
 

 

 

  

Abstract — Frequent-patterns discovery in data streams is an 

active research area and more challenging than traditional 

database mining since several additional requirements need to be 

satisfied. In this paper, we propose a mining algorithm for 

finding frequent itemsets over sliding windows in a data stream. 

Different from most existing algorithms, our method is based on 

the theory of Combinatorial Approximation to approximate the 

counts of itemsets from some summary information of the stream. 

We also devise the novel concept of fair-cutter, which results in 

an original technique called dynamically approximating and 

makes our method capable of approximating adaptively for 

different itemsets. Empirical results show that the proposed 

method is quite efficient and scalable; moreover, the mining 

result from approximations achieves high accuracy. 

 
Index Terms — Combinatorial approximation, data stream, 

data-stream mining, frequent itemset, and sliding window. 

 

I. INTRODUCTION 

In many application domains, data is presented in the form 

of data streams which originate at some endpoint and are 

transmitted through the communication channel to the central 

server. Some well-known examples include market basket, 

traffic signals, web-click packets, ATM transactions, and 

sensor networks. In these applications, it is desirable that we 

obtain some useful information, like patterns occurred 

frequently, from the streaming data, to help us make some 

advanced decisions. Data-stream mining is such a technique 

that can find valuable information or knowledge from a great 

deal of primitive data. 

Data-stream mining differs from traditional data mining 

since its input of mining is data streams, while the latter 

focuses on mining (static) databases. Compared to traditional 

databases, mining in data streams has more constraints and 

requirements [1]. First, each element (e.g., transaction) in the 

data stream can be examined only once or twice, making 

traditional multiple-scan approaches infeasible. Second, the 

consumption of memory space should be confined in a range, 

despite that data elements are continuously streaming into the 

local site. Third, notwithstanding the data characteristic of 

incoming stream may be unpredictable, the mining task should 

proceed normally and offer acceptable quality of results. 

Fourth, the latest analysis result of the data stream should be 

available as soon as possible when the user invokes a query. 
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As a result, one good stream mining algorithm needs to 

possess efficient performance and high throughput, while 

slight approximate errors occurred in the mining result is 

usually acceptable by the user. 

The research of data-stream mining in general can be 

classified into three categories according to the stream 

processing model [2]. The first one is the landmark window 

model. In this model, there is a time point called the landmark, 

and the range of mining contains all the data elements (or 

transactions) between the landmark and current point. The 

second one is the damped (fading/decay) window model. In 

this model, each element is associated with a weight which is 

relative to the time. When a stream element is just arriving, its 

weight is at the highest value and then will get damped 

continuously as time goes by. The last one is the sliding 

window model. In this model, the range of mining is confined 

to the elements contained in a window which will slide with 

time. The window always covers a certain number of most 

recent elements and the mining task focuses on these elements 

at any point. 

In this paper, we propose a remarkable approximating 

method for discovering frequent itemsets in a transactional 

data stream under the sliding window model. Based on a 

theory of Combinatorial Mathematics, the proposed method 

approximates the counts of itemsets from certain recorded 

summary information without scanning the input stream for 

each itemset. Together with an innovative technique called 

dynamically approximating to select parameter-values 

properly for different itemsets to be approximated, our method 

is adaptive to streams with different distributions. Through the 

experimental results, we found that our method has efficient 

performance with pretty accurate mining result. 

The rest of this paper is organized as follows. Section II 

briefly introduces the related research on data-stream mining 

in recent years. In Section III we state our problem and give 

the necessary representation of symbols. Section IV describes 

the way our method processes on a data stream with a sliding 

window, and explains the technique to approximate 

dynamically. Next in Section V, we give an explanation of the 

proposed algorithm. Section VI reports the experimental 

results of our method with simple analyses. Finally, Section 

VII concludes this paper. 

 

II. RELATED WORK 

There are a number of research works which study the 

problem of data-stream mining in the first decade of 21st 
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century. Among these studies, Lossy Counting [3] is the most 

famous method of mining frequent itemsets (FIs) through data 

streams under the landmark window model. Besides the 

user-specified minimum support threshold (ms), Lossy 

Counting also utilizes an error parameter, ε, to maintain those 

infrequent itemsets having the potential to become frequent in 

the future. With the use of ε, when an itemset is newly found, 

Lossy Counting knows the upper bound of counts that itemsets 

may have (in the previous stream data) before it has been 

monitored by the algorithm. 

Based on the ε mechanism of Lossy Counting, [4] proposed 

the sliding window method, which can find out frequent 

itemsets in a data stream under the sliding window model with 

high accuracy. The sliding window method processes the 

incoming stream data transaction by transaction. Each time 

when a new transaction is inserted into the window, the 

itemsets contained in that transaction are updated into the data 

structure incrementally. Next, the oldest transaction in the 

original window is dropped out, and the effect of those 

itemsets contained in it is also deleted. The sliding window 

method also has a periodical operation to prune away 

unpromising itemsets from its data structure, and the frequent 

itemsets are output as mining result whenever a user requests. 

In the sliding window model, there are two typical mining 

methods: Moment [5] and CFI-Stream [6]. Both the two 

methods aimed at mining Closed Frequent Itemsets (CFIs), a 

complete and non-redundant representation of the set of FIs. 

Moment uses a data structure called CET to maintain a 

dynamically selected set of itemsets, which includes CFIs and 

itemsets that form a boundary between CFIs and the rest of 

itemsets. The CFI-Stream algorithm, on the other hand, uses a 

data structure called DIU tree to maintain nothing other than 

all Closed Itemsets over the sliding window. The current CFIs 

can be output anytime based on any ms specified by the user. 

Besides, there are still some interesting research works [9] 

[10] [11] on the sliding window model. In [9] a false-negative 

approach named MineSW was proposed. By employing a 

progressively increasing function of ms, MineSW greatly 

reduces the number of potential itemsets and would 

approximate the set of FIs over a sliding window. In [10] a 

data structure called DSTree was proposed to capture 

information from the streams. This tree captures the contents 

of transactions in a window, and arranges tree nodes according 

to some canonical order. The DSTree can be easily maintained 

and used to discover frequent itemsets. In [11] a verification 

algorithm was introduced to improve the performance of 

mining for association rules, and thus an FI mining method 

was proposed whose running time is nearly constant with 

respect to the window size. 

In recent two years, a new kind of data-stream mining 

method named DSCA has been proposed [12]. DSCA is an 

approximate approach based on the application of the 

Principle of Inclusion and Exclusion in Combinatorial 

Mathematics [7]. One of the most notable features of DSCA is 

that it would approximate the count of an arbitrary itemset, 

through an equation (i.e., Equation (4) in [12]), by only the 

sum of counts of the first few orders of its subsets over the data 

stream. There are also two techniques named counts bounding 

and correction, respectively, integrated within DSCA. Both 

techniques are of the purpose to improve the quality of 

DSCA’s approximation, while they adopt different means to 

achieve the purpose. By working together with these original 

techniques, the mining result of DSCA reaches good accuracy. 

The concept of Inclusion and Exclusion Principle [7] is 

valuable that it may also be applied in mining FIs under 

different window models other than the landmark window. 

Based on the theory of Approximate Inclusion–Exclusion [8], 

we devise and propose a novel algorithm, called SWCA, to 

approximate dynamically and discover FIs over the sliding 

window in a transactional data stream. 

 

III. PROBLEM DESCRIPTION 

Let I = {x1, x2, …, xz} be a set of items (or attributes). An 

itemset (or a pattern) X is a subset of I and written as X = 

xixj…xm. The length (i.e., number of items) of an itemset X is 

denoted by |X|. A transaction, T, is an itemset and T supports 

an itemset, X, if X⊆T. A transactional data stream is a 

sequence of continuously incoming transactions. A segment, S, 

is a sequence of fixed number of transactions, and the size of S 

is indicated by s. A window, W, in the stream is a set of 

successive w transactions, where w ≥ s. A sliding window in 

the stream is a window of a fixed number of most recent w 

transactions which slides forward for every transaction or 

every segment of transactions. We adopt the notation Il to 

denote all the itemsets of length l together with their respective 

counts in a set of transactions (e.g., over W or S). In addition, 

we use Tn and Sn to denote the latest transaction and segment 

in the current window, respectively. Thus, the current window 

is either W = < Tn-w+1, …, Tn > or W = < Sn-m+1, …, Sn >, where 

w and m denote the size of W and the number of segments in W, 

respectively. 

In this research, we employ a prefix tree which is organized 

under the lexicographic order as our data structure, and also 

processes the growth of itemsets in a lexicographic-ordered 

way. As a result, an itemset is treated a little bit like a sequence 

(while it is indeed an itemset). A superset of an itemset X is the 

one whose length is above |X| and has X as its prefix. We 

define Growthl(X) as the set of supersets of an itemset X whose 

length are l more than that of X, where l ≥ 0. The number of 

itemsets in Growthl(X) is denoted by |Growthl(X)|. 

We adopt the symbol cnt(X) to represent the count-value (or 

just count) of an itemset X. The count of X over W, denoted as 

cntW(X), is the number of transactions in W that support X. So 

cntS(X) represents the count of X over a segment S. Given a 

user-specified minimum support threshold (ms), where 0 < ms 

≤ 1, we say that X is a frequent itemset (FI) over W if cntW(X) ≥ 

ms×w, otherwise X is an infrequent itemset (IFI). The FI and 

IFI over S are defined similarly to those for W. 

Given a data stream in which every incoming transaction 

has its items arranged in order, and a changeable value of ms 

specified by the user, the problem of mining FIs over a sliding 

window in the stream is to find out the set of frequent itemsets 

over the window at different slides. 

We remark that most of the existing stream mining methods 

[3] [4] [5] [9] work with a basic hypothesis that they know the 

user-specified ms in advance, and this parameter will remain 

unchanged all the time before the stream terminates. This 

hypothesis may be unreasonable, since in general, a user may 

wish to tune the value of ms each time he/she makes a query 



 

 

 

for the purpose of obtaining a more preferable mining result. 

An unchangeable ms leads to a serious limitation and may be 

impractical in most real-life applications. As a result, we relax 

this constraint in our problem that the user is allowed to 

change the value of ms at different times, while our method 

must still work normally. 

The following approximate equation, which is derived 

from the equation of Approximate Inclusion–Exclusion in [8], 

is the core (or the basis) of our approximating approach. 

| A1 ∪A2 ∪…  ∪ Am |  ≒ ||
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,
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∑α .                         (1)
 

According to (1), given a collection of m sets, A1, A2, …, Am, 

the size of m-union term can be approximated even if we know 

only the sizes of partial intersection terms for some k, where 

k<m. By considering each item as a set, and the number of its 

occurrences in transactions (i.e. count) as its corresponding 

size, we could indirectly apply (1) to approximate the count of 

an itemset from the sum of counts of its subsets of different 

lengths. For example, if we have the information called the 

summary in Table 1, we would approximate the count of a 

3-itemset, such as abc, through (1), based on the sum of counts 

of its 1-subsets (i.e., a, b, and c) and 2-subsets (i.e., ab, ac, and 

bc), both of which can be obtained from Table 1. 

 

Table 1. An example of some itemsets with counts 

Itemset Count Itemset Count 

a 25 ab 7 

b 17 ac 6 

c 20 ad 6 

d 13 bc 8 

  bd 7 

  cd 5 

 

If we have the summary of I1 and I2 of a stream over the 

sliding window, we could achieve the mining work anytime 

when requested by approximating the counts of itemsets, 

through applying (1) with the parameter setting k=2, based on 

the summary information we have kept. Now we outline the 

way how we process the incoming transactions of the data 

stream. For each incoming transaction T, we find all the 

first-two-order lengths of subsets contained in T and record 

their occurrences in our data structure. As a result, the 

first-two-order summary (i.e., I1 and I2) of the stream is 

maintained. We say that the summary length in our method is 

2. The manner of incrementally updating the summary over 

the sliding window in a stream will be detailed in Section 4. 

The aforementioned means is the primary concept to 

approximate the counts of itemsets. In practice, for an itemset 

X to be approximated, the count of each of X’s subset may 

come from (be supported by) various transactions where many 

of them may have insufficient relation to X. Using the original 

count-values of subsets to approximate the count of X may 

sometimes bring about considerable error. For a better 

approximation, there is a possible way, which is to bound the 

range of counts of subsets for the itemset to be approximated. 

Let Y be a 3-itemset (to be approximated) and y be a 

1-subset of Y. To obtain a better approximation of Y, the 

count-value to each subset y with respect to Y has a particular 

range, which can be determined by Y’s 2-subsets that have y as 

their common subset, respectively. This range of y’s count is 

bounded by an upper bound (i.e., the maximum) and a lower 

bound (i.e., the minimum), and count-values within this range 

are the set of portions of y’s original count which is more 

relevant for y with respect to Y. We define Scby(Y) as the set of 

count-values of y with respect to Y within the range obtained 

through the aforesaid manner. Besides, the upper bound and 

the lower bound of count-values of y are denoted by uby(Y) 

and lby(Y), respectively. 

We use the same example in Table 1 to illustrate this 

concept. To approximate an itemset abc, the count of its 

1-subset a with respect to abc can be bounded by abc’s 

2-subsets ab and ac, which have a as their common subset. In 

Table 1, the counts of ab and ac are 7 and 6, respectively, and 

therefore the count of a with respect to abc is bounded within 

the range between the lower bound of 7 (i.e., the one of ab and 

ac with greater count) and the upper bound of 13 (i.e., the sum 

of counts of ab and ac). We have Scba(abc) = {7, …, 13}, 

uba(abc) = 13, and lba(abc) = 7. Compared with a’s original 

count of 25, count-values in the set Scba(abc) are the portions 

of 25 which are relevant for a with respect to abc. The ranges 

of counts of other 1-subsets b and c of abc, i.e., Scbb(abc) and 

Scbc(abc), can be obtained similarly as we do for a. 

By using a count-value in the range of each 1-subset to form 

the sum of 1-subset term, we could then obtain a better 

approximation for an itemset than that of using the original 

counts of 1-subsets. However, for each 1-subset, we have no 

idea about what count-value in its range is better than others. 

For example, in the above instance of a, even if we obtain a 

range of counts in Scba(abc), we have no idea about which 

value in Scba(abc), e.g., uba(abc) or lba(abc), is more 

appropriate than others for a to approximate abc. As a result, 

our main issue (and also contribution) in this research is to 

devise a mechanism for the above problem. That is, the mining 

algorithm needs to be able to choose the appropriate 

count-values for the 1-subsets when approximating a 

3-itemset Y, and thus can approximate dynamically for 

different 3-itemsets. Before we illustrate our means in the next 

section, the following property is first introduced. 

 

Lemma 1 Let cnt
ub

(Y) and cnt
lb

(Y) respectively be the 

approximate counts of Y obtained by using uby(Y) and lby(Y) 

of count-values to every 1-subset y ∈ Y during the 

approximating process. Then cnt
ub

(Y) ≤ cnt
lb
(Y). 

Proof .Let T
ub

 and T
lb
 be the sums of counts of 1-subsets of Y 

obtained by choosing uby(Y) and lby(Y) for each y∈ Y, 

respectively. Then T
ub

 ≥ T
lb
 since uby(Y) ≥ lby(Y) for each y. 

According to (1) with the parameters setting m=3 and k=2, we 

can eventually obtain the following simplified equation: cnt(Y) 

≒ (1－
3,2

2α ) c + (
3,2

1α －1) d, where the symbol  
mk

j

,
α  denotes 

the coefficient of linearly transformed Chebyshev polynomial, 

and c and d represent the sum of counts of Y’s 2-subsets and 

that of counts of Y’s 1-subsets, respectively. Since the value of 
3,2

1α  is less than 1, the coefficient (
3,2

1α －1) for 1-subset term 

is then negative, which means that the value of 1-subset term 

will be subtracted from the other term. Thus, by substituting 

T
ub

 and T
lb
 for d respectively in the approximate equation and 

knowing that Tub ≥ Tlb, we have cntub(Y) ≤ cntlb(Y). 

 



 

 

 

IV. SLIDING-WINDOW PROCESSING 

In research works under the sliding window model [4] [5] 

[6], the sliding of window is handled transaction by 

transaction; however, we have a different opinion. Unlike the 

landmark window model, transactions in the sliding window 

model will be both inserted into and dropped out from the 

window. The transaction-by-transaction sliding of a window 

leads to excessively high frequency of processing. In addition, 

since the transit of a data stream is usually at a high speed, and 

the impact of one single transaction to the entire set of 

transactions (in the current window) is very negligible, making 

it reasonable to handle the window sliding in a wider 

magnitude. Therefore, for an incoming transactional data 

stream to be mined, we propose to process on a 

segment-oriented window sliding. 

We conceptually divide the sliding window further into 

several, say, m, segments, where the term segment is the one 

we have defined earlier in Section 3. Each of the m segments 

contains a set of successive transactions and is of the same size 

s (i.e., contains the equal number of s transactions). Besides, in 

each segment, the summary (which contains I1, I2, and the 

fair-cutters which we will introduced later) of transactions 

belonging to that segment is stored in the data structure we use. 

We call the sliding of window “segment in-out,” which is 

defined as follows. 

Definition 1 (Segment in-out) Let Sc denote the current 

segment which is going to be inserted into the window next 

(after it is full of s transactions). A segment in-out operation 

(of the window) is that we first insert Sc into and then extract 

Sn-m+1 from the original window, where n denotes the id of 

latest segment in the original window. Therefore, the windows 

before and after a sliding are W = < Sn-m+1, …, Sn > and W = < 

Sn-m+2, …, Sn, Sc >, respectively. 

By taking this segment-based manner of sliding, each time 

when a segment in-out operation occurs, we delete (or drop 

out) the earliest segment, which contains the summary of 

transactions of that segment, from the current window at each 

sliding. As a result, we need not to maintain the whole 

transactions within the current window in memory all along to 

support window sliding. In addition, we remark that the 

parameter m directly affects the consumption of memory. A 

larger value of m means the window will slide (update) more 

frequently, while the increasing overhead of memory space is 

also considerable. In our opinion, an adequate size of m that 

falls in the range between 5 and 20 may be suitable for general 

data streams. 

 

Theorem 1 For a 2-itemset X and a threshold ms, let TP
ub

(X) 

and TP
lb
(X) be the true-positive rates of X’s 3-supersets in the 

mining result resulting from adopting Ubc and Lbc to all the 

1-subsets of each superset, respectively. Then we have TPub(X) 

≤ TPlb(X). 

Proof .Let P be the number of FIs of X’s 3-supersets with 

respect to ms. Also, let P
ub

 and P
lb

 respectively be the numbers 

of true FIs of X’s 3-supersets found by choosing Ubc and Lbc 

to 1-subsets. According to Lemma 1, we have cnt
ub

(Y) ≤ 

cntlb(Y) for each 3-superset Y of X, which means that the 

number of true-positive itemsets (i.e., FIs) obtained by 

choosing Lbc is at least equal to that of choosing Ubc, i.e., Pub 

≤ P
lb
. Since TP

ub
(X) = P

ub
/P and TP

lb
(X) = P

lb
/P, we then have 

TP
ub

(X) ≤ TP
lb
(X). 

 

Theorem 2 For a 2-itemset X and a threshold ms, let TNub(X) 

and TNlb(X) be the true-negative rates of X’s 3-supersets in 

the mining result resulting from adopting Ubc and Lbc to all 

the 1-subsets of each superset, respectively. Then we have 

TN
ub

(X) ≥ TN
lb

(X). 

Proof .Let N be the number of IFIs of X’s 3-supersets with 

respect to ms. Also, let Nub and Nlb respectively be the 

numbers of true IFIs of X’s 3-supersets determined by 

choosing Ubc and Lbc to 1-subsets. According to Lemma 1, 

we have cnt
ub

(Y) ≤ cnt
lb
(Y) for each 3-superset Y of X, which 

means that the number of true-negative itemsets (i.e., IFIs) 

determined by choosing Ubc is at least equal to that of 

choosing Lbc, i.e., Nub ≥ Nlb. Since TPub(X) = Nub/N and 

TP
lb
(X) = N

lb
/N, we then have TP

ub
(X) ≥ TP

lb
(X). 

 

Now we discuss the issue of selecting suitable count-values 

in the bounded range of subsets for approximating an itemset. 

According to Lemma 1 in Section 3, using the lower bound of 

counts (Lbc) for 1-subsets always results in a higher 

approximate count for an itemset than that of using the upper 

bound of counts (Ubc). It follows from Theorem 1 and 

Theorem 2 that, adopting Lbc to the 1-subsets to approximate 

the 3-supersets of an 2-itemset X will reach a higher 

true-positive rate (i.e., recall ratio) in the result than that of 

using Ubc, while choosing Ubc to the 1-subsets will obtain a 

higher true-negative rate (which usually concerns a higher 

precision ratio) in the result than that of using Lbc. However, 

it is actually unknown whether to adopt Ubc or Lbc to 

1-subsets for approximating an itemset Y. 

To tackle the problem that the proper count-values, say, 

Lbc or Ubc, of the ranges (bounded through the means we 

described in Section 3) of an itemset’s 1-subsets are unable to 

be determined dynamically, we introduce the concept of 

“fair-cutter,” which will support our method to dynamically 

approximate and also make Theorem 1 and Theorem 2 

applicable. Briefly, the fair-cutter for a 2-itemset X is a 

count-value which can tell us whether the majority of X’s 

3-supersets’ counts are above ms or not. We formally define 

the fair-cutter of an itemset as follows. 

Definition 2 (Fair-cutter) Let X be an itemset and P be the set 

of itemsets belonging to Growth1(X) whose counts are greater 

than 0. That is, P = {Y | Y∈Growth1(X) ∧ cnt(Y) > 0}. The 

number of members in P is denoted by |P|. The fair-cutter (FC) 

of X for its supersets in P, denoted as FC(X), is the minimum 

count-value ct such that (1) ct ≤ cnt(X), and (2) the number of 

itemsets whose counts are greater than or equal to ct and that 

of itemsets whose counts are less than or equal to ct are above 

1/2×|P|. 

According to Definition 2, in all the itemsets belonging to 

Growth1(X) whose counts are not 0 (i.e., P), both the numbers 

of supersets whose counts are greater than or equal to FC(X), 

and those whose counts are less than or equal to FC(X), are 

above half of that in the entire set of P. That is, for the 

above-mentioned two sets determined by FC(X), they have the 



 

 

 

common itemset(s) whose count(s) equal(s) FC(X), and their 

sizes reach the majority of P, respectively. As the name of 

fair-cutter indicates, the sizes of the two sets of P generated by 

FC(X) are balanced or near-balanced. 

 

Example 1 .Table 2 records a 2-itemset ak and all the 

3-itemsets which can be grown from ak. The number in the 

parentheses behind each itemset represents its count. In this 

example, Growth1(ak) = {akl, …, aky, akz}, |Growth1(ak)| = 

15, P = {akl, akm, …, akv, akw} (that is, the itemsets in 

Growth1(ak) whose counts are greater than 0), and |P| = 12. 

From Definition 2, the FC of ak (i.e., FC(ak)) is 5 since the 

number of itemsets in P whose counts are above 5 is six, and 

the number of itemsets in P whose counts are below 5 is seven, 

both of these two values are above 1/2×|P|. Besides, the value 

“5” is the minimum count that satisfies the above condition. 

 

Table 2. A 2-itemset and its 3-supersets 

ak (10) 

 akl (3) akm (6) akn (2) ako (6) akp (3) 

akq (7) akr (4) aks (1) akt (7) aku (9) 

akv (8) akw (5) akx (0) aky (0) akz (0) 

 

Having the aforementioned concept of FC, we now explain 

how to select the appropriate counts from Ubc and Lbc to 

1-subsets for approximating the count of an itemset Y. 

According to Lemma 1, we know that choosing Lbc to 

1-subsets will result in higher approximations, make more 

itemsets exceeding ms, thus produce more frequent itemsets in 

the result than that of choosing Ubc. In contrast, adopting Ubc 

to 1-subsets will result in lower approximations for itemsets, 

which leads to less frequent itemsets in the result than that of 

adopting Lbc. 

Given a user-specified ms and a 2-itemset X, if the 

fair-cutter of X (i.e., FC(X)) is above ms, according to 

Definition 2, we know that the majority of members in P are 

over the minimum support threshold, i.e., they are frequent 

itemsets. Oppositely, if FC(X) is below ms, we understand that 

the majority of members in P are under ms, i.e., they are 

infrequent itemsets. It is known that a frequent itemset (in the 

mining result) will raise the true-positive rate, while an 

infrequent itemset will diminish the true-negative rate and 

also the precision. By taking both Theorem 1 and Theorem 2 

into account, this gives us a heuristic to choose Lbc or Ubc 

dynamically. In the former case, which the frequent itemsets 

are the majority, we should adopt Lbc to 1-subsets for 

approximating X’s 3-supersets (to produce more true-positive 

itemsets). In the latter case, where the infrequent itemsets 

become the majority, we should instead adopt Ubc to 

1-subsets for approximating X’s 3-supersets (to produce less 

false-positive itemsets). By comparing ms with the respective 

FCs of itemsets, we would determine the better ways to choose 

the counts of 1-subsets for different itemsets to be 

approximated. We formally name this technique dynamically 

approximating. 

 

V. THE SWCA ALGORITHM 

Based on the previous analysis, we devise an algorithm 

which would approximate the counts of itemsets dynamically 

and discover FIs over a sliding window of a data stream. Our 

stream mining method, namely the Sliding-Window based 

Combinatorial Approximation (SWCA) algorithm, is 

described as follows. 

As mentioned in Section 4, we further divide the sliding 

window into m equal-size segments of s transactions, and 

process the sliding of window incrementally in a 

segment-based manner. The data structure we employ to 

maintain the summary information is a lexicographic-ordered 

prefix tree modified from the one in [12]. This tree structure 

mainly maintains I1, I2, and FCs of 2-itemsets over the current 

window of a data stream, also in a segment-based fashion. For 

each itemset X belonging to I1 or I2, the corresponding node in 

the tree includes a circular array of size m, which corresponds 

to the m segments of the sliding window, and X’s count over 

the current window is recorded respectively in these m fields. 

There is also a pointer to indicate which field the count of X 

over Sn is stored. If we combine the counts of all fields in the 

array, we then obtain the count of X over the current window. 

Besides, the summary information (i.e., I1 and I2) of the 

current segment Sc is kept separately in an array. In this array, 

we also maintain I3 temporarily for the purpose of finding the 

FC of each 2-itemset at the time when Sc is going to be inserted 

into the window. When the user invokes a mining request, 

SWCA then starts approximating the counts of itemsets 

(whose lengths are above that of the summary) based on the 

summary, i.e., I1, I2, and FCs, stored in the tree. 

The SWCA algorithm processes on an on-line transactional 

data stream. As long as there is no query from the user, SWCA 

continues receiving and processing the incoming transactions 

one by one, and handles the sliding of window in a 

segment-based manner. For each incoming transaction T in the 

current segment Sc, SWCA enumerates and records the 

(counts of) first-three-order lengths of subsets contained in T. 

When Sc is full of transactions, SWCA first finds the FC for 

each 2-itemset X whose count is not 0 in Sc, and then performs 

one segment in-out operation. To insert Sc into the window, 

only I1, I2, and the FCs of 2-itemsets are updated into the tree, 

while the temporarily kept I3 over Sc is discarded. 

When the user invokes a query, SWCA then starts its 

approximating work. During the process, SWCA first 

approximates the counts of 3-itemsets dynamically, by 

choosing different count-values to 1-subsets for different 

3-itemsets, according to the relation between the FCs of their 

corresponding 2-subsets and ms. We note that the manner how 

the FC of a 2-itemset X is found (in our algorithm) is processed 

according to Definition 2. To summarize, SWCA uses Eq. (1) 

with k=2 to approximate the counts of 3-itemsets (i.e., m=3). 

After all 3-itemsets have been approximated, the 

approximated I3 is then obtained. In the rest part of 

approximating work, SWCA uniformly uses Eq. (1) with k=3 

to approximate itemsets whose length are above 4. 

At the moment we return to the origin. Recall that in Section 

3 we have stated and explained that a stream mining algorithm 

should not work based on an already-known and 

unchangeable ms, which is a constraint our method needs to 

obey. Now we show that our SWCA algorithm satisfies this 



 

 

 

constraint adequately. As mentioned before, in the tree of data 

structure, we maintain no more than I1 and I2 (and FCs) over 

the current window, and the process of mining is proceeding 

by approximating the counts of itemsets based on this 

summary information. In SWCA, an itemset is determined as 

frequent when its approximate count is above ms. For different 

values of ms changed by the user, SWCA just applies the 

approximate equation to calculate (the counts of) itemsets 

based on the kept summary information, with the dynamically 

approximating technique employed during the process, and 

then selects the frequent ones according to respective ms. As a 

result, the usability of SWCA is not affected by a variable ms. 

A user may tune different ms at each time, while SWCA is still 

workable under this circumstance. 

Finally we give an analysis about the space complexity of 

the summary structure. Assume that the source of data stream 

includes n attributes, then the members of I1, I2, I3 are 
n

1C , 
n

2C , 

and 
n

3C , respectively. Since for each 1-item and 2-itemset, the 

count is recorded respectively in all m segments of the sliding 

window, and 3-itemsets are kept temporarily only for the 

current segment, the number of count-values with respect to 

summary itemsets concerning the preservation is then m
n

1C ＋

m
n

2C ＋
n

3C , which is independent of the number of incoming 

stream elements and the value of ms. No matter how many 

transactions have been received, and no matter what value of 

ms the user specifies, the consumption of memory of SWCA 

will be fixed nearly at a certain level. 

 

VI. EXPERIMENTAL RESULTS AND ANALYSES 

In this section we are to appraise the proposed algorithm. 

Four experiments in total have been conducted to evaluate the 

performance of SWCA. All the experiments were carried out 

on the platform of personal computer with P4 3.20 GHz dual 

core CPU and about 800 MB of available physical memory 

space. The operating system is Windows XP Professional SP2, 

and the programs of the algorithm are implemented in C++ 

(and compiled by Dev-C++). 

We compare the performance of SWCA with that of the 

sliding window method proposed in [4], which is a variant of 

the well-known Lossy Counting algorithm [3]. We implement 

the sliding window method in C++ according to the 

description stated in [4], and denote this method as LC-SW in 

our experiments. We remark that the original method [4] 

processes the sliding of window transaction by transaction. 

According to the observation mentioned in [9], this kind of 

window sliding is much slower and will consume much more 

memory space than a method with batch-oriented sliding. As a 

result, we modified from the original method and made the 

implementation of LC-SW to update the window in a batch of 

transactions each time. 

Table 3 lists the test datasets adopted in our experiments. 

The first and last ones were downloaded from the website of 

FIMI Repository [14], while others were generated using the 

IBM’s synthetic data generator [15]. Every dataset has 1000 

different attributes and consists of 100 thousands of 

transactions. The size of sliding window in our experiments is 

set to 50,000 transactions for both methods. In LC-SW, each 

batch receives 10,000 transactions and the window is updated 

batch by batch. On the other hand, in SWCA, the number of 

segments (i.e., m) is set to 5 and each segment contains 10,000 

transactions. Besides, since LC-SW is devised based on the 

Lossy Counting algorithm, it also has the parameter ε to 

control the bound of errors. According to the suggestion in [3], 

we set ε = 0.1×ms for LC-SW. 

 

Table 3. Test datasets used in the experiments 

Dataset 
Transaction 
length (avg.) 

Itemset 
length (avg.) 

Number of 
attributes 

T10.I4.D100K 10 4 

T15.I6.D100K 15 6 

T15.I8.D100K 15 8 

T40.I10.D100K 40 10 

1000 

 

The first experiment investigates the efficiency with respect 

to throughput and average window-sliding time of both 

methods. Here throughput is measured as the number of 

transactions processed per second by the algorithms. We 

report the experimental result in Fig. 1(a) and (b). In this 

experiment, the value of ms for the first three datasets is set to 

0.5%, while for the last dataset ms is set to 2% due to its 

obviously larger values of T and I. From Fig. 1(a), we found 

that on all datasets the throughput of SWCA is higher than that 

of LC-SW, and the difference in time becomes greater as the 

average length of transactions (T) increases. According to Fig. 

1(b), the average sliding time of SWCA outperforms LC-SW 

in all datasets. Besides, it is observed that as the values of T 

and I become larger, both methods will spend more time to 

complete one (batch/segment-based) window sliding, while 

the increasing rate of LC-SW is much faster than that of 

SWCA, which means that SWCA is more efficient. 

 

       
                   …  (a) Throughput                                                                           (b) Average window-sliding time 

Figure 1. Performance (efficiency) comparison on different datasets 
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Figure 2. Scalability on T15.I6.D100K with varying minimum support threshold 

 

 

The second experiment evaluates the scalability of LC-SW 

and SWCA with varying the value of ms. We measure the 

throughput and average window-sliding time of both methods, 

which are similar to those in the previous experiment. The 

dataset adopted is T15.I6.D100K, and we vary ms from 1.5% 

down to 0.2%. The experimental result is shown in Fig. 2. 

According to Fig. 2(a) and (b), the performance of LC-SW 

becomes worse as the value of ms decreases. In contrast, the 

performance of SWCA, with respect to throughput and 

segment in-out time, is almost independent of the change of 

ms. The scalability of SWCA is well observed through this 

experiment that it possesses stable performance to both high 

and low values of ms. 

The third experiment examines the accuracy of both 

methods. The adopted dataset is T10.I4.D100K and the 

accuracy is measured as follows. Starting from the point when 

the sliding window is full of transactions (and is going to slide 

next), both of the two methods will output a mining result 

regularly for every sliding. Therefore, the windows of every 

two successive mining points have 80% of overlap with each 

other. From all the mining results of each value of ms, we 

select several of them to calculate and obtain the average 

accuracy over the testing data (on that ms). The exact sets of 

FIs are obtained by running an implementation of the Apriori 

algorithm [13] on the snapshots (i.e., the w transactions in the 

current window) at each mining point, respectively. We 

investigate the accuracy by assessing the recall ratio and 

precision ratio of the mining results. 

We report the result of this experiment in Fig. 3. From Fig. 

3(a) and (b) it is shown that both LC-SW and SWCA achieve 

high accuracy. In most of the cases, the recall and precision 

ratios of both methods are above 90% (or even 99%). Even at 

a pretty low value of ms of 0.3%, SWCA still achieves about 

80% of recall and 90% of precision, which means that it finds 

the great majority of FIs over the sliding window. Although on 

average the accuracy of SWCA is slightly lower than that of 

LC-SW, by considering the fine efficiency and well scalability 

of SWCA (as shown in the previous experiments) 

comprehensively, the performance of SWCA with respect to 

accuracy is still quite promising. 

In the last experiment, we examine the effect of the 

dynamically approximating (DA) technique of SWCA on 

accuracy. The two participants of this experiment are 

SWCA-Dynamic and SWCA-Static. The former is the SWCA 

method with applying the DA technique, while the latter is that 

without the DA technique and always chooses lower bound of 

counts (Lbc) to subsets for approximating 3-itemsets. The 

employed dataset is T15.I8.D100K and the value of ms varies 

from 0.6% to 1.2%. The experimental result is shown in Fig. 4. 

From Fig. 4(a) it is found that both methods find the whole set 

of FIs (i.e., are of 100% recall), while the precision ratio of 

SWCA-Dynamic is higher than that of SWCA-Static for all ms, 

especially at lower values of minimum support. We also 

calculate the F-measure of both methods and present the result 

in Fig. 4(b), which shows that the F-measure of 

SWCA-Dynamic (in this experiment) also outperforms that of 

SWCA-Static. 

We remark that the DSCA algorithm [12], a data-stream 

mining method in the landmark model which is based on the 

approach of Combinatorial Approximation, also bounds the 

count-values of subsets to approximate itemsets. Assume that 

DSCA is applied to (or transformed into) the sliding window 

model, it just randomly chooses count-values in the bounded 

range to subsets since it has no idea to make a decision. If the 

random strategy is to choose Lbc, then this version of DSCA is 

just like SWCA-Static. As a result, from the experiment it also 

indirectly shows that the accuracy of SWCA(-Dynamic) with 

respect to precision outperforms DSCA. The effect of our DA 

technique on accuracy is adequately proven through this 

experiment. 

 

 

        
(a) Recall ratio                                                                                      (b) Precision ratio 

Figure 3. Accuracy on T10.I4.D100K with varying minimum support threshold 

 

 



 

 

 

         
(a) Recall and precision ratio                                                                        (b) F-measure ratio 

Figure 4. Accuracy on T15.I8.D100K with varying minimum support threshold 

 

 

VII. CONCLUDING REMARKS 

In this paper, we study the problem of mining frequent 

itemsets over the sliding window of a transactional data stream. 

Based on applying the theory of Approximate 

Inclusion–Exclusion, we devise and propose an algorithm 

called SWCA for finding frequent itemsets through an 

approximating approach. SWCA conceptually divides the 

sliding window into segments and handles the sliding of 

window in a segment-based manner. We also introduce the 

concept of fair-cutter, which makes SWCA capable of 

approximating itemsets dynamically by choosing different 

parameter-values for different itemsets to be approximated. 

According to the experimental results, SWCA is quite 

efficient and possesses good scalability with varying 

minimum support threshold. Besides, the mining result from 

SWCA’s approximation also achieves high accuracy through 

the utilization of dynamically approximating. 

SWCA is a new approach under the sliding window model 

of data streams. The most obvious difference between SWCA 

and other existing methods is that SWCA has the 

Combinatorial Approximation as its core. One important 

feature of SWCA is that its running does not depend on an 

already-known and constant value of ms, which is the case 

most existing mining methods belong to. As a result, a user 

would change or tune the value of ms each time he/she invokes 

a query, while SWCA can still work normally and return the 

mining result. In addition, we devise the novel concept of 

fair-cutter, which is a key contribution of this paper that 

supports SWCA to approximate dynamically and achieve high 

accuracy in its mining result. 

We remark that the accuracy of SWCA’s approximation is 

possible to be further improved. In this research, the option of 

choosing count-values to 1-subsets for the dynamically 

approximating technique is limited to either the upper bound 

or the lower bound. Nevertheless, other count-values, such as 

the average count, may possibly result in even more accurate 

approximation for some itemsets. In the future, our works 

include expanding the dynamically approximating technique, 

making this technique more flexible, and devising other 

possible techniques, for the sake of achieving higher and more 

stable accuracy of mining results. 
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