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Abstract— This paper develops the confidence in-
terval for the independent component analysis. The
method is based on the bootstrap method using
source density functions estimated by the polynomial
splines modeling. A simulation study is conducted to
show the numerical example for the proposed method
and that the confidence interval has a reasonable cov-
erage probability. Finally, the method is applied to a
real fetal electrocardiogram data. One characteristic
signal was effectively detected as a favor of the blind
source separation by the proposed method.
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1 Introduction

Independent component analysis (ICA) has been a pow-
erful tool for blind source separation in many applica-
tions such as fetal heart monitoring [10] and functional
magnetic resonance imaging (fMRI) analysis [2]. In ICA,
the objective is to estimate the p by p mixing matrix A
based on a random sample from the random vector given
by X = AS where S is a random vector of independently
distributed components Sj , j = 1, 2, . . . , p. Many differ-
ent ICA algorithms have been developed, for example,
Infomax [1],FastICA [5],KDICA [3],PSICA [7],In this pa-
per, we assess the variability of the estimator of A due
to a finite number of samples.

Most of studies for the variability of ICA are based on
asymptotic variance (for example [9]). We propose to
use the bootstrap resampling technique to asses the vari-
ability of ICA estimates. We consider the ICA estimator
via PSICA algorithm [7].In this method, the logarithmic
density functions of the each components of S are mod-
eled by using polynomial splines. The random resample
is drawn based on the estimated density functions. Our
method may have the two advantages. First, this resam-
pling method gives us to keep the structure of S against
the method based on the empirical distribution function.
Second, the bootstrap method can get us to be free from
the assumption for asymptotic property of the ICA esti-
mator.
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The remainder of the paper is organized as follows. The
proposed method is described in Section 2. In Section 3,
simulation studies are presented. A specific application is
given in Section 4 where we report an effective separation
from fetal electrocardiogram data.

2 Methods

First, we review the PSICA. Suppose each Sj has a
density function fj for j = 1, 2, . . . , p. Then the
density function of X can be expressed as fX(x) =
det(W)

∏p
j=1 fj(wjx), where W = A−1 and wj is the

j-th row of W. Each logarithmic density is modeled us-
ing polynomial splines

log(fj(x;βj)) = C(βj) + βj01x+

mj∑
i=1

βj1i(x− rji)
3
+, (1)

where βj = (βj01, βj11, . . . , βj1mj )is a vector of coeffi-
cients, C(β) is a normalized constant, rji are knots, and
(z)+ = max(0, z)．We obtain the estimate of (W, β1,
. . . , βp) by maximizing the likelihood of X with respect
to (W, β1, . . . , βp). This is carried out in two steps to
be described as follow. In the first step, W is treated
as known and each fj is estimated with data-dependent
knots based on the logspline procedure. In the second
step, we estimate W using the estimated fj . We alter-
nate these steps until convergence of W. See [7] for the
details.

Our bootstrap procedure to construct the confidence in-
terval is as follows. First, the PSICA algorithm is ap-
plied to the original data X1, X2, . . . , Xn and obtain
the estimate Â. We obtain bootstrap samples S∗

j by
generating random numbers from estimated fj (j = 1,

2, . . . , p). Using S∗ consisting of S∗
j and A∗ = Â, we

generate X∗ where X∗ = A∗S∗. We apply the PSICA
algorithm to X∗ to obtain the estimate Â∗ of A∗. The
columns of Â∗ are permutated to agree with sign and
order of columns of A∗. This process is iterated by B
times and the corresponding estimates Â∗1, Â∗2, . . . ,
Â∗B are obtained. Let denote (i, j)–elements of A and

Â∗b by aij and a∗bij , respectively (b = 1, 2, . . . , B), we
define the 100(1 − α) percent confidence limit of aij as

[â
(Lij)
ij , â

(Uij)
ij ] where â

(α)
ij is the α percentile of a∗bij (b =

1, 2, . . . , B), Lij = Φ(rij − zασij), Uij = Φ(rij + zασij),



Φ(·) and zα are the cumulative distribution function and
the 100(1 − α) percentile of the standard normal distri-
bution, respectively, and rij and σij are a mean and a
standard deviation of normal scores for a∗bij (b = 1, 2, . . . ,
B), respectively. The point estimate of A is defined as

the matrix Â(0.5) whose elements are a
(0.5)
ij .

3 Simulation Studies

3.1 Numerical Example

The methods in Section 2 have their application illus-
trated for a simulated data. The true three independent
source components S1, S2 and S3 (p=3) with n = 1000
as the sample size are randomly generated from distribu-
tions represented as solid lines in Figure 1.
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Figure 1: True density function for independent compo-
nents (solid) and estimated density (dot)（S1, S2 and S3

from the left）

Each elements of true 3 by 3 mixing A is randomly gen-
erated from an uniform distribution with the range [–1,
1], while the (3, 1)–element is set to be 0. Data X = (X1,
X2, X3)

′ to be applied are generated using the equation
(2) with independent components S1, S2 and S3 and the
true mixing matrix A.

X = AS (2)

=

⎛
⎝

−0.469
0.816
0.000

⎞
⎠S1 +

⎛
⎝

−0.256
−0.597
0.322

⎞
⎠S2 +

⎛
⎝

0.146
0.797
0.258

⎞
⎠S3

The plots for independent components and observed data
are shown in the left and middle panel of Figure 2, re-
spectively. The proposed method with B = 100 bootstrap
samples is applied to the data. The estimated densities
which are used to generate the bootstrap samples are rep-
resented with dotted lines in Figure 1.

The 95% confidence intervals constructed by the pro-
posed method were represented in Table 1 whose each
elements of A = {aij} was (lower, upper) limits. All
intervals contained the true values.

The reproduced sources via Ŝ = XÂ(0.5) are shown in the
right panel of Figure 2, where a (3,1)–element of Â(0.5)

was replaced with 0 according to the resulting confidence
interval. We may say that the reproducing was quite
good comparing with the true sources in the left panel of

Figure 2. All Pearson’s correlation coefficients between
the estimates and the true sources were 0.999.

Table 1: 95% confidence intervals for each element aij

95%CI
(i, j) (Lower, Upper) True
(1, 1) (−0.513, −0.430) −0.469
(1, 2) (−0.279, −0.247) −0.256
(1, 3) ( 0.122, 0.155) 0.146
(2, 1) ( 0.706, 0.912) 0.816
(2, 2) (−0.676, −0.585) −0.597
(2, 3) ( 0.780, 0.860) 0.797
(3, 1) (−0.004, 0.040) 0.000
(3, 2) ( 0.322, 0.361) 0.322
(3, 3) ( 0.220, 0.258) 0.258
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Figure 2: True sources (left: S1, S2, S3 from the top),
observed data (middle: X1, X2, X3 from the top), esti-

mated sources (right: Ŝ1, Ŝ2, Ŝ3 from the top)

3.2 Coverage Probability

We demonstrate evaluate the proposed confidence inter-
val by estimating the coverage probability. We generated
randomly independent components from same densities
as previous section and created observed data following
the equation (2) with the sample size n = 100, 250, 500,
1000, 2000. The proposed method is applied and the 95
% confidence intervals for the elements from the simu-
lations have transformations to indicator variables with
the value of 1 if containing the true and the value of 0
otherwise. The means of these indicator variables across
200 of the simulations are the resulting estimates of the
coverage probability. The results from the simulations
pertaining to the coverage probability are shown in Fig-
ure 3. We may say that there is somewhat departure from
the nominal level of 0.95 in small sample sizes, but the
proposed confidence intervals have a reasonable coverage
probability with increase in sample size.
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Figure 3: Coverage probabilities

4 Application

The method described in the Section 2 is applied to an-
alyze cutaneous potential recordings data of a pregnant
woman measured at 8-chanels with 2500 time points. The
data is available on the ICA CENTRAL website. The
objective of the analysis is to extract the fetal electrocar-
diogram which may have a fractal structure (for example,
[8]).We estimate the correlation dimension which is one
of measurements for a fractal dimension by the method
proposed by [6]from both the raw signals and the esti-
mated sources. The signals were embedded into the vec-
tors Yt = (Yt, Yt−1, . . . , Yt−d+1)

′ where t is a time point
and d is an embedding dimension. Figure 4 shows the
result for estimation of correlation dimension for each d
for the raw data (left) and estimated sources (right). The
saturation of lines indicates that the signal has a fractal
structure [4].
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Figure 4: Estimation of correlation dimension (left: ob-
served data, right: estimated sources)

The eighth component of estimated sources may have
more remarkable saturation than others. This indicates
that this estimated source is most close to the fetal heart
rate variability. On the other hand, the result for all com-

ponents of raw signals showed the saturation and such
clear difference among components has not noted. This
might come from a domination of fractal structure of the
fetal heart rate variabilities which contain in all compo-
nents of raw signals. However we can expect that these
potentially also contain mother’s heart rate variability
and other artifacts.
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