

Abstract — Frequent-patterns discovery in data streams is an

active research area and more challenging than traditional

database mining since several additional requirements need to be

satisfied. In this paper, we propose a mining algorithm for

finding frequent itemsets over sliding windows in a data stream.

Different from most existing algorithms, our method is based on

the theory of Combinatorial Approximation to approximate the

counts of itemsets from some summary information of the stream.

We also devise the novel concept of fair-cutter, which results in

an original technique called dynamically approximating and

makes our method capable of approximating adaptively for

different itemsets. Empirical results show that the proposed

method is quite efficient and scalable; moreover, the mining

result from approximations achieves high accuracy.

Index Terms — Combinatorial approximation, data stream,

data-stream mining, frequent itemset, and sliding window.

I. INTRODUCTION

In many application domains, data is presented in the form

of data streams which originate at some endpoint and are

transmitted through the communication channel to the central

server. Some well-known examples include market basket,

traffic signals, web-click packets, ATM transactions, and

sensor networks. In these applications, it is desirable that we

obtain some useful information, like patterns occurred

frequently, from the streaming data, to help us make some

advanced decisions. Data-stream mining is such a technique

that can find valuable information or knowledge from a great

deal of primitive data.

Data-stream mining differs from traditional data mining

since its input of mining is data streams, while the latter

focuses on mining (static) databases. Compared to traditional

databases, mining in data streams has more constraints and

requirements [1]. First, each element (e.g., transaction) in the

data stream can be examined only once or twice, making

traditional multiple-scan approaches infeasible. Second, the

consumption of memory space should be confined in a range,

despite that data elements are continuously streaming into the

local site. Third, notwithstanding the data characteristic of

incoming stream may be unpredictable, the mining task should

proceed normally and offer acceptable quality of results.

Fourth, the latest analysis result of the data stream should be

available as soon as possible when the user invokes a query.

The authors are with the Department of Computer Science and

Engineering, National Chung-Hsing University, Taichung 402, Taiwan,

R.O.C. (e-mail: kfjea@cs.nchu.edu.tw; s9656026@cs.nchu.edu.tw).

As a result, one good stream mining algorithm needs to

possess efficient performance and high throughput, while

slight approximate errors occurred in the mining result is

usually acceptable by the user.

The research of data-stream mining in general can be

classified into three categories according to the stream

processing model [2]. The first one is the landmark window

model. In this model, there is a time point called the landmark,

and the range of mining contains all the data elements (or

transactions) between the landmark and current point. The

second one is the damped (fading/decay) window model. In

this model, each element is associated with a weight which is

relative to the time. When a stream element is just arriving, its

weight is at the highest value and then will get damped

continuously as time goes by. The last one is the sliding

window model. In this model, the range of mining is confined

to the elements contained in a window which will slide with

time. The window always covers a certain number of most

recent elements and the mining task focuses on these elements

at any point.

In this paper, we propose a remarkable approximating

method for discovering frequent itemsets in a transactional

data stream under the sliding window model. Based on a

theory of Combinatorial Mathematics, the proposed method

approximates the counts of itemsets from certain recorded

summary information without scanning the input stream for

each itemset. Together with an innovative technique called

dynamically approximating to select parameter-values

properly for different itemsets to be approximated, our method

is adaptive to streams with different distributions. Through the

experimental results, we found that our method has efficient

performance with pretty accurate mining result.

The rest of this paper is organized as follows. Section II

briefly introduces the related research on data-stream mining

in recent years. In Section III we state our problem and give

the necessary representation of symbols. Section IV describes

the way our method processes on a data stream with a sliding

window, and explains the technique to approximate

dynamically. Next in Section V, we give an explanation of the

proposed algorithm. Section VI reports the experimental

results of our method with simple analyses. Finally, Section

VII concludes this paper.

II. RELATED WORK

There are a number of research works which study the

problem of data-stream mining in the first decade of 21st

A Sliding-window Based Adaptive

Approximating Method to Discover Recent

Frequent Itemsets from Data Streams

Kuen-Fang Jea and Chao-Wei Li

century. Among these studies, Lossy Counting [3] is the most

famous method of mining frequent itemsets (FIs) through data

streams under the landmark window model. Besides the

user-specified minimum support threshold (ms), Lossy

Counting also utilizes an error parameter, ε, to maintain those

infrequent itemsets having the potential to become frequent in

the future. With the use of ε, when an itemset is newly found,

Lossy Counting knows the upper bound of counts that itemsets

may have (in the previous stream data) before it has been

monitored by the algorithm.

Based on the ε mechanism of Lossy Counting, [4] proposed

the sliding window method, which can find out frequent

itemsets in a data stream under the sliding window model with

high accuracy. The sliding window method processes the

incoming stream data transaction by transaction. Each time

when a new transaction is inserted into the window, the

itemsets contained in that transaction are updated into the data

structure incrementally. Next, the oldest transaction in the

original window is dropped out, and the effect of those

itemsets contained in it is also deleted. The sliding window

method also has a periodical operation to prune away

unpromising itemsets from its data structure, and the frequent

itemsets are output as mining result whenever a user requests.

In the sliding window model, there are two typical mining

methods: Moment [5] and CFI-Stream [6]. Both the two

methods aimed at mining Closed Frequent Itemsets (CFIs), a

complete and non-redundant representation of the set of FIs.

Moment uses a data structure called CET to maintain a

dynamically selected set of itemsets, which includes CFIs and

itemsets that form a boundary between CFIs and the rest of

itemsets. The CFI-Stream algorithm, on the other hand, uses a

data structure called DIU tree to maintain nothing other than

all Closed Itemsets over the sliding window. The current CFIs

can be output anytime based on any ms specified by the user.

Besides, there are still some interesting research works [9]

[10] [11] on the sliding window model. In [9] a false-negative

approach named MineSW was proposed. By employing a

progressively increasing function of ms, MineSW greatly

reduces the number of potential itemsets and would

approximate the set of FIs over a sliding window. In [10] a

data structure called DSTree was proposed to capture

information from the streams. This tree captures the contents

of transactions in a window, and arranges tree nodes according

to some canonical order. The DSTree can be easily maintained

and used to discover frequent itemsets. In [11] a verification

algorithm was introduced to improve the performance of

mining for association rules, and thus an FI mining method

was proposed whose running time is nearly constant with

respect to the window size.

In recent two years, a new kind of data-stream mining

method named DSCA has been proposed [12]. DSCA is an

approximate approach based on the application of the

Principle of Inclusion and Exclusion in Combinatorial

Mathematics [7]. One of the most notable features of DSCA is

that it would approximate the count of an arbitrary itemset,

through an equation (i.e., Equation (4) in [12]), by only the

sum of counts of the first few orders of its subsets over the data

stream. There are also two techniques named counts bounding

and correction, respectively, integrated within DSCA. Both

techniques are of the purpose to improve the quality of

DSCA’s approximation, while they adopt different means to

achieve the purpose. By working together with these original

techniques, the mining result of DSCA reaches good accuracy.

The concept of Inclusion and Exclusion Principle [7] is

valuable that it may also be applied in mining FIs under

different window models other than the landmark window.

Based on the theory of Approximate Inclusion–Exclusion [8],

we devise and propose a novel algorithm, called SWCA, to

approximate dynamically and discover FIs over the sliding

window in a transactional data stream.

III. PROBLEM DESCRIPTION

Let I = {x1, x2, …, xz} be a set of items (or attributes). An

itemset (or a pattern) X is a subset of I and written as X =

xixj…xm. The length (i.e., number of items) of an itemset X is

denoted by |X|. A transaction, T, is an itemset and T supports

an itemset, X, if X⊆T. A transactional data stream is a

sequence of continuously incoming transactions. A segment, S,

is a sequence of fixed number of transactions, and the size of S

is indicated by s. A window, W, in the stream is a set of

successive w transactions, where w ≥ s. A sliding window in

the stream is a window of a fixed number of most recent w

transactions which slides forward for every transaction or

every segment of transactions. We adopt the notation Il to

denote all the itemsets of length l together with their respective

counts in a set of transactions (e.g., over W or S). In addition,

we use Tn and Sn to denote the latest transaction and segment

in the current window, respectively. Thus, the current window

is either W = < Tn-w+1, …, Tn > or W = < Sn-m+1, …, Sn >, where

w and m denote the size of W and the number of segments in W,

respectively.

In this research, we employ a prefix tree which is organized

under the lexicographic order as our data structure, and also

processes the growth of itemsets in a lexicographic-ordered

way. As a result, an itemset is treated a little bit like a sequence

(while it is indeed an itemset). A superset of an itemset X is the

one whose length is above |X| and has X as its prefix. We

define Growthl(X) as the set of supersets of an itemset X whose

length are l more than that of X, where l ≥ 0. The number of

itemsets in Growthl(X) is denoted by |Growthl(X)|.

We adopt the symbol cnt(X) to represent the count-value (or

just count) of an itemset X. The count of X over W, denoted as

cntW(X), is the number of transactions in W that support X. So

cntS(X) represents the count of X over a segment S. Given a

user-specified minimum support threshold (ms), where 0 < ms

≤ 1, we say that X is a frequent itemset (FI) over W if cntW(X) ≥

ms×w, otherwise X is an infrequent itemset (IFI). The FI and

IFI over S are defined similarly to those for W.

Given a data stream in which every incoming transaction

has its items arranged in order, and a changeable value of ms

specified by the user, the problem of mining FIs over a sliding

window in the stream is to find out the set of frequent itemsets

over the window at different slides.

We remark that most of the existing stream mining methods

[3] [4] [5] [9] work with a basic hypothesis that they know the

user-specified ms in advance, and this parameter will remain

unchanged all the time before the stream terminates. This

hypothesis may be unreasonable, since in general, a user may

wish to tune the value of ms each time he/she makes a query

for the purpose of obtaining a more preferable mining result.

An unchangeable ms leads to a serious limitation and may be

impractical in most real-life applications. As a result, we relax

this constraint in our problem that the user is allowed to

change the value of ms at different times, while our method

must still work normally.

The following approximate equation, which is derived

from the equation of Approximate Inclusion–Exclusion in [8],

is the core (or the basis) of our approximating approach.

| A1 ∪A2 ∪… ∪ Am | ≒ ||
||

,

|| I
Si

i

kS

mk

S A
∈≤

∑α . (1)

According to (1), given a collection of m sets, A1, A2, …, Am,

the size of m-union term can be approximated even if we know

only the sizes of partial intersection terms for some k, where

k<m. By considering each item as a set, and the number of its

occurrences in transactions (i.e. count) as its corresponding

size, we could indirectly apply (1) to approximate the count of

an itemset from the sum of counts of its subsets of different

lengths. For example, if we have the information called the

summary in Table 1, we would approximate the count of a

3-itemset, such as abc, through (1), based on the sum of counts

of its 1-subsets (i.e., a, b, and c) and 2-subsets (i.e., ab, ac, and

bc), both of which can be obtained from Table 1.

Table 1. An example of some itemsets with counts

Itemset Count Itemset Count

a 25 ab 7

b 17 ac 6

c 20 ad 6

d 13 bc 8

 bd 7

 cd 5

If we have the summary of I1 and I2 of a stream over the

sliding window, we could achieve the mining work anytime

when requested by approximating the counts of itemsets,

through applying (1) with the parameter setting k=2, based on

the summary information we have kept. Now we outline the

way how we process the incoming transactions of the data

stream. For each incoming transaction T, we find all the

first-two-order lengths of subsets contained in T and record

their occurrences in our data structure. As a result, the

first-two-order summary (i.e., I1 and I2) of the stream is

maintained. We say that the summary length in our method is

2. The manner of incrementally updating the summary over

the sliding window in a stream will be detailed in Section 4.

The aforementioned means is the primary concept to

approximate the counts of itemsets. In practice, for an itemset

X to be approximated, the count of each of X’s subset may

come from (be supported by) various transactions where many

of them may have insufficient relation to X. Using the original

count-values of subsets to approximate the count of X may

sometimes bring about considerable error. For a better

approximation, there is a possible way, which is to bound the

range of counts of subsets for the itemset to be approximated.

Let Y be a 3-itemset (to be approximated) and y be a

1-subset of Y. To obtain a better approximation of Y, the

count-value to each subset y with respect to Y has a particular

range, which can be determined by Y’s 2-subsets that have y as

their common subset, respectively. This range of y’s count is

bounded by an upper bound (i.e., the maximum) and a lower

bound (i.e., the minimum), and count-values within this range

are the set of portions of y’s original count which is more

relevant for y with respect to Y. We define Scby(Y) as the set of

count-values of y with respect to Y within the range obtained

through the aforesaid manner. Besides, the upper bound and

the lower bound of count-values of y are denoted by uby(Y)

and lby(Y), respectively.

We use the same example in Table 1 to illustrate this

concept. To approximate an itemset abc, the count of its

1-subset a with respect to abc can be bounded by abc’s

2-subsets ab and ac, which have a as their common subset. In

Table 1, the counts of ab and ac are 7 and 6, respectively, and

therefore the count of a with respect to abc is bounded within

the range between the lower bound of 7 (i.e., the one of ab and

ac with greater count) and the upper bound of 13 (i.e., the sum

of counts of ab and ac). We have Scba(abc) = {7, …, 13},

uba(abc) = 13, and lba(abc) = 7. Compared with a’s original

count of 25, count-values in the set Scba(abc) are the portions

of 25 which are relevant for a with respect to abc. The ranges

of counts of other 1-subsets b and c of abc, i.e., Scbb(abc) and

Scbc(abc), can be obtained similarly as we do for a.

By using a count-value in the range of each 1-subset to form

the sum of 1-subset term, we could then obtain a better

approximation for an itemset than that of using the original

counts of 1-subsets. However, for each 1-subset, we have no

idea about what count-value in its range is better than others.

For example, in the above instance of a, even if we obtain a

range of counts in Scba(abc), we have no idea about which

value in Scba(abc), e.g., uba(abc) or lba(abc), is more

appropriate than others for a to approximate abc. As a result,

our main issue (and also contribution) in this research is to

devise a mechanism for the above problem. That is, the mining

algorithm needs to be able to choose the appropriate

count-values for the 1-subsets when approximating a

3-itemset Y, and thus can approximate dynamically for

different 3-itemsets. Before we illustrate our means in the next

section, the following property is first introduced.

Lemma 1 Let cnt
ub

(Y) and cnt
lb

(Y) respectively be the

approximate counts of Y obtained by using uby(Y) and lby(Y)

of count-values to every 1-subset y ∈ Y during the

approximating process. Then cnt
ub

(Y) ≤ cnt
lb
(Y).

Proof .Let T
ub

 and T
lb
 be the sums of counts of 1-subsets of Y

obtained by choosing uby(Y) and lby(Y) for each y∈ Y,

respectively. Then T
ub

 ≥ T
lb
 since uby(Y) ≥ lby(Y) for each y.

According to (1) with the parameters setting m=3 and k=2, we

can eventually obtain the following simplified equation: cnt(Y)

≒ (1－
3,2

2α) c + (
3,2

1α －1) d, where the symbol
mk

j

,
α denotes

the coefficient of linearly transformed Chebyshev polynomial,

and c and d represent the sum of counts of Y’s 2-subsets and

that of counts of Y’s 1-subsets, respectively. Since the value of
3,2

1α is less than 1, the coefficient (
3,2

1α －1) for 1-subset term

is then negative, which means that the value of 1-subset term

will be subtracted from the other term. Thus, by substituting

T
ub

 and T
lb
 for d respectively in the approximate equation and

knowing that Tub ≥ Tlb, we have cntub(Y) ≤ cntlb(Y).

IV. SLIDING-WINDOW PROCESSING

In research works under the sliding window model [4] [5]

[6], the sliding of window is handled transaction by

transaction; however, we have a different opinion. Unlike the

landmark window model, transactions in the sliding window

model will be both inserted into and dropped out from the

window. The transaction-by-transaction sliding of a window

leads to excessively high frequency of processing. In addition,

since the transit of a data stream is usually at a high speed, and

the impact of one single transaction to the entire set of

transactions (in the current window) is very negligible, making

it reasonable to handle the window sliding in a wider

magnitude. Therefore, for an incoming transactional data

stream to be mined, we propose to process on a

segment-oriented window sliding.

We conceptually divide the sliding window further into

several, say, m, segments, where the term segment is the one

we have defined earlier in Section 3. Each of the m segments

contains a set of successive transactions and is of the same size

s (i.e., contains the equal number of s transactions). Besides, in

each segment, the summary (which contains I1, I2, and the

fair-cutters which we will introduced later) of transactions

belonging to that segment is stored in the data structure we use.

We call the sliding of window “segment in-out,” which is

defined as follows.

Definition 1 (Segment in-out) Let Sc denote the current

segment which is going to be inserted into the window next

(after it is full of s transactions). A segment in-out operation

(of the window) is that we first insert Sc into and then extract

Sn-m+1 from the original window, where n denotes the id of

latest segment in the original window. Therefore, the windows

before and after a sliding are W = < Sn-m+1, …, Sn > and W = <

Sn-m+2, …, Sn, Sc >, respectively.

By taking this segment-based manner of sliding, each time

when a segment in-out operation occurs, we delete (or drop

out) the earliest segment, which contains the summary of

transactions of that segment, from the current window at each

sliding. As a result, we need not to maintain the whole

transactions within the current window in memory all along to

support window sliding. In addition, we remark that the

parameter m directly affects the consumption of memory. A

larger value of m means the window will slide (update) more

frequently, while the increasing overhead of memory space is

also considerable. In our opinion, an adequate size of m that

falls in the range between 5 and 20 may be suitable for general

data streams.

Theorem 1 For a 2-itemset X and a threshold ms, let TP
ub

(X)

and TP
lb
(X) be the true-positive rates of X’s 3-supersets in the

mining result resulting from adopting Ubc and Lbc to all the

1-subsets of each superset, respectively. Then we have TPub(X)

≤ TPlb(X).

Proof .Let P be the number of FIs of X’s 3-supersets with

respect to ms. Also, let P
ub

 and P
lb

 respectively be the numbers

of true FIs of X’s 3-supersets found by choosing Ubc and Lbc

to 1-subsets. According to Lemma 1, we have cnt
ub

(Y) ≤

cntlb(Y) for each 3-superset Y of X, which means that the

number of true-positive itemsets (i.e., FIs) obtained by

choosing Lbc is at least equal to that of choosing Ubc, i.e., Pub

≤ P
lb
. Since TP

ub
(X) = P

ub
/P and TP

lb
(X) = P

lb
/P, we then have

TP
ub

(X) ≤ TP
lb
(X).

Theorem 2 For a 2-itemset X and a threshold ms, let TNub(X)

and TNlb(X) be the true-negative rates of X’s 3-supersets in

the mining result resulting from adopting Ubc and Lbc to all

the 1-subsets of each superset, respectively. Then we have

TN
ub

(X) ≥ TN
lb

(X).

Proof .Let N be the number of IFIs of X’s 3-supersets with

respect to ms. Also, let Nub and Nlb respectively be the

numbers of true IFIs of X’s 3-supersets determined by

choosing Ubc and Lbc to 1-subsets. According to Lemma 1,

we have cnt
ub

(Y) ≤ cnt
lb
(Y) for each 3-superset Y of X, which

means that the number of true-negative itemsets (i.e., IFIs)

determined by choosing Ubc is at least equal to that of

choosing Lbc, i.e., Nub ≥ Nlb. Since TPub(X) = Nub/N and

TP
lb
(X) = N

lb
/N, we then have TP

ub
(X) ≥ TP

lb
(X).

Now we discuss the issue of selecting suitable count-values

in the bounded range of subsets for approximating an itemset.

According to Lemma 1 in Section 3, using the lower bound of

counts (Lbc) for 1-subsets always results in a higher

approximate count for an itemset than that of using the upper

bound of counts (Ubc). It follows from Theorem 1 and

Theorem 2 that, adopting Lbc to the 1-subsets to approximate

the 3-supersets of an 2-itemset X will reach a higher

true-positive rate (i.e., recall ratio) in the result than that of

using Ubc, while choosing Ubc to the 1-subsets will obtain a

higher true-negative rate (which usually concerns a higher

precision ratio) in the result than that of using Lbc. However,

it is actually unknown whether to adopt Ubc or Lbc to

1-subsets for approximating an itemset Y.

To tackle the problem that the proper count-values, say,

Lbc or Ubc, of the ranges (bounded through the means we

described in Section 3) of an itemset’s 1-subsets are unable to

be determined dynamically, we introduce the concept of

“fair-cutter,” which will support our method to dynamically

approximate and also make Theorem 1 and Theorem 2

applicable. Briefly, the fair-cutter for a 2-itemset X is a

count-value which can tell us whether the majority of X’s

3-supersets’ counts are above ms or not. We formally define

the fair-cutter of an itemset as follows.

Definition 2 (Fair-cutter) Let X be an itemset and P be the set

of itemsets belonging to Growth1(X) whose counts are greater

than 0. That is, P = {Y | Y∈Growth1(X) ∧ cnt(Y) > 0}. The

number of members in P is denoted by |P|. The fair-cutter (FC)

of X for its supersets in P, denoted as FC(X), is the minimum

count-value ct such that (1) ct ≤ cnt(X), and (2) the number of

itemsets whose counts are greater than or equal to ct and that

of itemsets whose counts are less than or equal to ct are above

1/2×|P|.

According to Definition 2, in all the itemsets belonging to

Growth1(X) whose counts are not 0 (i.e., P), both the numbers

of supersets whose counts are greater than or equal to FC(X),

and those whose counts are less than or equal to FC(X), are

above half of that in the entire set of P. That is, for the

above-mentioned two sets determined by FC(X), they have the

common itemset(s) whose count(s) equal(s) FC(X), and their

sizes reach the majority of P, respectively. As the name of

fair-cutter indicates, the sizes of the two sets of P generated by

FC(X) are balanced or near-balanced.

Example 1 .Table 2 records a 2-itemset ak and all the

3-itemsets which can be grown from ak. The number in the

parentheses behind each itemset represents its count. In this

example, Growth1(ak) = {akl, …, aky, akz}, |Growth1(ak)| =

15, P = {akl, akm, …, akv, akw} (that is, the itemsets in

Growth1(ak) whose counts are greater than 0), and |P| = 12.

From Definition 2, the FC of ak (i.e., FC(ak)) is 5 since the

number of itemsets in P whose counts are above 5 is six, and

the number of itemsets in P whose counts are below 5 is seven,

both of these two values are above 1/2×|P|. Besides, the value

“5” is the minimum count that satisfies the above condition.

Table 2. A 2-itemset and its 3-supersets

ak (10)

 akl (3) akm (6) akn (2) ako (6) akp (3)

akq (7) akr (4) aks (1) akt (7) aku (9)

akv (8) akw (5) akx (0) aky (0) akz (0)

Having the aforementioned concept of FC, we now explain

how to select the appropriate counts from Ubc and Lbc to

1-subsets for approximating the count of an itemset Y.

According to Lemma 1, we know that choosing Lbc to

1-subsets will result in higher approximations, make more

itemsets exceeding ms, thus produce more frequent itemsets in

the result than that of choosing Ubc. In contrast, adopting Ubc

to 1-subsets will result in lower approximations for itemsets,

which leads to less frequent itemsets in the result than that of

adopting Lbc.

Given a user-specified ms and a 2-itemset X, if the

fair-cutter of X (i.e., FC(X)) is above ms, according to

Definition 2, we know that the majority of members in P are

over the minimum support threshold, i.e., they are frequent

itemsets. Oppositely, if FC(X) is below ms, we understand that

the majority of members in P are under ms, i.e., they are

infrequent itemsets. It is known that a frequent itemset (in the

mining result) will raise the true-positive rate, while an

infrequent itemset will diminish the true-negative rate and

also the precision. By taking both Theorem 1 and Theorem 2

into account, this gives us a heuristic to choose Lbc or Ubc

dynamically. In the former case, which the frequent itemsets

are the majority, we should adopt Lbc to 1-subsets for

approximating X’s 3-supersets (to produce more true-positive

itemsets). In the latter case, where the infrequent itemsets

become the majority, we should instead adopt Ubc to

1-subsets for approximating X’s 3-supersets (to produce less

false-positive itemsets). By comparing ms with the respective

FCs of itemsets, we would determine the better ways to choose

the counts of 1-subsets for different itemsets to be

approximated. We formally name this technique dynamically

approximating.

V. THE SWCA ALGORITHM

Based on the previous analysis, we devise an algorithm

which would approximate the counts of itemsets dynamically

and discover FIs over a sliding window of a data stream. Our

stream mining method, namely the Sliding-Window based

Combinatorial Approximation (SWCA) algorithm, is

described as follows.

As mentioned in Section 4, we further divide the sliding

window into m equal-size segments of s transactions, and

process the sliding of window incrementally in a

segment-based manner. The data structure we employ to

maintain the summary information is a lexicographic-ordered

prefix tree modified from the one in [12]. This tree structure

mainly maintains I1, I2, and FCs of 2-itemsets over the current

window of a data stream, also in a segment-based fashion. For

each itemset X belonging to I1 or I2, the corresponding node in

the tree includes a circular array of size m, which corresponds

to the m segments of the sliding window, and X’s count over

the current window is recorded respectively in these m fields.

There is also a pointer to indicate which field the count of X

over Sn is stored. If we combine the counts of all fields in the

array, we then obtain the count of X over the current window.

Besides, the summary information (i.e., I1 and I2) of the

current segment Sc is kept separately in an array. In this array,

we also maintain I3 temporarily for the purpose of finding the

FC of each 2-itemset at the time when Sc is going to be inserted

into the window. When the user invokes a mining request,

SWCA then starts approximating the counts of itemsets

(whose lengths are above that of the summary) based on the

summary, i.e., I1, I2, and FCs, stored in the tree.

The SWCA algorithm processes on an on-line transactional

data stream. As long as there is no query from the user, SWCA

continues receiving and processing the incoming transactions

one by one, and handles the sliding of window in a

segment-based manner. For each incoming transaction T in the

current segment Sc, SWCA enumerates and records the

(counts of) first-three-order lengths of subsets contained in T.

When Sc is full of transactions, SWCA first finds the FC for

each 2-itemset X whose count is not 0 in Sc, and then performs

one segment in-out operation. To insert Sc into the window,

only I1, I2, and the FCs of 2-itemsets are updated into the tree,

while the temporarily kept I3 over Sc is discarded.

When the user invokes a query, SWCA then starts its

approximating work. During the process, SWCA first

approximates the counts of 3-itemsets dynamically, by

choosing different count-values to 1-subsets for different

3-itemsets, according to the relation between the FCs of their

corresponding 2-subsets and ms. We note that the manner how

the FC of a 2-itemset X is found (in our algorithm) is processed

according to Definition 2. To summarize, SWCA uses Eq. (1)

with k=2 to approximate the counts of 3-itemsets (i.e., m=3).

After all 3-itemsets have been approximated, the

approximated I3 is then obtained. In the rest part of

approximating work, SWCA uniformly uses Eq. (1) with k=3

to approximate itemsets whose length are above 4.

At the moment we return to the origin. Recall that in Section

3 we have stated and explained that a stream mining algorithm

should not work based on an already-known and

unchangeable ms, which is a constraint our method needs to

obey. Now we show that our SWCA algorithm satisfies this

constraint adequately. As mentioned before, in the tree of data

structure, we maintain no more than I1 and I2 (and FCs) over

the current window, and the process of mining is proceeding

by approximating the counts of itemsets based on this

summary information. In SWCA, an itemset is determined as

frequent when its approximate count is above ms. For different

values of ms changed by the user, SWCA just applies the

approximate equation to calculate (the counts of) itemsets

based on the kept summary information, with the dynamically

approximating technique employed during the process, and

then selects the frequent ones according to respective ms. As a

result, the usability of SWCA is not affected by a variable ms.

A user may tune different ms at each time, while SWCA is still

workable under this circumstance.

Finally we give an analysis about the space complexity of

the summary structure. Assume that the source of data stream

includes n attributes, then the members of I1, I2, I3 are
n

1C ,
n

2C ,

and
n

3C , respectively. Since for each 1-item and 2-itemset, the

count is recorded respectively in all m segments of the sliding

window, and 3-itemsets are kept temporarily only for the

current segment, the number of count-values with respect to

summary itemsets concerning the preservation is then m
n

1C ＋

m
n

2C ＋
n

3C , which is independent of the number of incoming

stream elements and the value of ms. No matter how many

transactions have been received, and no matter what value of

ms the user specifies, the consumption of memory of SWCA

will be fixed nearly at a certain level.

VI. EXPERIMENTAL RESULTS AND ANALYSES

In this section we are to appraise the proposed algorithm.

Four experiments in total have been conducted to evaluate the

performance of SWCA. All the experiments were carried out

on the platform of personal computer with P4 3.20 GHz dual

core CPU and about 800 MB of available physical memory

space. The operating system is Windows XP Professional SP2,

and the programs of the algorithm are implemented in C++

(and compiled by Dev-C++).

We compare the performance of SWCA with that of the

sliding window method proposed in [4], which is a variant of

the well-known Lossy Counting algorithm [3]. We implement

the sliding window method in C++ according to the

description stated in [4], and denote this method as LC-SW in

our experiments. We remark that the original method [4]

processes the sliding of window transaction by transaction.

According to the observation mentioned in [9], this kind of

window sliding is much slower and will consume much more

memory space than a method with batch-oriented sliding. As a

result, we modified from the original method and made the

implementation of LC-SW to update the window in a batch of

transactions each time.

Table 3 lists the test datasets adopted in our experiments.

The first and last ones were downloaded from the website of

FIMI Repository [14], while others were generated using the

IBM’s synthetic data generator [15]. Every dataset has 1000

different attributes and consists of 100 thousands of

transactions. The size of sliding window in our experiments is

set to 50,000 transactions for both methods. In LC-SW, each

batch receives 10,000 transactions and the window is updated

batch by batch. On the other hand, in SWCA, the number of

segments (i.e., m) is set to 5 and each segment contains 10,000

transactions. Besides, since LC-SW is devised based on the

Lossy Counting algorithm, it also has the parameter ε to

control the bound of errors. According to the suggestion in [3],

we set ε = 0.1×ms for LC-SW.

Table 3. Test datasets used in the experiments

Dataset
Transaction
length (avg.)

Itemset
length (avg.)

Number of
attributes

T10.I4.D100K 10 4

T15.I6.D100K 15 6

T15.I8.D100K 15 8

T40.I10.D100K 40 10

1000

The first experiment investigates the efficiency with respect

to throughput and average window-sliding time of both

methods. Here throughput is measured as the number of

transactions processed per second by the algorithms. We

report the experimental result in Fig. 1(a) and (b). In this

experiment, the value of ms for the first three datasets is set to

0.5%, while for the last dataset ms is set to 2% due to its

obviously larger values of T and I. From Fig. 1(a), we found

that on all datasets the throughput of SWCA is higher than that

of LC-SW, and the difference in time becomes greater as the

average length of transactions (T) increases. According to Fig.

1(b), the average sliding time of SWCA outperforms LC-SW

in all datasets. Besides, it is observed that as the values of T

and I become larger, both methods will spend more time to

complete one (batch/segment-based) window sliding, while

the increasing rate of LC-SW is much faster than that of

SWCA, which means that SWCA is more efficient.

 … (a) Throughput (b) Average window-sliding time

Figure 1. Performance (efficiency) comparison on different datasets

 1111 (a) Throughput (b) Average window-sliding time

Figure 2. Scalability on T15.I6.D100K with varying minimum support threshold

The second experiment evaluates the scalability of LC-SW

and SWCA with varying the value of ms. We measure the

throughput and average window-sliding time of both methods,

which are similar to those in the previous experiment. The

dataset adopted is T15.I6.D100K, and we vary ms from 1.5%

down to 0.2%. The experimental result is shown in Fig. 2.

According to Fig. 2(a) and (b), the performance of LC-SW

becomes worse as the value of ms decreases. In contrast, the

performance of SWCA, with respect to throughput and

segment in-out time, is almost independent of the change of

ms. The scalability of SWCA is well observed through this

experiment that it possesses stable performance to both high

and low values of ms.

The third experiment examines the accuracy of both

methods. The adopted dataset is T10.I4.D100K and the

accuracy is measured as follows. Starting from the point when

the sliding window is full of transactions (and is going to slide

next), both of the two methods will output a mining result

regularly for every sliding. Therefore, the windows of every

two successive mining points have 80% of overlap with each

other. From all the mining results of each value of ms, we

select several of them to calculate and obtain the average

accuracy over the testing data (on that ms). The exact sets of

FIs are obtained by running an implementation of the Apriori

algorithm [13] on the snapshots (i.e., the w transactions in the

current window) at each mining point, respectively. We

investigate the accuracy by assessing the recall ratio and

precision ratio of the mining results.

We report the result of this experiment in Fig. 3. From Fig.

3(a) and (b) it is shown that both LC-SW and SWCA achieve

high accuracy. In most of the cases, the recall and precision

ratios of both methods are above 90% (or even 99%). Even at

a pretty low value of ms of 0.3%, SWCA still achieves about

80% of recall and 90% of precision, which means that it finds

the great majority of FIs over the sliding window. Although on

average the accuracy of SWCA is slightly lower than that of

LC-SW, by considering the fine efficiency and well scalability

of SWCA (as shown in the previous experiments)

comprehensively, the performance of SWCA with respect to

accuracy is still quite promising.

In the last experiment, we examine the effect of the

dynamically approximating (DA) technique of SWCA on

accuracy. The two participants of this experiment are

SWCA-Dynamic and SWCA-Static. The former is the SWCA

method with applying the DA technique, while the latter is that

without the DA technique and always chooses lower bound of

counts (Lbc) to subsets for approximating 3-itemsets. The

employed dataset is T15.I8.D100K and the value of ms varies

from 0.6% to 1.2%. The experimental result is shown in Fig. 4.

From Fig. 4(a) it is found that both methods find the whole set

of FIs (i.e., are of 100% recall), while the precision ratio of

SWCA-Dynamic is higher than that of SWCA-Static for all ms,

especially at lower values of minimum support. We also

calculate the F-measure of both methods and present the result

in Fig. 4(b), which shows that the F-measure of

SWCA-Dynamic (in this experiment) also outperforms that of

SWCA-Static.

We remark that the DSCA algorithm [12], a data-stream

mining method in the landmark model which is based on the

approach of Combinatorial Approximation, also bounds the

count-values of subsets to approximate itemsets. Assume that

DSCA is applied to (or transformed into) the sliding window

model, it just randomly chooses count-values in the bounded

range to subsets since it has no idea to make a decision. If the

random strategy is to choose Lbc, then this version of DSCA is

just like SWCA-Static. As a result, from the experiment it also

indirectly shows that the accuracy of SWCA(-Dynamic) with

respect to precision outperforms DSCA. The effect of our DA

technique on accuracy is adequately proven through this

experiment.

(a) Recall ratio (b) Precision ratio

Figure 3. Accuracy on T10.I4.D100K with varying minimum support threshold

(a) Recall and precision ratio (b) F-measure ratio

Figure 4. Accuracy on T15.I8.D100K with varying minimum support threshold

VII. CONCLUDING REMARKS

In this paper, we study the problem of mining frequent

itemsets over the sliding window of a transactional data stream.

Based on applying the theory of Approximate

Inclusion–Exclusion, we devise and propose an algorithm

called SWCA for finding frequent itemsets through an

approximating approach. SWCA conceptually divides the

sliding window into segments and handles the sliding of

window in a segment-based manner. We also introduce the

concept of fair-cutter, which makes SWCA capable of

approximating itemsets dynamically by choosing different

parameter-values for different itemsets to be approximated.

According to the experimental results, SWCA is quite

efficient and possesses good scalability with varying

minimum support threshold. Besides, the mining result from

SWCA’s approximation also achieves high accuracy through

the utilization of dynamically approximating.

SWCA is a new approach under the sliding window model

of data streams. The most obvious difference between SWCA

and other existing methods is that SWCA has the

Combinatorial Approximation as its core. One important

feature of SWCA is that its running does not depend on an

already-known and constant value of ms, which is the case

most existing mining methods belong to. As a result, a user

would change or tune the value of ms each time he/she invokes

a query, while SWCA can still work normally and return the

mining result. In addition, we devise the novel concept of

fair-cutter, which is a key contribution of this paper that

supports SWCA to approximate dynamically and achieve high

accuracy in its mining result.

We remark that the accuracy of SWCA’s approximation is

possible to be further improved. In this research, the option of

choosing count-values to 1-subsets for the dynamically

approximating technique is limited to either the upper bound

or the lower bound. Nevertheless, other count-values, such as

the average count, may possibly result in even more accurate

approximation for some itemsets. In the future, our works

include expanding the dynamically approximating technique,

making this technique more flexible, and devising other

possible techniques, for the sake of achieving higher and more

stable accuracy of mining results.

REFERENCES

[1] M.N. Garofalakis, J. Gehrke, & R. Rastogi, Querying and

mining data streams: you only get one look (A Tutorial), Proc.

2002 ACM SIGMOD Conf. on Management of Data, Madison,

Wisconsin, 2002, p. 635.

[2] Y. Zhu & D. Shasha, StatStream: statistical monitoring of

thousands of data streams in real time, Proc. 28th Conf. on Very

Large Data Bases, Hong Kong, China, 2002, pp. 358–369.

[3] G.S. Manku & R. Motwani, Approximate frequency counts

over data streams, Proc. 28th Conf. on Very Large Data Bases,

Hong Kong, China, 2002, pp. 346–357.

[4] J.H. Chang & W.S. Lee, A sliding window method for finding

recently frequent itemsets over online data streams, Journal of

Information Science and Engineering, 20(4), 2004, pp. 753–762.

[5] Y. Chi, H. Wang, P.S. Yu, & R.R. Muntz, Moment:

maintaining closed frequent itemsets over a stream sliding

window, Proc. 4th IEEE Conf. on Data Mining, Brighton, UK,

2004, pp. 59–66.

[6] N. Jiang & L. Gruenwald, CFI-Stream: mining closed frequent

itemsets in data streams, Proc. 12th ACM SIGKDD Conf. on

Knowledge Discovery and Data Mining, Philadelphia, PA,

USA, 2006, pp. 592–597.

[7] C.L. Liu, Introduction to Combinatorial Mathematics.

McGraw-Hill, New York, 1968.

[8] N. Linial & N. Nisan, Approximate inclusion–exclusion,

Combinatorica, 10(4), 1990, pp. 349–365.

[9] J. Cheng, Y. Ke, & W. Ng, Maintaining frequent itemsets over

high-speed data streams, Proc. 10th Pacific-Asia Conf. on

Knowledge Discovery and Data Mining, Singapore, 2006, pp.

462–467.

[10] C.K.-S. Leung & Q.I. Khan, DSTree: a tree structure for the

mining of frequent sets from data streams,” Proc. 6th IEEE Conf.

on Data Mining, Hong Kong, China, 2006, pp. 928–932.

[11] B. Mozafari, H. Thakkar, & C. Zaniolo, Verifying and mining

frequent patterns from large windows over data streams, Proc.

24
th

 Conf. on Data Engineering, Mexico, 2008, pp. 179–188.

[12] K.-F. Jea & C.-W. Li, Discovering frequent itemsets over

transactional data streams through an efficient and stable

approximate approach, Expert Systems with Applications,

36(10), 2009, pp. 12323–12331.

[13] F. Bodon, A fast APRIORI implementation, Proc. ICDM

Workshop on Frequent Itemset Mining Implementations

(FIMI’03), 2003.

[14] Frequent Itemset Mining Implementations Repository (FIMI).

Available: http://fimi.cs.helsinki.fi/

[15] Quest Data Mining Synthetic Data Generation Code. Available:

http://www.almaden.ibm.com/cs/projects/iis/hdb/Projects/data

_mining/datasets/syndata.html

