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Abstract—In Imbalanced datasets, minority classes can be 
erroneously classified by common classification algorithms.  In 
this paper, an ensemble-base algorithm is proposed by creating 
new balanced training sets with all the minority class and 
under-sampling majority class. In each round, algorithm 
identified hard examples on majority class and generated 
synthetic examples for the next round. For each training set a 
Weak Learner is used as base classifier. Final predictions would 
be achieved by casting a majority vote. This method is 
compared whit some known algorithms and experimental 
results demonstrate the effectiveness of the proposed algorithm.   
 

Index Terms—Data Mining, Ensemble algorithm, Imbalanced 
data sets, Synthetic Samples. 

 

I. INTRODUCTION 
mbalance datasets where one class is represented by a 
larger number of instances than other classes are common 
on fraud detection, text classification, and medical 

diagnosis, On this domains as well others examples, minority 
class can be the less tolerant to classification fail and very 
important for cost sensitive. For example, misclassification 
of a credit card fraud may cause a bank reputation deplored, 
cost of transaction, and dissatisfied client. However, a 
misclassification not fraud transaction only costs a call to 
client. Likewise in an oil split detection, an undetected split 
may cost thousands of dollars, but classifying a not split 
sample as a split just cost an inspection. Due imbalance 
problem Traditional machine learning can achieve better 
results on majority class but may predict poorly on the 
minority class examples.  In order to tackle this problem 
many solutions have been presented, these solutions are 
divided on data level and algorithm level.  

On data level, most common ways to tackle rarity are 
over-sampling and under-sampling. Under-sampling may 
cause a loss of information on majority class, and deplore on 
its classification due to remove some examples on this class.   
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Random over-sampling may make the decision regions of 
the learner smaller and more specific, thus may cause the 
learner to over-fit. 

As an alternative of over-sampling, SMOTE [1] was 
proposed as method to generate synthetic samples on 
minority class. The advantage of SMOTE is that it makes the 
decision regions larger and less specific. SMOTEBoost [2] 
proceeds in a series of T rounds where every round the 
distribution Dt is updated. Therefore the examples from the 
minority class are over-sampled by creating synthetic 
minority class examples. Databoost-IM [3] is a modification 
of AdaBoost.M2, which identifies hard examples and 
generates synthetic examples for the minority as well as the 
majority class. 

The methods at algorithm level operate on the algorithms 
other than the data sets. Bagging and Boosting are two 
algorithms to improve the performance of classifier. They are 
examples of ensemble methods, or methods that use a 
combination of models. Bagging (Bootstrap aggregating) 
was proposed by Leo Breiman in 1994 to improve the 
classification by combining classifications of randomly 
generated training sets [4]. Boosting is a mechanism for 
training a sequence of “weak” learners and combining the 
hypotheses generated by these weak learners so as to obtain 
an aggregate hypothesis which is highly accurate. Adaboost 
[5], increases the weights of misclassified examples and 
decreases those correctly classified using the same 
proportion, without considering the imbalance of the data 
sets. Thus, traditional boosting algorithms do not perform 
well on the minority class. 

In this paper, an algorithm to cope with imbalanced 
datasets is proposed as described in the next section.  

The rest of the paper is organized as follows. Section 2 
describes E-AdSampling algorithm. Section 3 shows the 
setup for the experiments. Section 4 shows the comparative 
evaluation of E-AdSampling on 6 datasets. Finally, 
conclusion is drawn in section 5. 

 

II. E-ADSAMPLING ALGORITHM 
The main focus of E-Adsampling is enhancing prediction 

on minority class without sacrifice majority class 
performance. An ensemble algorithm with balanced datasets 
by under-sampling and generation of synthetic examples is 
proposed. For majority class an under-sample strategy is 
applied. By under-sampling majority class, algorithm will be 
lead algorithm towards minority class, getting better 
performance on True Positive ratio and accuracy for minority 
class. Nevertheless, majority class will suffer a reduction on 
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accuracy and True Positive ratio due to the loss of 
information.  To alleviate this loss, the proposed algorithm 
will search misclassified samples on majority class in each 
round. Then, it generates new synthetic samples based on 
these hard samples and adds them to the new training set. 

As show on Fig 1 the process is split in 4 steps: first, in 
order to balance training dataset majority class is randomly 
under-sampled; second, synthetic examples are generated for 
hard examples on majority class and add to training dataset; 
third, using any weak learning algorithm all training sets are 
modeled; finally, all the results obtained on each training set 
are combined. 

 
Input : Set S {(x1, y1), … , (xm, ym)} xi ∈X, with labels yi ∈

Y = {1, …, C}, 
• For t = 1, 2, 3, 4, … T 

o Create a balanced sample Dt by 
under-sampling majority class. 

o Identify hard examples from the original 
data set for majority class. 

o Generate synthetic examples for hard 
examples on majority class.  

o Add synthetic examples to Dt. 
o Train a weak learner using distribution Dt. 
o Compute weak hypothesis ht: X × Y → 

[0, 1]. 
• Output the final hypothesis: H* = ∑

i
thmaxarg  

Fig 1. The E-AdSampling Algorithm 

 
 
 

A. Generate Synthetic Examples 

Smote was proposed by N. V. Chawla, K. W. Bowyer, and P. 
W. Kegelmeyer[1] as a method to over-sampling datasets. 
SMOTE over-samples the minority class by taking each 
minority class sample and introducing synthetic examples 
along the line segments joining of the minority class nearest 
neighbors.  E-Adsampling will adopt the same technique to 
majority class examples which have been misclassified. By 
using this technique, the inductive learners, such as decision 
trees, are able to broaden decision regions on majority hard 
examples. 

B. Sampling Training Datasets 
Adaptive sampling designs are mainly in which the 

selection procedure may depend sequentially on observed 
values of the variable of interest. As class as interest variable, 
E-Adsampling under-sample or over-sample base on 
observation below to class, or observation has been 
erroneously predictive.  

In each round of the algorithm, a new training dataset will 
be generated. In the first round of the algorithm, the training 
dataset will be perfectly balanced by under-sampling 
majority class. From second to the final round, it will also 
under-sample majority class to start with a balanced training 
datasets, and additionally new synthetic samples will be 
generated and added for hard examples on majority class. 
Table I show an example of 10 rounds of the algorithm for 
Ozone dataset. 

Ozone Dataset has 2536 samples, 73 on minority Class, 
2463 on majority class and a balance rate of 0.02:0.98. 

TABLE I  
GENERATING TRAINING DATASETS ROUNDS FOR OZONE DATASET. 

Round 

Initial 
Balance 
Training 
Dataset 

Misclassified 
Majority 
Samples 

Synthetic 
Samples 
Added 

Total 
Samples 

on 
Trainin

g Set 
Min. 
Final 

Maj. 
Final Balance Rate 

1 146 0 0 146 73 73 0.50 : 0.50 
2 146 578 1156 1302 73 1229 0.06 : 0.94 
3 146 612 1224 1370 73 1297 0.05 : 0.95 
4 146 2 4 150 73 77 0.49 : 0.51 
5 146 372 744 890 73 817 0.08 : 0.92 
6 146 0 0 146 73 73 0.50 : 0.50 
7 146 239 478 624 73 551 0.12 : 0.88 
8 146 2 4 150 73 77 0.49 : 0.51 
9 146 175 350 496 73 423 0.15 : 0.85 

10 146 1 0 146 73 73 0.50 : 0.50 
 
 
As seen to Table I, in some rounds of the algorithm, the 

balance rate between minority and majority are 50:50. In 
these cases, it is possible that some samples for majority class 
will be erroneously classified. To alleviate this loss, the 
algorithm will generate synthetic samples for these samples 
in next round. But not matter how many synthetic samples are 
added in any of the rounds, the balance rate will never larger 
than the original one 0.02:0.98. This imbalanced reduction 
will lead to better results on minority class. 

III. EXPERIMENTS SETUP 
This section will describe the measures and domains used 

in the experiment. 
The confusion matrix is a useful tool for analyzing how 

well the classifier can recognize the samples of different 
classes [6]. A confusion matrix for two classes is show on 
Table II. 

 



 

TABLE II 
TWO CLASSES CONFUSION MATRIX 

 Predicted Positive 
 

Predicted Negative 
 

Actual 
Positive 

TP( the number of 
True Positives 

FN (the number of 
False Negatives) 

Actual 
Negative  

FP( the number of 
False Positives) 

TN ( the number of 
True Negatives) 

 
Accuracy, defined as  

Acc = 
TNFPFNTP

TNTP
+++

+  
(1) 

 
The TP Rate and FP Rate are calculated as TP/(FN+TP) 

and FP/(FP+TN). The Precision and Recall are calculated as 
TP / (TP + FP) and TP / (TP + FN). The F-measure is defined 
as  

 
( )( ) ( )ecisioncallecisioncall PrRePrRe1 22 +×××+ ββ

 
(2) 

Where ß correspond to the relative importance of precision 
versus the recall and it is usually set to 1. The F-measure 
incorporates the recall and precision into a single number. It 
follows that the F-measure is high when both recall and 
precision are high. 
 

)()(
1

FNTP
TP

FPTN
TNwherexmeang aaaa +

=
+

==− +−+− (3) 

 
G-mean is based on the recalls on both classes. The benefit 

of selecting this metric is that it can measure how balanced 
the combination scheme is. If a classifier is highly biased 
toward one class (such as the majority class), the G-mean 
value is low. For example, if a+ = 0 and a− = 1, which means 
none of the positive examples is identified, g-mean=0 [7].  

 

A. The Receiver Operation Characteristic Curve 
A receiver operation characteristic ROC Curve [8] is a 

graphical approach for displaying the tradeoff between True 
Positive Rate (TRP) and False Positive Rate (FPR) of a 
classifier. In an ROC curve, the True Positive Rate (TPR) is 
plotted along the y axis and the False Positive Rate (FPR) is 
show on the X axis. 

There are several critical points along an ROC curve that 
have well-known interpretations.  

 
(TPR=0,FPR=0): Model predicts every instance to be a 

negative class. 
(TPR=1,FPR=1): Model predicts every instance to be a 

positive class. 
(TPR=1, FPR=0): The ideal model. 
 
A good classification model should be located as close as 

possible to the upper left corner of the diagram, while the 
model which makes random guesses should reside along the 
main diagonal, connecting the points (TPR=0, FPR=0) and 
(TPR=1, FPR=1). 

The area under the ROC curve (AUC) provides another 
approach for evaluation which model is better on average. If 

the model is perfect, then its area under ROC curve would 
equal 1. If the model simply performs random guessing, then 
its area under the ROC curve would equal to 0.5. A model 
that is strictly better than another would have a large area 
under the ROC curve.   

B. Datasets 
The experiments were carried out on 6 real data sets taken 

from the UCI Machine Learning Database Repository[9] (a 
summary is given in Table III). All data sets were chosen or 
transformed into two-class problems. 

 
TABLE III 

DATASETS USED IN THE EXPERIMENTS 
Dataset Cases Min 

Class 
May 
Class 

Attrib
utes 

Distributio
n 

Hepatitis 155 32 123 20 0.20:0.80 
Adult 32561 7841 24720 15 0.24:0.76 
Pima 768 268 500 9 0.35:0.65 

Monk2 169 64 105 6 0.37:0.63 
Yeast 483 20 463 8 0.04:0.96 
Ozone 2536 73 2463 72 0.02:0.98 

 
Adult dataset training has 32561 examples, but also 

provides a test dataset with 16281 examples; Monk2 has 169 
on training and 432 examples on test dataset. Yeast dataset 
was learned from classes ‘CYT’ And ‘POX’ as done on [3].  
All datasets were chosen for having a high imbalanced 
degree necessary to apply the method.  Minority class was 
taking as a positive class. 

IV. RESULTS AND DISCUSSION 
Weka 3.6.0[10] was used as a tool for prediction, C4.5 tree 

was used as base classifier, AdatabostM1, Bagging, Adacost 
CSB2, and E-AdSampling were set with 10 iterations. 

AdaCost[11]: False Positives receive a greater weight 
increase than False Negatives and True Positives loss less 
weights than True Negatives by using a cost adjustment 
function. A cost adjustment function as: +β =−0.5Cn +0.5 

and −β  = 0.5Cn + 0.5 was chosen, where Cn is the 

misclassification cost of the nth example, and +β  ( −β ) 
denotes the output in case of the sample correctly classified 
(misclassified). 

CSB2[11]: Weights of True Positives and True Negatives 
are decreased equally; False Negatives get more boosted 
weights than False Positives.  Cost factor 2 and 5 were 
implemented for Adacost and CSB2. 

Except for Adult and Monk2 which provide a test dataset, 
a 10-folds cross-validation was implemented. The initial data 
are randomly partitioned into 10 mutually exclusive subsets 
or “folds” D1, D2…D10, each of approximately equal size. 
Training and testing is performed 10 times. In iteration I, 
partition Di is reserved as the test set, and the remaining 
partitions are collectively used to train the model.  For 
classification, the accuracy estimate is the overall number of 
correct classifications from 10 iterations, divided by the total 
number of tuples in the initial data. Results are shown on 
Table IV. 

 
 
 



 

TABLE IV 
RESULT COMPARE AGAINST F-MEASURES, TP RATE MIN, ACCURACY, AND 
G-MEAN. USING C.4.5 CLASSIFIER, ADABOOST-M1, BAGGING, ADACOST, 

CSB2, AND E-ADSAMPLING ENSEMBLES 
Data Set  F 

Min 
F 

Maj 
TP  
Rate
Min 

G-
Mea

n 

Overall 
Accu. 

Hepatitis C4.5 
AdaboostM1 
Bagging 
Adacost (2) 
Adacost(5) 
CSB2(2) 
CSB2(5) 
E-AdSampling 

52.8 
60.7 
51.9 
59.7 
57.5 
60.3 
55.0 
72.5 

90.3 
91.3 
89.8 
88.9 
83.4 
87.8 
75.6 
92.1 

43.8 
53.1 
43.8 
62.5 
78.1 
68.8 
93.8 
78.1 

64.2 
70.7 
63.9 
74.0 
66.8 
76.2 
76.1 
83.9 

83.87% 
85.80% 
83.22% 
82.58% 
76.12% 
81.29% 
68.38% 
87.74% 

Adult C4.5 
AdaboostM1 
Bagging 
Adacost(2) 
Adacost(5) 
CSB2(2) 
CSB2(5) 
E-AdSampling 

67.8 
64.3 
67.1 
68.5 
64.3 
66.7 
58.3 
70.0 

90.9 
89.3 
91.1 
87.4 
82.9 
87.8 
73.8 
90.6 

62.9 
61.9 
60.5 
82.7 
88.2 
75.8 
95.2 
71.0 

76.4 
75.1 
75.3 
82.2 
80.4 
79.8 
75.1 
80.0 

85.84% 
83.53% 
85.98% 
82.02% 
76.88% 
82.09% 
67.79% 
85.63% 

Pima C4.5 
AdaboostM1 
Bagging 
Adacost(2) 
Adacost(5) 
CSB2(2) 
CSB2(5) 
E-AdSampling 

61.4 
60.6 
62.1 
61.3 
61.5 
63.2 
57.7 
63.5 

80.2 
78.8 
80.3 
72.1 
65.8 
73.3 
44.3 
81.3 

59.7 
60.8 
60.8 
73.5 
82.8 
76.1 
94.0 
61.0 

69.7 
69.1 
70.2 
68.7 
66.6 
70.4 
52.5 
71.3 

73.82% 
72.39% 
74.08% 
67.57% 
63.80% 
69.01% 
51.95% 
75.26% 

Monks-2 C4.5 
AdaboostM1 
Bagging 
Adacost(2) 
Adacost(5) 
CSB2(2) 
CSB2(5) 
E-AdSampling 

38.9 
56.8 
48.3 
56.3 
57.3 
56.0 
50.0 
60.4 

75.5 
76.6 
76.6 
58.9 
52.1 
57.4 
4.1 
76.9 

33.8 
60.6 
45.8 
83.1 
92.3 
83.8 
100 
67.6 

52.9 
67.0 
59.9 
61.2 
58.1 
60.3 
14.4 
69.9 

65.04% 
69.67% 
67.82% 
57.63% 
54.86% 
56.71% 
34.25% 
70.83% 

Yeast C4.5 
AdaboostM1 
Bagging 
Adacost(2) 
Adacost(5) 
CSB2(2) 
CSB2(5) 
E-AdSampling 

33.3 
53.3 
0 
48.3 
47.6 
54.5 
41.7 
61.1 

98.3 
98.5 
97.7 
98.4 
97.6 
98.4 
96.9 
98.5 

20.0 
40.0 
0 
35.0 
50.0 
45.0 
50.0 
55.0 

44.7 
63.1 
0 
59.0 
69.7 
66.7 
69.3 
73.7 

96.68% 
97.10% 
95.41% 
96.89% 
95.44% 
96.89% 
94.20% 
97.10% 

Ozone C4.5 
AdaboostM1 
Bagging 
Adacost(2) 
Adacost(5) 
CSB2(2) 
CSB2(5) 
E-AdSampling 

23.1 
17.2 
2.5 
26.9 
25.7 
29.1 
26.8 
35.3 

98.1 
98.5 
98.4 
98.5 
97.4 
98.3 
96.3 
98.0 

19.2 
11.0 
1.4 
19.2 
30.1 
23.3 
45.2 
37.0 

43.5 
33.0 
11.7 
43.6 
54.0 
48.0 
65.2 
60.1 

96.33% 
96.96% 
96.92% 
97.00% 
94.99% 
96.72% 
92.90% 
96.09% 

 
In terms of TP Rate measure, compared to non 

cost-sensitive algorithms, E-AdSampling reduces mistakes in 
minority class prediction. Take Hepatitis Dataset for example, 
the difference between E-AdSampling and Adaboost-M1 is 
34%. This difference represents a reduction on 8 
misclassified cases on minority class.  On Ozone dataset, the 
difference between C4.5 and E-AdSampling is 17.8%, which 
represents a reduction on 13 misclassified cases on minority 
class.  On these cases or others examples where 
E-AdSampling performs well, the reduction of misclassified 
cases on minority class may represent a cost reduction. 
Compared to cost sensitive algorithms (Adacost, CSB2), 
E-AdSampling casually would be low for TP Rate minority, 
but  also can be seen how Adacost and CSB2 sacrifice 
majority class by suffering a reduction on F-measure. 

As to F-measure, it is evident how minority class always 

obtains an improvement compared to cost-sensitive 
algorithms as well as non cost-sensitive algorithms. This 
improving may rise about 12% as on Hepatitis Dataset.  For 
majority class, F-measure is also increased on almost all 
cases, except for Adult and Ozone datasets where this 
measure mostly remains constant, just getting a reduction of 
0.5. This reduction can be considered small compared to the 
gain on TP Ratio and F-Measure for minority class. 

For the G-mean which is considered as an important 
measure on imbalanced datasets. E-AdSampling yields the 
highest G-mean almost on all datasets; except for Adult and 
Ozone where some cost sensitive algorithms achieve better 
results. But the results on E-AdSampling show how 
E-AdSampling can be ideal for imbalanced datasets, 
indicating also that TP Rate for majority class is not 
compromise by the increase of TP Rate for minority class. 

For the overall accuracy measure, E-AdSampling gets an 
improving on the 4 datasets. Ozone and Adult are the only 
Datasets which suffer a reduction.  This reduction can be on 
the range of 1%, which is small compared to the gain on other 
measures.   

As seeen on Table IV Cost-sensitive algorithms (Adacost, 
CSB2) can achieve good results on TP Rate for minority 
class. But these results will not be highlighted by reduction 
on F measures on both class and on some cases a reduction on 
Overall Accuracy.  

Not Cost-sensitive algorithms (C4.5, AdaboostM1, 
Bagging) only achieve better results for Adult and Ozone 
Datasets on F-Measure for majority class and Overall 
Accuracy, E-AdSampling beat this algorithms in others 
measures. 

 

 
Fig 2. Roc Curve of the Hepatitis Data set 



 

 
Fig 3. Roc Curve of the Ozone Data set 

 
To understand better on the achievements of 

E-AdSampling, a ROC curve for Hepatitis (Fig 2) and Ozone 
(Fig 3) datasets are presented. Hepatitis dataset was chosen 
due to the high performance improvement by E-AdSampling 
and its high imbalanced degree.  Ozone dataset was chosen 
due to the high imbalanced degree and the difficult to classify 
on minority class. Adacost and CSB2 were executed with 
Cost factor 2. On both graphics the area under the ROC curve 
(AUC) show good results for E-AdSampling. Table V show 
all results for AUC. 

 
TABLE V 

Result Area under Curver 
 Hepa

t-itis 
Adult Pima Monk

s-2 
Yeast Ozone 

C4.5 
AdaboostM1 
Bagging 
Adacost(2) 
Adacost(5) 
CSB2(2) 
CSB2(5) 
E-AdSampling 

0.70 
0.81 
0.80 
0.87 
0.83 
0.84 
0.85 
0.88 

0.89 
0.87 
0.90 
0.90 
0.90 
0.89 
0.89 
0.91 

0.75 
0.77 
0.79 
0.78 
0.78 
0.77 
0.78 
0.81 

0.59 
0.73 
0.67 
0.67 
0.69 
0.74 
0.75 
0.71 

0.65 
0.83 
0.79 
0.86 
0.88 
0.86 
0.84 
0.87 

0.67 
0.80 
0.83 
0.83 
0.84 
0.84 
0.83 
0.87 

V. CONCLUSION 
In this paper, an alternative algorithm for imbalanced 

datasets was presented. Datasets on several and not several 
imbalanced degree were taking on consideration. In both 
cases E-AdSampling showed good performance on all 
measures.  Besides E-AdSampling can get good results on TP 
Ratio and F measure for minority class, it also can remain 
almost constant or has a slight increase on F-measure for 
majority class and Overall Accuracy.  While some 
cost-sensitive algorithms gain better results on TP Radio, 
E-AdSampling can yield better results on F-measures on both 
majority and minority class as well overall accuracy for 
almost all cases. 

The ROC curves for two of the Datasets, present 
graphically the achievements of E-AdSampling. 

Our future work will be focus on automatically set the 
number of neighbors needed to generate the synthetics 
samples and the percent of synthetic samples generated 
according to the dataset. 
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