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Abstract— Recommender Systems apply machine

learning and data mining techniques for filtering un-

seen information and can predict whether a user

would like a given resource. To date a number of rec-

ommendation algorithms have been proposed, where

collaborative filtering and content-based filtering are

the two most famous and adopted recommendation

techniques. Collaborative filtering recommender sys-

tems recommend items by identifying other users

with similar taste and use their opinions for recom-

mendation; whereas content-based recommender sys-

tems recommend items based on the content informa-

tion of the items. These systems suffer from scalabil-

ity, data sparsity, over specialization, and cold-start

problems resulting in poor quality recommendations

and reduced coverage. Hybrid recommender systems

combine individual systems to avoid certain afore-

mentioned limitations of these systems. In this paper,

we proposed a unique switching hybrid recommenda-

tion approach by combining a Naive Bayes classifica-

tion approach with the collaborative filtering. Exper-

imental results on two different data sets, show that

the proposed algorithm is scalable and provide better

performance–in terms of accuracy and coverage–than

other algorithms while at the same time eliminates

some recorded problems with the recommender sys-

tems.

Keywords: Hybrid Recommender Systems; Collabora-

tive Filtering; Content-Based Filtering; Naive Bayes

Classifier.

1 Introduction

There has been an exponential increase in the volume of
available digital information, electronic sources, and on-
line services in recent years. This information overload
has created a potential problem, which is how to filter and
efficiently deliver relevant information to a user. Further-
more, information needs to be prioritized for a user rather
than just filtering the right information, which can create
information overload problems. Search engines help in-
ternet users by filtering pages to match explicit queries,
but it is very difficult to specify what a user wants by
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using simple keywords. The Semantic Web, also provides
some help to find useful information by allowing intelli-
gent search queries, however it depends on the extent the
web pages are annotated.

These problems highlight a need for information extrac-
tion systems that can filter unseen information and can
predict whether a user would like a given source. Such
systems are called recommender systems, and they mit-
igate the aforementioned problems to a great extent.
Given a new item, recommender systems can predict with
impressive accuracy whether a user would like this item or
not, based on user preferences (likes- positive examples,
and dislikes- negative examples), observed behaviour, and
information (demographic or content information) about
items [1, 2].

An example of the recommender system is the Amazon1

recommender engine [3], which can filter through millions
of available items based on the preferences or past brows-
ing behaviour of a user and can make personal recommen-
dations. Some other well-known examples are Youtube2

video recommender service and MovieLens3 movie rec-
ommender system, which recommend videos and movies
based on the person’s opinions. In these systems, a his-
tory of user’s interactions with the system is stored which
given rise to his preferences. The history of the user can
be gathered by explicit feedback, where the user rates
some items in some scale or by implicit feedback, the
user’s interaction with the item is observed- for instance,
if a user purchases an item then this is a sign that he likes
that item, his browsing behaviour, etc.

There are two main types of recommender systems: col-
laborative filtering and content-based filtering recom-
mender systems. Collaborative filtering recommender
systems [4, 5, 6, 7] recommend items by taking into ac-
count the taste (in terms of preferences of items) of users,
under the assumption that users will be interested in
items that users similar to them have rated highly. Ex-
amples of these systems include GroupLens system [8],

1www.amazon.com
2www.youtube.com
3www.movielens.org



Ringo4, etc. Collaborative filtering classified into two
sub-categories: memory-based CF and model-based CF.
Memory-based approaches [5] make a prediction by tak-
ing into account the entire collection of previous rated
items by a user, examples include GroupLens recom-
mender systems [8]. Model-based approaches [9] use rat-
ing patterns of users in the training set, group users into
different classes, and use ratings of predefined classes to
generate recommendation for an active user5 on a tar-
get item6, examples include item-based CF [10], Singular
Value Decomposition (SVD) based models [11], bayesian
networks [12], and clustering methods [13].

Content-based filtering recommender systems [14] recom-
mend items based on the textual information of an item,
under the assumption that users will like similar items
to the ones they liked before. In these systems, an item
of interest is defined by its associated features, for in-
stance, NewsWeeder [15], a newsgroup filtering system
uses the words of text as features. The textual descrip-
tion of items is used to build item profiles. User profiles
can be constructed by building a model of the users pref-
erences using the descriptions and types of the items that
a user is interested in, or a history of users interactions
with the system is stored (e.g. user purchase history,
types of items he purchases together, his ratings, etc.).
The history of the user can be gathered by explicit feed-
back or implicit feedback. Explicit feedback is noise free
but the user is unlikely to rate many items, whereas, im-
plicit feedback is noisy (error prone), but can collect a
lot of training data [16]. In general, a trade-off between
implicit and explicit user feedback is used. Creating and
learning user profiles is a form of classification problem,
where training data can be divided into two categories:
items liked by a user, and item disliked by a user.

Recommendations can be presented to an active user in
the followings two different ways: by predicting ratings of
items a user has not seen before and by constructing a list
of items ordered by his preferences. In the former case,
an active user provides the prediction engine with the
list of items to be predicted, prediction engine uses other
users (or items) ratings or content information, and then
predict how much the user would like the given item in
some numeric or binary scale. In the latter case, different
heuristics are used for producing an ordered list of items,
sometimes termed as top-N recommendations [11, 17].
For example, in collaborative filtering recommender sys-
tem this list is produced by making the rating predictions
of all items an active user has not yet rated, sorting the
list, and then keeping the top-N items the active user
would like the most. In this paper, we focussed on the
former case–predicting the ratings of items–however we
can easily construct a list of top-N items for each user by

4www.ringo.com
5The user for whom the recommendations are computed.
6The item a system wants to recommend.

selecting highly predicted items.

1.1 Problem Statement

The continuous increase of the users and items demands
the following properties in a recommender system. First
is the scalability, that is its ability to generate predictions
quickly in user-item rating matrix consisting of millions
of users and items. Second is to find good items and to
ameliorate the quality of the recommendation for a cus-
tomer. If a customer trusts and leverages a recommender
system, and then discovers that he is unable to find what
he wants then it is unlikely that he will continue with
that system. Consequently, the most important task for
a recommender system is to accurately predict the rating
of the non-rated user/item combination and recommend
items based on these predictions. These two properties
are in conflict, since the less time an algorithm spends
searching for neighbours, the more scalable it will be,
but produces worse quality recommendations. Third its
coverage should be maximum, i.e. it should be able to
produce recommendation for all the existing items and
users regardless of the new item cold-start7 and new user
cold-start8 problems. Fourth, its performance should not
degrade with sparsity. As the user-item rating matrix is
very sparse, hence the system may be unable to make
many product recommendation for a particular user.

Collaborative Filtering and Content-based filtering suf-
fer from potential problems– such as over-specialization9,
sparsity, reduced coverage, scalability, and cold-start
problems, which reduce the effectiveness of these sys-
tems. Hybrid recommender systems have been proposed
to overcome some of the aforementioned problems. In
this paper, we propose a switching hybrid recommender
system [18] using naive Bayes and item-based CF. A
switching hybrid system is intelligent in a sense that
it can switch between recommendation techniques using
some criterion. The benefit of switching hybrid is that
it can make efficient use of strengths and weaknesses of
its constitutional recommender systems. We show em-
pirically that proposed recommender system outperform
other recommender system algorithms in terms of MAE,
ROC-Sensitivity, and coverage. We evaluate our algo-

7When a new item is added to the system, then it is not possible
to get rating for that item from significant number of users, and
consequently the CF recommender system would not be able to
recommend that item. This problem is called new item cold-start

problem [9].
8CF recommender system works by finding the similar users

based on their ratings, however it is not possible to get ratings
from a newly registered user. Therefore, the system cannot recom-
mend any item to that user, a potential problem with recommender
system called new user cold-start problem [9].

9Pure content-based filtering systems only recommend items
that are the most similar to a users profile. In this way, a user
cannot find any recommendation that is different from the ones it
has already rated or seen.



rithm on MovieLens10 and FilmTrust11 datasets.

The rest of the paper has been organized as follows. Sec-
tion 2 discusses the related work. Section 3 presents some
background concepts relating to item-based CF, content-
based filtering, and Naive Bayes classifier. Section 4 out-
lines the proposed algorithm. Section 5 describes the data
set and metrics used in this work. Section 6 compares the
performance of the proposed algorithm with the existing
algorithms followed by conclusion in section 7.

2 Related Work

Pazzani [19] propose a hybrid recommendation approach
in which a content-based profile of each user is used to
find the similar users, which are used for making pre-
dictions. The author used Winnow to extract features
from user’s home page to build the user content-based
profile. The problem with this approach is that if the
content-based profile of a user is erroneous (may be due
to synonyms problems or others), then it will results in
poor recommendations. In [20], the authors proposed a
hybrid recommender framework to recommend movies to
users. In the content-based filtering part, they get extra
information about movies from the IMDB12 web site and
view each movie as a text document. A Naive Bayes clas-
sifier is used for building user and item profiles, which can
handle vectors of bags-of-words. The Naive Bayes clas-
sifier is used to approximate the missing entries in the
user-item rating matrix, and a user-based CF is applied
over this dense matrix. The problem with this approach
is that it is not scalable. Our work combines Naive Bayes
and Collaborative Filtering in a more scalable way than
[20] and uses synonym detection and feature selection al-
gorithms that produce accurate profiles of users resulting
in improved predictions. The off-line cost of our approach
and [20] is the same, i.e. the cost to build a naive Bayes
classifier. However, our on-line cost (in the worse case) is
less than or equal to [20]13. A similar approach has been
used in a book recommender system, LIBRA [21]. LI-
BRA downloads content information about book (meta
data) from Amazon and extracts features using simple
pattern-based information extraction system, and builds
user models using a Naive Bayes classifier. A user can
rate items using a numeric scale from 1 (lowest) to 10
(highest). It does not predict exact values, but rather
presents items to a user according to his preferences. The
authors in [22, 23] used demographic information about
users and items for providing more accurate prediction
for user-based and item-based CF. They proposed hy-
brid recommender system (lying between cascading and
feature combination hybrid recommender systems [18])
in which demographic correlation between two items (or

10www.grouplens.org/node/73
11www.filmtrust.com
12www.imdb.com
13See section 6.

users) is applied over the candidate neighbours found af-
ter applying the rating correlation on the user-item rat-
ing matrix. This refined set of neighbours are used for
generating predictions. However they completely miss
the features of items for computing similarity. In [24],
content-based filtering using the Rocchio’s method is ap-
plied to maintain a term vector model that describe the
user’s area of interest. This model is then used by collab-
orative filtering to gather documents on basis of interest
of community as a whole. Another example of hybrid
systems is proposed in [25], where the author presented
an on-line hybrid recommender system for news recom-
mendation.

3 Background

Let M = { m1,m2, · · · ,mx } be the set of all users, N =
{ n1, n2, · · · , ny } be the set of all possible items that can
be recommended, and rmi,nj

be the rating of user mi on
item nj .

3.1 Item-Based Collaborative Filtering

Item-based CF [10] builds a model of item similarities us-
ing an off-line stage. Suppose we want to make prediction
for an item nt for an active user ma. Let Mninj

be the
set of all users, who have co-rated item ni and nj . There
are three main steps in this approach as follows:

• In the first step, all items rated by an active user are
retrieved.

• In the second step, target item’s similarity is com-
puted with the set of retrieved items. A set
of K most similar items n1, n2 · · ·nK with their
similarities sn1

, sn2
· · · snK

are selected. Similarity
sim(ni, nj), between two items ni and nj , is com-
puted by first isolating the users who have rated
these items (i.e. Mninj

), and then applying the Ad-
justed Cosine similarity [10] as follows:

sim(ni, nj) =

∑

m∈Mni,nj

r̂m,ni
r̂m,nj

√ ∑

m∈Mni,nj

(r̂m,ni
)2

∑

m∈Mni,nj

(r̂m,nj
)2

.

(1)

Where, r̂m,n = rm,n − rm, i.e. normalizing a rating
by subtracting the respective user average from the
rating, which is helpful in overcoming the discrepan-
cies in user’s rating scale. We multiplied similarity
weights with a Significance Weigthing factor [26].

• In the last step, prediction for the target item is
made by computing the weighted average of the ac-
tive user’s rating on the K most similar items. Using



weighted sum, the prediction pma,nt
on item nt for

user ma is computed as follows:

Pma,nt
=

K∑

i=1

(snt,i × rma,i)

K∑

i=1

(|snt,i|)

. (2)

3.2 Content-Based Filtering: Feature Ex-
traction and Selection

Feature extraction techniques aim at finding the specific
pieces of data in natural language documents [27], which
are used for building both users and items profiles. These
users and items profiles are then employed by a classifier
for recommending resources. Documents, which typically
are strings of characters, are transformed into a represen-
tation suitable for machine learning algorithms [28]. The
documents are first converted into tokens, sequence of
letters and digits, and then after stop word14 removal,
stemming15 is performed . Each document is usually
represented by a vector of n weighted index terms. A
Vector Space Model [16] is the most commonly used doc-
ument representation technique, in which documents are
represented by vectors of words. Term Frequency-Inverse
Document Frequency (TF-IDF) approach or others [28]
can be used for determining the weight of a word in a
document. TF-IDF approach is a well-known approach
and uses the frequency of a word in a document as well
as in the collection of documents for computing weights.

The feature space in a typical vector space model can be
very large, which can be reduced by feature selection pro-
cess. Feature selection process reduces the feature space
by eliminating useless noise words having little (or no)
discriminating power in a classifier, or having low signal-
to-noise ratio. Several approaches are used for feature
selection, such as DF-Thresholding, χ2 statistic, and In-
formation gain [28].

We downloaded information about movies from IMDB.
After stop word removal and stemming, we constructed
a vector of keywords, tags, directors, actors/actresses,
and user reviews given to a movie in IMDB. We used
TF-IDF approach for determining the weights of words
in a document (i.e. movie) with DF-Thresholding feature
selection. DF Thresholding approach computes the Doc-
ument Frequency (DF ) for each word in the training set
and removes words having DF less than a predetermined
threshold [29]. The assumption behind this is that, these
rare words neither have the discriminating power for a

14Stop words are frequently occurring words that carry no (or
little) information.

15Stemming removes the case and inflections information from a
word and maps it to the same stem. We used Porter Stemmer [16]
algorithm for stemming.

category prediction nor do they influence the global per-
formance.

3.3 Naive Bayes Classifier

The Naive Bayes classifier is based on the Bayes theo-
rem with strong (Naive) independence assumption, and
is suitable for the cases having high input dimensions.
Using the Bayes theorem, the probability of a document
d being in class Cj is calculated as follows:

P (Cj |d) =
P (Cj)P (d|Cj)

P (d)
, (3)

where P (Cj |d), P (Cj), P (d|Cj), and P (d) are called the
posterior, prior, likelihood, and evidence respectively.

The Naive assumption is that features are conditionality
independent, for instance in a document the occurrence
of words (features) do not depend upon each other16 [29].
Formally, if a document has a set of features F1, · · · , Fh

then we can express equation 3 as follows:

P (Cj |d) =

P (Cj)

h∏

i=1

P (Fi|Cj)

P (F1, · · · , Fh)
. (4)

An estimate P̂ (Cj) for P (Cj) can be calculated as:

P̂ (Cj) =
Aj

A
, (5)

where Aj is the total number of training documents that
belongs to category Cj and A is the total number of train-
ing documents. To classify a new document, Naive Bayes
calculates posteriors for each class, and assigns the doc-
ument to that particular class for which the posterior is
the greatest.

In our case, we used the approach proposed in [21] for
a book recommender system and in [30] for a movie rec-
ommender system, with the exception that we used DF-
Thresholding feature selection scheme for selecting the
most relevant features. We assume we have S possible
classes, i.e. C = {C1, C2, · · · , CS}, where S = 5 for
MovieLens and S = 10 for FilmTrust dataset. We have T

types of information about a movie–keywords, tags, ac-
tors/actress, directors, plot, user comments, genre, and
synopsis. We constructed a vector of bags-of-words [28],
dt against each type. The posteriror probability of a
movie, ny, is calculated as follows:

16Due to this assumption, the Naive Bayes classifier can handle
high input dimension.



P (Cj |ny) =

P (Cj)

T∏

t=1

|dt|∏

i=1

P (wti|Cj , Tt)

Pny

, (6)

where, P (wti|Cj , Tt) is the probability of a word wti given
a class Cj and type Tt.

We use Laplace smoothing [29] to avoid the zero proba-
bilities and log probabilities to avoid underflow.

4 Combining Item-Based CF and Naive

Bayes Classifier for Improved Recom-

mendations

We propose a framework for combining the item-based
CF with the Naive Bayes classifier. The idea is to use
Naive Bayes classifier in off-line stage for generating rec-
ommendations. The prediction computed by the item-
based CF using on-line stage is used if we have less con-
fidence in the prediction computed by the Naive Bayes,
else Naive Bayes’s prediction is used. We propose a sim-
ple approach for determining the confidence in the Naive
Bayes’s prediction.

Let P̂NB , P̂ICF , and P̂Final represent the predictions
generated by the Naive Bayes classifier, item-based CF,
and the prediction we are confident to be accurate. Let
Pr(Cj) be the posterior probability of class j computed
by the Naive Bayes classifier, L be a list containing the
probabilities of each class, and d(i, j) be the absolute
difference between two class probabilities, i.e. d(i, j) =
|L(i) − L(j)| = |Pr(Ci) − Pr(Cj)| where i 6= j. The
proposed hybrid approach is outlined in algorithm 1.

Step 2 to 5 (P̂ICF = 0) represent the case, where item-
based CF fails to make a prediction17. In this case, we use
prediction made by the Naive Bayes classifier. Step 7 to
16 determine the confidence in Naive Bayes’s prediction.
Confidence in Naive Bayes’s prediction is high when the
posterior probability of the predicted class is sufficiently
larger than others. If d(S, S − 1) is sufficiently large,
then we can assume that the actual value of an unknown
rating has been predicted. The parameter α represents
this difference and can be found empirically on training
set. The parameter β tells us if the difference between the
predictions made by the individual recommender systems
is small, then again we are confident that Naive Bayes
is able to predict a rating correctly. This is a kind of
heuristic approach learnt from the prediction behaviour
of CF and Naive Bayes. CF gives prediction in floating
point scale, and Naive Bayes gives in integer point scale.
CF recommender systems give accurate recommendation,
but mostly they do not predict actual value, for example,

17This can occur when no similar item is found against a target
item, for example, in new-item cold start scenario–when only the
active user has rated the target item.

if the actual value of an unknown rating is 4, then CF’s
prediction might be 3.9 (or 4.1, or some other value). On
the other hand, Naive Bayes can give actual value, for
example in the aforementioned case, it might give us 4.
However, if Naive Bayes is not very confident, then it
might result in prediction that is not close to the actual
one, e.g. 3, 2, etc. We take the difference of individual
recommender’s predictions, and if it is less than a thresh-
old (β), then we use Naive Bayes’s prediction assuming
that it has been predicted correctly. Steps 17 to 28 rep-
resent the case, where we have tie cases in Naive Bayes
posterior probabilities. In this scenario, we take differ-
ence of each tie class with CF’s prediction and use that
class as final prediction, if the difference is less than β.
Step 29 to 30 describe the case where we do not have
enough trust in Naive Bayes’s prediction, hence we use
prediction made by the item-based CF.

Algorithm 1 RecNBCF

1: procedure Recommend(P̂ICF , P̂NB , L)
2: if (P̂ICF == 0) then
3: a. P̂Final ← P̂NB

4: b. return P̂Final

5: end if
6: Sort the list L in ascending order, so that L(1)

contains the lowest value and L(S) contains the high-
est value.

7: if (L(S) 6= L(S − 1)) then
8: if d(S, S − 1) > α then
9: a. P̂Final ← P̂NB

10: b. return P̂Final

11: else
12: if (|P̂NB − P̂ICF | < β) then
13: a. P̂Final ← P̂NB

14: b. return P̂Final

15: end if
16: end if
17: else (i.e. L(S) = L(S − 1))
18: for t← S − 1, 1 do
19: if (L(S) == L(t)) then
20: if (|P̂ICF − t| < β) then
21: a. P̂Final ← t

22: b. return P̂Final

23: end if
24: else
25: Break for
26: end if
27: end for
28: end if
29: P̂Final ← P̂ICF

30: return P̂Final

31: end procedure



5 Experimental Evaluation

5.1 Dataset

We used MovieLens (ML) and FilmTrust (FT) datasets
for evaluating our algorithm. MovieLens data set con-
tains 943 users, 1682 movies, and 100 000 ratings on
an integer scale 1 (bad) to 5 (excellent). Movie-
Lens data set has been used in many research projects
[10, 31, 23]. The sparsity of this dataset is 93.7%(
1− non zero entries

all possible entries
=1− 100000

943×1682
= 0.937

)
.

we created the second dataset by crawling the FilmTrust
website. The dataset retrieved (on 10th of March 2009)
contains 1592 users, 1930 movies, and 28 645 ratings on
a floating point scale of 1 (bad) to 10 (excellent). The
sparsity of this dataset is 99.06%18.

5.2 Metrics

Several metrics have been used for evaluating rec-
ommender systems which can broadly be categorized
into Predictive Accuracy Metrics, Classification Accuracy
Metrics, and Rank Accuracy Metrics [32]. The Predictive
Accuracy Metrics measure how close is the recommender
system’s predicted value of a rating, with the true value
of that rating assigned by the user. These metrics in-
clude mean absolute error, mean square error, and nor-
malized mean absolute error, and have been used in re-
search projects such as [12, 33, 11, 10]. The Classification
Accuracy Metrics determine the frequency of decisions
made by a recommender system, for finding and recom-
mending a good item to a user. These metrics include
precision, recall, F1 measure, and Receiver Operating
Characteristic curve, and have been used in [11, 34]. The
last category of metrics, Rank Accuracy Metrics measure
the proximity between the ordering predicted by a recom-
mender system to the ordering given by the actual user,
for the same set of items. These metrics include half-life
utility metric proposed by Brease [12].

Our specific task in this paper is to predict scores for
items that already have been rated by actual users, and
to check how well this prediction helps users in select-
ing high quality items. Keeping this into account, we
use Mean Absolute Error (MAE) and Receiver Operating
Characteristic (ROC) sensitivity.

MAE measures the average absolute deviation between a
recommender system’s predicted rating and a true rating
assigned by the user19. It is computed as follows:

MAE =

N∑

i=1

|rpi
− rai

|

N
,

18Both dataset can be downloaded from:
https://sourceforge.net/projects/hybridrecommend.

19The goal of a recommendation algorithm is to minimize MAE.

where rpi
and rai

are the predicted and actual values of
a rating respectively, and N is the total number of items
that have been rated. It has been used in [12, 10].

ROC is the extent to which an information filtering sys-
tem can distinguish between good and bad items. ROC
sensitivity measures the probability with which a system
accept a good item. The ROC sensitivity ranges from 1
(perfect) to 0 (imperfect) with 0.5 for random. To use
this metric for recommender systems, we must first de-
termine which items are good (signal) and which are bad
(noise). In [35, 30] the authors consider a movie “good”
if the user rated it with a rating of 4 or higher and “bad
” otherwise. The flaw with this approach is that it does
not take into account the inherent difference in the user
rating scale–a user may consider a rating of 3 in a 5 point
scale to be good, while another may consider it bad. We
consider an item good if a user rated it with a score higher
than his average (in the training set) and bad otherwise.

Furthermore, we used coverage that measures how many
items a recommender system can make recommendation
for. It has been used in [32]. We did not take cov-
erage as the percentage of items that can be recom-
mended/predicted from all available ones. The reason
is, a recommendation algorithm can increase coverage by
making bogus predictions, hence coverage and accuracy
must be measured simultaneously. We selected only those
items that have already been rated by the actual users.

6 Result and Discussion

We randomly selected 20% ratings of each user as the
test set and used the remaining 80% as training set. We
further subdivided our training set into a test set and
training set for measuring the parameters sensitivity. For
learning the parameters, we conducted 5-fold cross val-
idation on the 80% training set, by randomly selecting
the different test and training set each time, and taking
the average of results.

We compared our algorithm with six different algorithms:
user-based CF using Pearson correlation with default
voting (UBCFDV ) [12], item-based CF (IBCF) using
adjusted-cosine similarity20 [10], a hybrid recommenda-
tion algorithm, IDemo4, proposed in [23], a Naive Bayes
classification approach (NB) using item features infor-
mation, a naive hybrid approach (NH) for generating rec-
ommendation21, and the content-boosted algorithm (CB)
proposed in [20]. Furthermore, we tuned all algorithms
for the best mentioning parameters.

20With the exception that for FilmTrust dataset, we add 1 to all
similarities, i.e. sim(i, j) = sim(i, j) + 1. The reason is that, it is
very sparse and most of the similarities were negative resulting in
poor performance.

21We take average of the prediction generated by a Naive Bayes
and an item-based CF.



Table 1: A comparison of proposed algorithm with existing in terms of cost (based on [31]), accuracy metrics, and
coverage

Algorithm On-line Cost
Best MAE ROC-Sensitivity Coverage

(ML) (FT) (ML) (FT) (ML) (FT)
UBCFDV O(M2N) + O(NM) 0.766 1.441 0.706 0.563 99.424 93.611
IBCF O(N2) 0.763 1.421 0.733 0.605 99.221 92.312
IDemo4 O(N2) 0.749 1.407 0.739 0.621 99.541 94.435
RecNBCF O(N2) + O(Mf) 0.696 1.341 0.778 0.657 100 99.992
NB O(Mf) 0.808 1.462 0.703 0.571 100 99.992
NH O(N2) + O(Mf) 0.785 1.438 0.712 0.586 100 99.992
CB O(M2N) + O(NM) + O(Mf) 0.721 1.378 0.741 0.611 100 99.995
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Figure 1: Determining the optimal value of DF .

6.1 Learning Optimal Values of Parameters

The purpose of these experiments is to determine, which
of the parameters affect the prediction quality of the pro-
posed algorithm, and to determine their optimal values.

6.1.1 Optimal Value of DF Threshold Parameter

For determining the optimal value of DF , we varied the
value of DF from 0 to 0.5 with a difference of 0.0522.
The results are shown in figure 1. Figure 1 shows that
DF = 0.25 and DF = 0.15 gave the lowest MAE for
MovieLens and FilmTrust dataset. It is worth noting
that, the values of parameters are found to be different
for MovieLens and FilmTrust dataset, which is due to
the fact that both dataset have different density, rating
distribution, and rating scale.

22DF = 0.05 means that the word should occur at-least in 5%
of the movies seen by an active user, to be considered as a valid
feature.
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Figure 2: Determining the optimal value of α.

6.1.2 Optimal Value of α

For determining the optimal value of α, we kept β = 10,
and varied the value of α from 0 to 1.0 with a difference
of 0.0523. The results are shown in figure 2. Figure 2
shows that α = 0.25 and α = 0.1 gave the lowest MAE
for MovieLens and FilmTrust dataset. We note that the
values of parameters are found different for MovieLens
and FilmTrust dataset.

6.1.3 Optimal Value of β

For determining the optimal value of β, wee kept α = 0.25
and α = 0.1 for MovieLens and FilmTrust dataset, and
varied the value of β from 0 to 1.4 with a difference of 0.1.
The results are shown in figure 2. Figure 2 shows that
α = 0.4 and α = 0.6 gave the lowest MAE for MovieLens
and FilmTrust dataset respectively.

23This value is chosen, so that parameter β does not have any
effect on the selection of optimal value of α.
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Figure 3: Determining the optimal value of β.

6.2 Performance Evaluation With Other Al-
gorithms

6.2.1 Performance Evaluation in Terms of MAE,
ROC-Sensitivity, and Coverage

Table 1 shows the on-line cost24 of algorithms with their
respective MAE, ROC-sensitivity, and coverage. We
show the best results and the results of proposed algo-
rithm in bold. Here, f is the number of features/words
in the dictionary (used in Naive Bayes classifier). It is
worth noting that for FilmTrust dataset, ROC sensitiv-
ity is lower, for all algorithms in general, as compared to
the MovieLens dataset. We believe that it is due to the
rating distribution. Furthermore, the coverage of the al-
gorithms is much lower in the case of FilmTrust dataset,
which is due to the reason that it is very sparse (99%).
The table depicts that the proposed algorithm is scalable
and practical as its on-line cost is less or equal to the cost
of other algorithms.

Table 1 shows that the proposed algorithm outperforms
other significantly in terms of MAE, ROC-sensitivity, and
coverage. It is because, when Naive Bayes classifier has
sufficiently large confidence in prediction, then it can cor-
rectly classify an instance (a unknown rating). In our
case, Naive Bayes classifier was able to accurately pre-
dict about 40% and 36% ratings of the test set in the
case of MovieLens and FilmTrust dataset respectively,
resulting in the reduced MAE, increased ROC-sensivity
and coverage.

24It is the cost for generating predictions for N items. We assume
we compute item similarities and train Naive Bayes classifier in off-
line fashion.

Table 2: Performance evaluation in new item cold-start
problem

Algo.
MAE0 MAE2 MAE5

(ML) (FT) (ML) (FT) (ML) (FT)
UBCFDV – – 1.235 2.223 0.932 1.825
IBCF – – 1.209 2.172 0.873 1.764
IDemo4 – – 1.191 2.162 0.852 1.682
CB 0.831 1.481 0.821 1.456 0.811 1.448
RecNBCF 0.822 1.459 0.818 1.452 0.809 1.451

6.2.2 Performance Evaluation Under Cold-Start
Scenarios

We checked the performance of the algorithm under new
item cold-start problems25. When an item is rated by
only few users, then item-based and user-based CF will
not give us good results. Our proposed scheme works
well in new item cold-start problem scenario, as it does
not solely depend on the number of users who have rated
the target item for finding the similarity. For testing our
algorithm in this scenario, we selected 1000 random sam-
ples of user/item pairs from the test set. While making
prediction for a target item, the number of users in the
training set who have rated target item were kept 0, 2,
and 5. The corresponding MAE ; represented by MAE0,
MAE2, MAE5, is shown in table 2.

Table 2 shows that CF and IDemo4 fail to make predic-
tion when only the active user rated the target item, and
in general they gave inaccurate predictions. It is worth
noting that, in e-commerce domains (e.g. Amazon), there
may be millions of items that are rated by only a few
users (< 5). In this scenario, CF and related approaches
would results in inaccurate recommendations. The poor
performance of user-based CF is due to the reason that,
we have less neighbours against an active user, hence per-
formance degrades. The reason in case of item-based CF
is that, the similar items found after applying rating cor-
relation may be not actually similar. As while finding
similarity, we isolate all users who have rated both target
item and the item we find similarity with. In this case,
we have maximum 5 users who have rated both items, as
a result, similarity found by adjusted cosine measure will
be misleading. The IDemo4 produces poor results, as it
operates over candidate neighbouring items found after
applying the rating similarity. Both content-boosted and
RecNBCF make effective use of user’s content profile that
can be used by a classifier for making predictions.

25It must be noted that our algorithm will not give good results
in the case of new user cold-start problems. The reason is that we
do not have enough training data to train the Naive Bayes classi-
fier. This problem can be effectively solved by applying the vector
similarity [12] over user or item’s content profiles to find similar
users or items, which can be used for making predictions.



6.2.3 Performance Evaluation In Terms of Cost

The cost of the proposed algorithm is given in table 1. We
are using item-based CF, whose on-line cost is less than
that of user-based CF used in [20]26. Even if we consider
using naive Bayes classifier to fill the user-item rating ma-
trix and then use item-based CF over this filled matrix,
then our cost will be less than that. The reason is in
the filled matrix case, one has to go through all the filled
rows of matrix for finding the similar items. For a large
e-commerce system like Amazon, where we already have
millions of neighbours against an active user/item, filling
the matrix and then going through all the users/items
for finding the similar users/items in not pragmatic due
to limited memory and other constraint on the execution
time of the recommender system.

7 Conclusion And Future Work

In this paper, we have proposed a switching hybrid rec-
ommendation approach by combining item-based collab-
orative filtering with a Naive Bayes classifier. We em-
pirically show that our recommendation approach out-
perform others in terms of accuracy, and coverage and is
more scalable. As a future work, we would like to apply
Support Vector Machines over features vectors for gener-
ating recommendations. Furthermore, we would like to
evaluate our algorithms on dataset of domains other than
movies, such as BookCrossing27 dataset.
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