
HUP: An Unstructured Hierarchical
Peer-to-Peer Protocol

Guruprasad Khataniar and Diganta Goswami ∗

Abstract— This paper presents an organized net-
work architecture for unstructured peer-to-peer sys-
tems where nodes are added to the network in a
systematic way to efficiently utilize the node re-
sources. This network architecture is characterized
by O(logm n) network diameter and O(logm n) messages
for node joining and node failure, where n is the num-
ber of nodes in the network and m is the number of
children of a node. Purely decentralized systems like
Gnutella route the query in an environment where the
node capabilities are not identified. Whereas the pro-
posed Hierarchical Unstructured p2p (HUP) routes
the query towards the high capable nodes. This or-
ganization of nodes improves the probability of query
success rate than that of purely unstructured systems.

Keywords: P2P network, Token, Overlay structure,

Node capability, Time-to-Live (TTL)

1 Introduction

In Unstructured systems, key is randomly assigned to the
nodes which saves network maintenance cost. Peers are
also not organized in the overlay network. For processing
any query in the system the source node simply floods
the query through all nodes. Since there is no partic-
ular rule for assigning data to nodes, these systems do
not ensure 100% success rate in resolving the query. But
these systems address security and anonymity issues effi-
ciently in comparison to structured peer-to-peer systems.
This research is focussed on the design of an efficient un-
structured system which approaches the overlay routing
performance as that of structured systems without sacri-
ficing the functionality of the system.

This work is motivated from free riding on Gnutella [1] ,
weakness of DHT-based system to support range query,
fuzzy queries and problem of transient nodes population
and heterogeneity among them which have recently moti-
vated considerable research in P2P network. By sampling
messages on the Gnutella [9] network over a 24-hour pe-
riod , it has been found that 70% of the Gnutella users
share no files, 90% of users do not response to the query
and nearly 50% of all responses are returned by the top

∗Department of Computer Science and Engineering, Indian
Institute of Technology Guwahati, Guwahati-781039, INDIA
Tel/Fax:91-9864055805 Email: {gpkh, dgoswami}@iitg.ernet.in,
Manuscript submission: December’2009

1% of sharing hosts. Another Gnutella analysis shows
that 7% peers share more files than all other peers and
47% queries are responded by the top 1% peers and fail-
ure of Gnutella is due to the non identification of hetero-
geneity of nodes and lack of co-operation. An observation
of Gnutella [2] reveals that out of 100 random searches,
95 searches failed to provide results.

In our approach the query is directed towards the nodes
that have high capabilities and thus ensures higher
chances of query resolving. Rest of this paper is orga-
nized as follows: section 2 presents related work, section 3
describes the overlay network, section 4 describes the al-
gorithms to handle node joining and failure and query
processing, section 5 describes HUP system performance,
section 6 concludes the paper.

2 Related Work

B. Hudzia et al. [4] describe a tree based peer-to peer
network that constructs the tree based on leader elec-
tion algorithm where propose a hierarchical P2P network
architecture based on a dynamic partitioning of a 1-D
space.

A multi-tier capacity aware topology is presented in [5]
to balance the load across the nodes so that low capable
nodes do not downgrade the performance of the system.

S. Min et al. [6] describe a super peer based framework
in which the peers are organized based on their responsi-
bilities. Normal peers always send the query to the super
peers. The main contribution is reduction of the band-
width cost by selection of best SP. Also the workload of
SP can be improved by dynamic prediction based CPU
load.

Terpstra et al. [8] propose a simple probabilistic search
system, BubbleStorm, built on random multigraphs.
their primary contribution is a flexible and reliable strat-
egy for performing exhaustive search.

In our approach of hierarchical unstructured peer-to-peer,
a hierarchical overlay network structure is designed based
on the nodes sharing to the network and its stability. A
node gets access to the resources based on its contribution
level. This approach of routing the queries regulates free
riders, which consume the system resources.

3 System Model

Here we introduce a 2-tier Hierarchical Unstructured
peer-to-peer system which can be a answer to the many
problems that we have explained in the previous sections.

3.1 Terminology

i. Complete Node : A node in the network is said to
be complete, if it has m child nodes, where m is the
maximum number of children a node can have in the
network.

ii. Tstab: This is the time for which a new node is
delayed before updating the routing table to deal
with the transient node population.

iii. High capability node : A node P is said to be a
high capability in comparison to node Q, if it pro-
vides more sharing to the network than that of Q
and is more stable than Q. Stability of a node is
defined by the amount of time for which it is in the
P2P network. More time a node is in the network,
more is the stability.

iv. Low capability node : A node P is said to be a low
capability node in comparison another node Q if it
provides less sharing to the network than that of Q
and is less stable than Q.

v. Token : This is a control frame that moves through
out the cluster. Only the token holder is allowed to
add nodes to the cluster. Token flow in the network
controls the network growth and ensures that nodes
form a hierarchy in the system.

3.2 Proposed Overlay Structure

Nodes in a network differ in terms of their computing
power, communication capacity, stability, available mem-
ory and sharing size. It has been observed that uniden-
tified node capabilities and unorganized network are the
reasons for the failure of Gnutella. In our approach of
hierarchical unstructured p2p, a nodes position in the
network is determined by its capabilities (sharing size).
In this model, we categorize nodes into two types: Super
Node and Normal Node. Super Nodes are placed in the
first level of hierarchy. These are assumed to be in the
network for most of the time and are connected by mesh
topology. Every Super node has a Token to build the
hierarchy of nodes in its cluster. All the Super node ids
are maintained in Super-Node table. Table 1 shows the
Super node table for Super node S0 of Figure 1. Figure 1
shows the hierarchical structure for m = 2, where the
network is divided into four clusters. Number of nodes in
a cluster may vary from one cluster to another. For in-
stance, some clusters may have thousands of node while
others may have only few.

Super Node Normal Node

capable
nodes.capable nodes

Low

High

Cluster 3

Cluster 2

Cluster 1

Cluster 0

S

S

S

S
0

1

2

3

Figure 1: 2-tier Unstructured Hierarchical system

Nodes (Normal Nodes) in a cluster are differentiated by
the amount of sharing, bandwidth and processing power
etc. Nodes with relatively high sharing, which are called
as High capability nodes are placed in the upper levels
of hierarchy and Low capability nodes are placed in the
lower levels of hierarchy.

Table 1: Super Node table
Super Node ID Time

– –
– –
– –
– –
– –

Peers in a network differ in terms of their comput-
ing power, communication capacity, available memory,
stability and sharing size. In purely unstructured net-
works nodes render to scoped flooding because of the un-
organized network and un-identified node capabilities.

4 Algorithms

This section provides the basic algorithms used in this
overlay system.

a. Handle token: This algorithm describes how a
node handles the token. Token moves from one node
to other in the hierarchy to ensure that network
grows in an ordered fashion. It works as follows -

• Whenever a node receives the token from its
sibling node and if it is not a complete node
it will try to add node to itself to become a
complete node. So it keeps the token.

• Otherwise if it is already a complete node then
it pass the token to the its right sibling so that
it may add nodes and become a complete node.

• If there is no right sibling then give the token
to parent node. Continue this till the parent is
null.

• Then give the token to the first left child. Con-
tinue till the left most node of the tree is found.

Whenever a token is lost in the system due to high
churn rate or any other reason then the nodes will
not be able to get the token and therefore will not
be able to add nodes. In such case the Supernode
generates a new token and place the token with Al-
gorithm [a].

b. Find Token: This is run by a node whenever a
new node contacts it for joining the network or when
some node sends “Find-Token” message. Let a new
node P has contacted the node Q for joining the
network.Then

• If Q has the token, P is directly added to
the network using algorithm [c] (explained after
this).

• If Q does not have the token, it extracts the id
of the node to which it has passed the token
from the log and passes the request to it with
its id as the source id. Source id here means the
id of the node which is initiating the request,
whereas log of a node contains the id of the
nodes to which it has passed the token most
recently.

• If it does not have the token repeat step 2 with
that node till the token is found and report that
node id to the source node.

• If there are no entries in the log, node forwards
the request to a parent node with its id as the
source node. Then that parent node will repeat
step 1,2,3 to find the token holder and report
the source node.

c. Add-Node: This algorithm is run by a node when
it wants to add a new node to the group. Here new
node means the node to be added to the system, old
node means the node in which we are going to add
the new node and forwarded node means those nodes
which can not handle the new node and passes the
request to the upper level.
Sharing size of new node, P = P.S
Sharing size of old node, O = O.S

• If O.S > P.S and O is not complete then simply
add P as a child node of O.

• Increment the child count of node O.

• Handle token (node O)

• If O.S < P.S, add the node to O and call Bal-
ance network(O,P)

• Update active and passive routing tables of the
nodes.
Algorithm [c] adds a new node to the network.
With respect to the sharing of the new node, it
is placed in the appropriate level in hierarchy.
Algorithm [d] describes the way the hierarchy
is balanced if a new node P replaces a node Q
already in the network.

d. Balance-Network(O,P): Whenever a node that
has higher sharing size than the node to which it
comes to add as a child we have to balance the clus-
ter. Because in our approach we keep the node in
hierarchy according to their sharing size, so higher
sharing nodes should go to higher level.

• If O.S < P.S, replace node O with node P

• If node O holds the token pass it to node P

• Increment the child count of node P .
• If P.S < Parent(P).S then stop, other-

wise Balance Network(Parent(P), P), where
Parent(P) = parent of node P

• Update routing tables for the nodes.

e. Remove node: This algorithm is run whenever a
node leaves the network and there is a requirement
of balancing the whole network.

• If the leaving node is a leaf node decrement the
child count of its parent node.

• If it holds the token pass it to the right sibling.
• If it is the rightmost leafnode then pass it to the

parent untill the parent is null and then pass it
to the leftmost child of the network.

• If the leaving node is not leaf node then lift
its leftmost child as the parent node and call
Balance network(P, C), where P is the parent
of the leaving node and C is the leftmost child
of the leaving node.

• Update the routing tables of the nodes.

4.1 Node Joining

Based upon the above algorithms we can explain the node
joining process in this system.

i. When a node wants to join the network, it sends
k ping messages to already connected nodes in the
network.

ii. Based on the observed Round Trip Time (RTT),
new-node sends the “Join” request to the node which
is within its proximity.

iii. The receiving node monitors the new node for Tstab

time units and acts as a proxy for the new node till
that time. Then it uses Algorithm [b] to find the id
of the current token holder and gives it to the new
node.

iv. The new node sends the message to the token holder.

v. Token holder runs the Algorithm [c] to add the node
to the network

4.1.1 Analysis

Major steps involved in node joining are :

i. Find-token

ii. Add-node.

As explained in Algorithm [a], the token frame of the net-
work moves from one level to other in an ordered fashion.
Token movement ensures that the peer-to-peer network
grows level by level.

In hierarchical unstructured architecture, number of chil-
dren of a node is fixed to m. With n nodes in the cluster
and m being the number of children of each node, the
height of the network is O(logm n). In worst case, the
token holder is at the left most bottom of the hierarchy
and a new node contacts the node at right most bottom
of the hierarchy. In this case “Find-Token” message will
be transferred from each node to its parent node and
then from the topmost node it will again be transferred
to its leftmost child node. Since the height of the net-
work is O(logm n) it will completely traverse twice the
height of the network. Thus the total number of mes-
sages transferred is 2 logm n in the worst case. Algorithm
[c] adds the node to the corresponding hierarchy based
on its capabilities. This in turn uses Algorithm [d] which
balances the network along the path of insertion. When
a node is added to the network, at most 4 logm n mes-
sages are passed in the overlay network. Concluding the
procedure, addition of a node takes O(logm n) messages.

4.2 Query Processing

Initially a node forwards the query towards the upper
levels of the network. If the node can not find the data
with maximum allowable TTL, it forwards the query
towards the lower levels of the network. For the first
alternative, Source node forwards the query to parent,
left and right nodes. For the second alternative, Source
node forwards the query to left child, left and right
nodes. Then each node forwards the query to it’s left
child. Algorithm [f] and [g] describes the way a query is
processed in the further steps.

Algorithm f : Process-Query
——————————————————
Process-Query(Query Q, Source Node S, Forward
Node F)
// Node P is running the procedure.

i. Send the response if the Query Q matches the local
index of the node.

ii. Decrement TTL of the Query Q.
If (TTL of Query Q is greater than zero)
begin-if

If (P is a Super node)
Forward the Query Q to left child of S and

broadcast the Query Q to Super nodes of other clusters.
Executes Algorithm [g].
Else If (F is child node of node P)

Forward the Query Q to left node, right node
and parent node.

Else
Forward the query Q to other node at same level.

End-if
End Process-Query

Algorithm g: Query-Down
——————————————————
Query-Down(Query Q, Source Node S, Forward
Node F)
// Node P is running the procedure.

i. Send the response if the Query Q matches the local
index of the node.

ii. Decrement TTL of the Query Q.
If (TTL of Query Q is greater than zero)
begin-if

If (P is a Super node)
Forward the Query Q to left-child.
Else If (F is parent node of node P)

Forward the Query Q to left node, right node
and left child node.

Else
Forward the query Q to other node at same level.

End-if
End Query-Down

The peer-to-peer network is organized in two levels
with Super Nodes and Normal Nodes at the first and
second levels of hierarchy respectively. Super Nodes are
connected by mesh network and each Super Node has
a cluster of nodes organized in a hierarchy according
to their sharing. In order to decrease the number of
unnecessary messages and increase the probability of
finding the desired data soon, the query is forwarded
to the upper levels initially. If a Super node gets the
query, it forwards the query to all the Super nodes
which in-turn apply the Algorithm g for routing the
query. But in the neighboring clusters the query moves
down the hierarchy, giving priority to the High capable

nodes than the Low capable nodes. If the querying
node does not get the desired response then the query is
forwarded to the lower levels of the network. Algorithm
g describes the way the query is forwarded in the network.

Modeling the Gnutella as a random graph, assum-
ing the maximum degree for each node, Figure 3 shows
the way the query is forwarded in purely unstructured
system. In HUP, as shown in Figure 2, query is initially
forwarded towards more capable nodes, whereas in
Gnutella the query is forwarded to unidentified nodes.

1 2 3

2 3

33
3

23

3 2 S
1

1

2

Figure 2: Query routing in HUP, label indicates TTL
value

 1 1
1

22

3
33

3

3

3
2

3

2

3 3

3

2

2

S

3

3

Figure 3: Routing in Gnutella for degree 3, label indicates
TTL value.

5 Performance Evaluation

We have evaluated the performance of the proposed sys-
tem against Gnutella in Java. An analysis [2] of Gnutella
shows the top 20 file types and queries in the Gnutella
network. We have mapped each of the file types on to
the number space. Each file type corresponds to a part
of the number space. Data that is available to the nodes
in the simulation environment is according to the query
rates.

5.1 Node Joining

Figure 4 shows the number of messages vs sample nodes
added to the network with different cluster sizes. Nodes
which take equal number of messages are grouped to-
gether and denoted as samples. As described in the
section 4.1 number of messages for node joining are
O(logm n). In the simulation we fixed the number of
children of each node is 2 i.e. m = 2. Figure 4 is in
correspondence to the analysis in section 4.1. Maximum
number of messages consumed are multiple of O(log2 n).

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9

N
um

be
r

O
f M

es
sa

ge
s

Node Samples

100 nodes
200 nodes
500 nodes

1000 nodes

Figure 4: Node Addition

5.2 Query Processing

Table 2 shows the top 20 file types requested on Gnutella
network with mapping on to the number space for simu-
lation.

Figures 5 shows the query success rate vs TTL of the
query. As the TTL of the query increases the success
rate of queries increases. For smaller networks, the suc-
cess rate for small TTL is high. As the network size
increases, for small TTL it is less. Figures 6 show the
success rate vs network size. Observations reveal that
with TTL=logMN , success rate is at least 50%.

6 Conclusion

We have presented a hierarchical overlay network in
which node joining and failure are handled in an orga-
nized fashion. Because of the way the nodes are organized
improves the connectivity, reduces the number of unnec-
essary messages and increases the success rate. With n
nodes in the system and log2 n TTL, query success rate
in HUP is atleast 50%. The kind of policy adapted for
routing the queries regulates the new nodes which are
greedy to consume the resources.

Table 2: Top 20 Filetypes Requested on Gnutella in
Queries with mapping of file types on to number space.

Filetype % Mapped Number space
1 avi 18.72 1− 1000
2 mp3 17.84 1001− 2000
3 mpg 13.10 2001− 3000
4 ra 8.5 3001− 4000
5 rm 2.79 4001− 5000
6 zip 2.64 5001− 6000
7 mpeg 2.63 6001− 7000
8 jpg 1.9 7001− 8000
9 asf 1.11 8001− 9000
10 ps 0.97 9001− 10000
11 mov 0.95 10001− 11000
12 pdf 0.51 11001− 12000
13 rar 0.44 12001− 13000
14 exe 0.4 13001− 14000
15 wav 0.25 14001− 15000
16 doc 0.21 15001− 16000
17 txt 0.07 16001− 17000
18 gz 0.07 17001− 18000
19 html 0.02 18001− 19000
20 jpeg 0.02 19001− 20000

 10

 20

 30

 40

 50

 60

 70

 80

 4 6 8 10 12 14 16

Q
ue

ry
 S

uc
ce

ss
 R

at
e

(%
)

Time To Live (TTL)

2000 nodes
5000 nodes

10000 nodes

Figure 5: Query Success Rate vs TTL

References

[1] Eytan Adar and Bernardo A. Huberman, “Free Rid-
ing on Gnutella,” Technical report, Xerox PARC,
August 10, 2000.

[2] Demetris Zeinalipour-Yazti, Theodoros Folias. “A
Quantitative Analysis of the Gnutella Network Traf-
fic,” Course project for ”Advanced Topics in Net-
works”, Department of Computer Science, Univer-
sity of California, April-2002.

 55

 60

 65

 70

 75

 80

 2000 3000 4000 5000 6000 7000 8000 9000 10000

Q
ue

ry
 S

uc
ce

ss
 R

at
e

(%
)

Number Of Nodes

TTL=12
TTL=14
TTL=16

Figure 6: Query Success Rate vs Network Size

[3] A. Dhamdhere, “Determining Characteristics of the
Gnutella Network,” Techincal report, College of
Computing, Georgia Tech, September 24-2002.

[4] B. Hudzia, M-T. Kechadi, A. Ottewill, “Treep:
A Tree Based P2P Network Architecture,” In-
ternational Workshop on Algorithms, Models and
tools for parallel computing on heterogeneous net-
works, Boston, Massachusetts, USA, September 27-
30, 2005.

[5] M. Srivatsa, B. Gedik and L. Liu, “Scaling Un-
structured Peer-to-Peer Networks With Multi-Tier
Capacity-Aware Overlay Topologies,“ In proceedings
of the Tenth International Conference on Parallel
and Distributed Systems, Washington, DC, USA,
2004.

[6] S.Min, Dongsub Cho, “Super Peer Selection Baased
Framework Using Dynamic Capacity and Similar-
ity,” ISCIS 2006, LNCS 4263, pp. 803− 812, 2006.

[7] Stefan Saroiu, P. Krishna Gummadi, Steven D.
Gribble, “A Measurement Study of Peer-to-Peer
File Sharing Systems,” in Proceedings of Multime-
dia Computing and Networking, 2002.

[8] W.W. Terpstra, J. Kangasharju, C. Leng, and A.P.
Buchmann, “Bubblestorm: resilient, probabilistic,
and exhaustive peer-to-peer search,” SIGCOMM
Comput. Commun. Rev., 2007.

[9] Gnutella Network Snapshot Homepage:
http://www.Gnutellameter.com

