , N, 1], therefore, pr matches Gs. ¤

Using Lemmas 1 – 5, we give an algorithm for solv-
ing the matching problem for biconnected eeo-graph pat-
terns. For any vertex i in pr, any vertex j in Gs corre-
sponding to i satisfies i ≤ j ≤ i + N − n. Therefore, in
order to decide whether or not pr matches Gs, we only
need to compute subsets of C-set, CSd(i, i′) = {(j, j′) ∈
CS (i, i′) | i ≤ j ≤ i + N − n and i′ ≤ j′ ≤ i′ + N − n}
for each (i, i′) ∈ E(pr) and [i, i′] ∈ H(pr). Hence, we give
a pattern matching algorithm MatchBlock-EOPΛ,∆ in
Fig. 4. for computing the sets CSd(i, i′) for all edges
(i, i′) ∈ E(pr) and variables [i, i′] ∈ H(pr) by using a dy-
namic programming manner. The algorithm assigns all
C-sets of pair (i, i+1) where 1 ≤ i < n first, and it assigns
each C-set of pair (i, i′) such that (i, i′) ∈ E(pr) is a diag-
onal and for its chordless path [i1, i2, . . . , im], the C-sets
of all pairs (ik, ik+1) have been already assigned for all
k (1 ≤ k < m). For an eeo-subgraph pattern pr[i, i′] and
an outerplanar subgraph Gs[j, j′], Procedure Match-
Subblock in Fig. 5 computes a subset of CSd(i, i′), the
set {(j, k) ∈ CSd(i, i′) | k ≤ j′}. The assignment of C-
sets terminates when the C-set of pair (1, n) is assigned,
and if (1, i) 6∈ CSd(1, n) for all i ∈ V (gs), we identify
vertices of pr in reverse and assign C-sets again.

Then, we have the following lemma.

Algorithm: MatchBlock-EOPΛ,∆;

Input: a biconnected eeo-graph pattern pr and a

biconnected outerplanar graph Gs;

Output: TRUE or FALSE;

begin

1: Construct outerplanar embeddings of pr and Gs;

2: Identify vertices of the boundaries of embeddings with

numbers 1, . . . , n(= |V (pr)|) and 1, . . . , N(= |V (Gs)|),
respectively, in the clockwise order such that r = 1 and

s = 1;

3: foreach (i, i′) ∈ V (pr)× V (pr) s.t. i < i′ and

(i, i′) ∈ E(pr) or [i, i′] ∈ E(pr) do begin

4: CSd(i, i′) := ∅;
5: if i′ = i + 1 and (i, i′) ∈ E(pr) then begin

6: foreach (j, j′) ∈ E(Gs) s.t.

j < j′, i ≤ j ≤ i + N − n, i′ ≤ j′ ≤ j′ + N − n,

λp(i) = λG(j), λp(i′) = λG(j′) and

δp((i, i′)) = δG((j, j′)) do add (j, j′) to CSd(i, i′)

7: end

8: else if i′ = i + 1 and [i, i′] ∈ H(pr) then

9: foreach (j, j′) ∈ V (Gs)× V (Gs) s.t.

j < j′, i ≤ j ≤ i + N − n, i′ ≤ j′ ≤ j′ + N − n,

λp(i) = λG(j), and λp(i′) = λG(j′) do add (j, j′)

to CSd(i, i′)

10: end

11: end;

12: Let S is an empty stack;

13: for i′ := n− 1 downto 3 do begin if (1, i′) ∈ E(pr)

then push((1, i′), S) end;

14: for i := 2 to n− 1 do begin

15: for i′ := n downto i + 2 do begin if (i, i′) ∈ E(pr)

then push((i, i′), S) end

16: end;

17: while S is not empty do begin

18: (i, i′) := pop(S);

19: foreach (j, j′) ∈ E(pr) s.t. i ≤ j ≤ i + N − n and

j′ = max{k | j < k, i′ ≤ k ≤ i′ + N − n

and (j, k) ∈ E(Gs)} do begin

20: C :=MatchSubblock(pr[i, i′], Gs[j, j′]);

21: foreach k ∈ C do add (j, k) to CSd(i, i′)

22: end

23: end;

24: C :=MatchSubblock(pr[1, n], Gs[1, N ]);

25: if C 6= ∅ then return TRUE;

26: Identify vertices of pr with 1, . . . , n in the

counterclockwise order;

27: Do lines 3 – 25;

28: return FALSE

end.

Figure 4: A pattern matching algorithm for biconnected
eeo-graph patterns.



Procedure: MatchSubblock;

Input: an eeo-subgraph pattern pr[i, i′] and an outerplanar

subgraph Gs[j, j′];

Output: the set {k ∈ V (Gs) | j < k ≤ j′ and pr[i, i′]

matches Gs[j, k]};
begin

1: P (pr[i, i′]) := [i1, i2, . . . , im]; // i1 = i, im = i′.

2: CS i,j(i1) := {j};
3: for ` := 2 to m do begin

4: CS i,j(i`) := ∅; // CS i,j(i`) means the set

{k ∈ V (Gs) | (j, k) ∈ CSd(i1, i`)}.
5: foreach k ∈ CS i,j(i`−1) do begin

6: foreach (k, k′) ∈ CSd(i`−1, i`) do begin

7: if ` < m then add k′ to CS i,j(i`)

8: else if (i1, im) ∈ E(pr) and (j, k′) ∈ E(Gs) s.t.

δp((i1, im)) = δG((j, k′)) then

9: add k′ to CS i,j(im)

10: else if [i1, im] ∈ H(pr) then add k′ to CS i,j(im)

11: end

12: end

13: end;

14: return CS i,j(i
′)

end.

Figure 5: A procedure for computing a subset of
CSd(i, i′) w.r.t. an outerplanar subgraph Gs[j, j′].

Lemma 6 For a rooted biconnected eeo-graph pattern pr

and a rooted biconnected outerplanar graph Gs, the prob-
lem of deciding whether or not pr matches Gs is cor-
rectly solvable in O(nN2) time, where n = |V (p)| and
N = |V (G)|.

Proof. Since |E(p)| + |H(p)| ≤ 2|V (p)| − 3, we need
O(n(N − n)2) time at the initial stage (lines 3 – 11) of
MatchBlock-EOPΛ,∆. Let pr[i, i′] be a subgraph pat-
tern of pr and P (pr[i, i′]) = [i1, i2, . . . , im]. In Proce-
dure MatchSubblock, each vertex i` (1 ≤ ` ≤ m) is
assigned at most N − n vertices of Gs, and therefore,
MatchSubblock works in O(m(N − n)) time. Since
the total lengths of chordless paths of diagonals in pr is
|E(p)|+ |H(p)| − 1, we need O(nN(N −n)) time at lines
17 – 23 of MatchBlock-EOPΛ,∆. Therefore, the total
time is O(nN2) time. ¤

Theorem 1 The matching problem for an eeo-graph pat-
tern p ∈ EOPΛ,∆ and an outerplanar graph G ∈ OΛ,∆ is
computable in O(nN3) time, where n and N are the num-
bers of vertices of p and G, respectively.

Proof. Let u and v be vertices of rooted eeo-graph pat-
tern pr and rooted outerplanar graph Gs[v], respectively.
From Lemma 6 and the proof of Corollary 1 in [8], in
order to decide whether or not pr[u] matches Gs[v], we

need O(cuc2
v) time where cu and cv are the numbers of

children of u and v, respectively. Then, the runtime for
deciding whether or not pr matches Gs is O(nN2) time,
and consequently, the total time is O(nN3) time. ¤

4 Conclusions

In this paper, we gave a polynomial time algorithm
for deciding whether or not a given eeo-graph pattern
matches a given connected outerplanar graph. By using
this algorithm, in [9], we gave a refinement-based frequent
mining algorithm for eeo-graph patterns and evaluated
its performance by experiments on subsets of the NCI
dataset. As future works, toward efficient graph mining
systems for real-world databases, we are studying more
expressive graph pattern classes based on graph transfor-
mation systems.
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