
 
 

 

 

  
Abstract—Evolutionary algorithms can efficiently solve 

multi-objective optimization problems (MOPs) by obtaining 
diverse and near-optimal solution sets. However, the 
performance of multi-objective evolutionary algorithms 
(MOEAs) is often limited by the suitability of their 
corresponding parameter settings with respect to different 
optimization problems. The tuning of the parameters is a 
crucial task which concerns resolving the conflicting goals of 
convergence and diversity. Moreover, parameter tuning is a 
time-consuming trial-and-error optimization process which 
restricts the applicability of MOEAs to provide real-time 
decision support.  To address this issue, we propose a 
self-adaptive mechanism (SAM) to exploit and optimize the 
balance between exploration and exploitation during the 
evolutionary search.  This “explore first and exploit later” 
approach is addressed through the automated and dynamic 
adjustment of the distribution index of the simulated binary 
crossover (SBX) operator. Our experimental results suggest 
that SAM can produce satisfactory results for different problem 
sets without having to predefine/pre-optimize the MOEA’s 
parameters. SAM can effectively alleviate the tedious process of 
parameter tuning thus making on-line decision support using 
MOEA more feasible. 
 

Index Terms— Self-adaptive, parameter tuning, simulated 
binary crossover, evolutionary algorithm.  

I. INTRODUCTION 
  Evolutionary algorithms can efficiently solve 
multi-objective optimization problems (MOPs) by obtaining 
diverse and near-optimal solution sets. Multiple evolutionary 
techniques have been proposed for MOPs. Among them, 
Non-dominated Sorting Genetic Algorithms II (NSGA-II) [1] 
and Strength Pareto Evolutionary Algorithm II (SPEAII) [2] 
are commonly regarded as the state-of-the-art multi-objective 
evolutionary algorithms (MOEAs).  

In MOEAs, crossover and mutation operators are typically 
utilized to produce offspring solutions from selected parent 
individuals. Both operators involve parameters which dictate: 

1. The frequency (crossover and mutation rate) of the 
evolutionary operations.  

2. The spread (crossover and mutation distribution index) 
of offspring solutions.  

Both the frequency and spread properties govern the 
conflicting convergence and diversity dynamics of the  
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evolutionary process. Consequently, the performance of 
MOEAs depends on the suitability of the above parameters 
setting with respect to specific optimization problems. The 
tuning of these parameters is thus a critical time-consuming 
optimization process. As a result, this limits the applicability 
of MOEAs to provide online decision support for real life 
problems.  

To address this issue, we propose a novel self-adaptive 
mechanism (SAM) which aims at improving the MOEA’s 
performance (when applied to different optimization 
problems) through automatically adjusting/balancing the 
exploration and exploitation of candidate solutions during the 
evolutionary search. SAM can dynamically adjust the 
distribution index of SBX operator in NSGA-II. Identifying a 
suitable distribution index (ŋc) enables NSGA-II to optimize 
the balance between exploration and exploitation during the 
different stages of the evolutionary search.  

The essential idea of SAM is that if the diversity running 
performance is poor, strong evolutionary operation should be 
applied to break the clusters of candidate solutions and vice 
versa. Also, the crowding distance is an estimate of the 
surrounding density of a given solution point and it could be 
regarded as a criterion to determine the value of this solution. 
Hence, if the crowding distance is relatively high, soft 
evolutionary operation is required to preserve the solution 
points.  

The remainder of the paper is structured as follows: A 
description of related work is first presented. This is followed 
with an introduction to the SBX operator and diversity 
running performance metric. Then, a detailed description of 
the self-adaptive mechanism is provided. A series of 
experiments involving multi-objective optimization 
problems are conducted and discussed. Our conclusion and 
future work are then finally outlined. 

II. RELATED WORK 
Past studies [3, 4] have proven the efficiency of the 

“explore first and exploit later” concept which relies on the 
intensive exploration of candidate solutions during the early 
stage and local fine-tuning during the later/final stage of the 
search.  
To exploit this concept in MOEAs, several self-adaptation 

approaches have been proposed [3, 5, 6]. Utilizing the 
feedback from the search, several adaptive parameter control 
mechanisms were used to obtain a smooth navigation over 
the search space. For instance, Abbass et al. [5] proposed a 
self-adaptive Pareto Differential Evolution (PDE) algorithm 
which self-adapts the crossover and mutation rate. Tan et al. 



 
 

 

[3] defined a deterministic-scheduled decreasing mutation 
rate and also implemented an adaptive variation operator that 
facilitated the exchange of search information in MOPs [6]. 
These self-adaptation approaches demonstrated significant 
improvements over static counterparts; note that these 
methods focused on the effects of changing the 
crossover/mutation rates (i.e., frequency) instead of the 
distribution index parameter (i.e., spread). Here we propose 
a complementary investigation examining the effects of the 
spread property. 
To our knowledge, the only significant reported study 

addressing spread was carried out by Deb et al. [7], in which 
a self-adaptive SBX (SA-SBX) was introduced to 
dynamically adjust (at each generation) the distribution 
index of SBX in NSGA-II. SA-SBX was found to produce 
better results on both single and multiple objective 
optimization problems compared to the SBX with fixed 
value of the distribution index. Nevertheless, a drawback of 
SA-SBX is that it requires another critical user-predefined 
parameter α. According to the experiments reported in [7], 
SA-SBX would outperform the traditional non self-adaptive 
counterpart only when α is manually “well tuned”.  

Although the Deb et al.’s approach demonstrated better 
performances, their method introduced an additional 
difficulty in the already complex parameter tuning process. 
Consequently such approaches do not resolve the robustness 
and applicability issues of MOEAs for real-time applications.  

In contrast with Deb et al.’s approach, we propose a 
self-adaptive method which does not introduce another 
critical parameter to be predefined by the user. This 
self-adaptive mechanism is presented in the next section. 

III. SELF-ADAPTIVE MECHANISM 
The working principles of SBX are described to emphasize 

the importance of distribution index ŋc in generating the 
offspring solutions. Then, the implementation details of the 
diversity running performance metric are presented and the 
concept of crowding distance is introduced. Finally, we 
present the self-adaptive mechanism (SAM) which can 
dynamically adjust the distribution index in SBX using the 
feedback information from both the diversity running 
performance metric and the crowding distance. 

A. Simulated Binary Crossover (SBX) 
The SBX crossover operator [8] creates two offspring 

solutions (represented as real values) from two selected 
parent solutions. The procedure of deriving offspring 
solutions xi

(1,t+1) and xi
(2,t+1) from the parent solutions xi

(1,t) and 
xi

(2,t) is as follow.  
A random number ݑ is generated. Given a 

pre-specified probability distribution function (Eq. 1), the 
value of βi (mathematical definition of βi, see Eq. 9) is 
determined so that the area under the probability curve from 
zero to βi is equal to u. The distribution index ŋc is a 
non-negative real number. Figure 1 illustrates the probability 
density function for creating offspring solutions using the 
SBX operator from two example parents xi

 (1,t) =3 and xi
 (2,t) =6 

with distribution index of ŋc =2.0 and ŋc =5.0. Larger values 
of ŋc are more likely to produce “near parent” solutions 
whereas smaller values of ŋc lead to a more diverse search. 
After obtaining βi from Eq. 2, the offspring solutions are 

calculated using Eq. 3 and 4. 

 
Figure 1: The probability density function for creating offspring solutions 

with the SBX operator (adapted from [7]). 
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B. Diversity Running Performance Metric 
A modified diversity running performance metric is 

implemented to dynamically assess the diversity performance 
of the generated solution sets. This diversity running 
performance metric is based on the running performance 
metrics proposed by Deb et al. [9]. Two principal 
modifications are introduced: 

1. The number of grids (approximating the diversity of the 
population, see Fig. 2) is derived by dividing the 
population size by the number of objectives (instead of 
requiring the user to manually define it).  

2. Deb et al.’s approach is limited by the requirement of a 
priori knowledge of the target solutions distribution. 
Using this information, the number of grids can be 
determined/fitted. Nevertheless in real time/life 
optimization problems, this information is usually 
unavailable. Here the running metric does not refer to 
any pre-specified target set of solution points. Instead 
the running metric is employed to converge towards an 
ideal target set of solutions where each grid would 
possess a representative solution point. 

Given the minimal and maximal boundary values, the 
hyperplane is thus divided into a number of grids (population 
size divided by the number of objectives).  The diversity 
performance metric is based on whether each grid contains a 
solution point or not. The best diversity performance is 
achieved if all grids contain at least a solution point. The 
steps to calculate the diversity are as follows. 

 



 
 

 

 
 

Step 1: Calculate diversity array. 
 
The number of integer variables in the diversity array is equal 
to the number of grids in the hyperplane. Each variable in the 
diversity array corresponds to one particular grid i. The value 
h(i) of the ith elements is derived using Eq. 5. 
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Step 2: Assign a value, m() to each grid i depending on its 
neighboring grids’ h() values in the diversity array. The 
value of the ith grid is calculated as shown in Table 1. 
 

Table 1: Mapping table to assign a value to m(). (adapted from [9]) 

h(i-1) h(i) h(i+1) m( h(i-1), h(i), h(i+1) ) 
0 0 0 0.00 
0 0 1 0.50 
1 0 0 0.50 
0 1 1 0.67 
1 1 0 0.67 
0 1 0 0.75 
1 0 1 0.75 
1 1 1 1.00 

 
 For example let us consider the grid patterns p1=|0|1|0| (i.e., 
h(i-1)=0, h(i)=1 and h(i+1)=0 and p2=|1|0|1|. According to 
Table 1, we obtain m(p1) = m(p2) = 0.75 which represent a 
good periodic spread pattern. Whereas if we consider 
p3=|1|1|0|, we obtain m(p3)= 0.67 meaning that the p3 covers a 
smaller spread.  
 
Step 3: For each objective, calculate the diversity measure dm 
by averaging the m() values. 
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To illustrate the procedure to calculate the diversity measure, 
an example is presented in Figure 2. 
 

 
Figure 2: Example of computing the diversity metric. 

In this example, a two-objective (f1 and f2) minimization 
problem is examined. The solution points are marked as 
points. The f2 = 0 plane is used as the reference plane and the 

range of f1 values are divided into, suppose the population 
size is 10, 10/2 = 5 grids. Then, for each grid, the value of h() 
is calculated based on whether the grid contains a 
representative solution point or not. Then, the value of m() 
and the diversity measure are calculated based on a sliding 
window containing three consecutive grids. The h() values of 
the imaginary boundary grids are always 1 as shown in the 
shaded grids. 
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Step 4: Calculate overall diversity performance metric by 
averaging the diversity measures of all objective spaces. 
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Figure 3 illustrates the running diversity metric obtained 

using NSGA-II with population size=100, crossover 
distribution index ŋc=20.0, mutation distribution index 
ŋm=50.0, crossover probability pc=1.0, mutation probability 
pm=1/30 and 1/10 for the benchmark problems ZDT1 and 
ZDT6 respectively, and maximum number of generations 
g=500.  For ZDT1, after the 100th generation, the diversity 
metric oscillates around a value of 0.85. In ZDT6 case, this 
diversity metric reaches steady state after 160 generations. 
Similar observations have been reported in Laumanns et al. 
[10]. In our implementation, this diversity running 
performance metric is used to return feedback about the 
search space. Once the diversity metric stabilizes (i.e., when 
the exploration phase terminates) the exploitation phase may 
initiate.  

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300 350 400 450 500

D
iv
er
si
ty
 M

et
ri
c 
Ev
al
ua
tio

n

ZDT1

ZDT6

Number of Generation

 
Figure 3: Diversity metric dynamics for ZDT1 and ZDT6 using NSGA-II. 

C. The Crowding Distance 
The crowding distance indicator was proposed by Deb et 

al. [1]. It serves as an estimation of the size of the largest 
cuboid enclosing the solution point.  

 

 
Figure 4: Example of computing the crowding distance for point i. 



 
 

 

It could be regarded as a criterion to determine the value of 
the solution point. In this scheme, “boundary solutions” or 
highest and lowest objectives are given the maximum value 
in order to retain them. The crowding distance can be 
calculated by measuring the distance between the two 
immediate neighbors of a given point along each of the 
objective dimensions. Lastly, the “final crowding distance” is 
computed by adding the crowding distances obtained for 
each objective. Figure 4 shows a two-objective example 
illustrating the crowding distance technique. The crowding 
distance for point i can be computed as follows: 
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D. Self-Adaptive SBX 
In most applications of NSGA-II, the crossover rate and 

mutation distribution index ŋc and ŋm are fixed. Specifically, a 
fixed value of ŋc=2.0 is typically chosen for single-objective 
optimization problems [11]. Whereas ŋc=20.0 is commonly 
used for ZDT benchmark problem sets. Although using a 
fixed value of ŋc can also lead to the implementation of 
self-adaptive techniques, past studies using the SBX operator 
with fixed distribution index could not solve multi-modal 
problems such as the Rastrigin’s function [8].  

We suggest a self-adaptive mechanism to dynamically 
update ŋc. Here we assume that for MOPs, the optimal 
diversity performance could only be achieved when the 
solution set is close to the optimal solution set. Hence, if 
optimal diversity performance is achieved, the distribution 
index ŋc should be large enough to make the offspring 
solutions very similar to their parents. On the other hand, if 
the diversity performance is poor, strong crossover operation 
should be applied to break the clusters of solution points. In 
the beginning stage of the search process, relatively low 
diversity metric results in strong crossover operation to 
explore the search space and in the later stage, soft crossover 
operation is applied to exploit local near-optimal solutions. 
Thus, this diversity-driven SAM can effectively exploit the 
concept of “explore first and exploit later”.  

Also, a large crowding distance means that the surrounding 
density of the solution point is low, consequently soft 
crossover operation should be applied to preserve it. Figure 5 
provides an overview of SAM. 

 
Figure 5: Schematic overview of SAM. Firstly, the diversity running 
performance metric is calculated. Then, a reference distribution index is 
derived based on the diversity performance of the solution set. Lastly, 
according to the crowding distances of the selected parents, individual 
crossover index is assigned to improve the efficiency and accuracy of the 
crossover operator. 

The above SAM algorithm is now detailed: 
 
Step 1: Calculate the diversity running performance metric 

(Section III.B). 
 
Step 2: Derive the reference crossover distribution index 

ୡ based on the diversity performance.  
 
The spread ߚ௜ of the offspring solution points with respect to 
the parent points is obtained in Eq. 9. Based on ߚ , crossover 
can be classified into three classes, namely contracting 
crossover ( ), stationary crossover ( ), and 
expanding crossover (ߚ ). The expanding crossover can 
“expand” the parent points to form more diverse the offspring 
points. Contracting crossover has the opposite effect of 
contracting the parent points. We define the value range of ߚ௜ 
from 0.9 to 1.1 as the close value range (CVR) where the 
generated offspring solutions are very similar to parent 
solutions. This range was determined based on parametric 
studies (more details in next section). 
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Figure 6: Mapping between ߚ  and u value in SAM. 

Here we determine the reference distribution index ŋc such 
that the probability of ߚ௜  falling into the CVR ሺi. e. , ࢏ߚ א

 the diversity performance metric as 
illustrated in Figure 6. For example, if the diversity running 
performance metric is 0.70, then we should make sure that 
70% of the time ݅ߚ  א ሾ0.9,1.1ሿ . By mapping the random 
number u to ݅ߚ (using Eq. 2), we ve ݑ א ሾ0.15,0.85ሿ. Then 
ŋc can be calculated using Eq. 10 and 11: 
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averaged and we obtain a  crosso ution 
index ŋୡ = 11.0 to produce offspring solutions. 

Randomly initialized population causes poor diversity 
performance at the beginning and consequently lowers the 
probability of ߚ௜ falling into CVR. In the later stage, the 
diversity performance stabilizes at a relatively higher value 
and the exploitation phase starts as the probability of 
  .௜ in-between CVR is higherߚ

 
 
 



 
 

 

St  3: According to the crowding distances cd of the 

or each generated offspring solution, individual crossover 
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selected parents, individual crossover distribution indexes 
are assigned to improve the efficiency and accuracy of the 
crossover operator. 
 
F
indexes are computed using the expression below. 
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here cd1 and cd2 are the crowding distances of the two w
selected parents and ܿ݀തതത is the average crowding distance of 
the entire population.  As devised in the crowding distance 
scheme, the boundary solutions have maximum values. 
Consequently these values are not included in the calculation 
of the average crowding distance. Instead, offspring solutions 
having boundary solutions as parent points are assigned with 
the highest distribution index to retain them. Following the 
previous example, ŋc = 11.0 and the crowding distances of the 
two parents of offspring solution c are 0.65 and 0.95 
respectively with an average crowding distance of 0.50. 
Given Eq. 12, we have: ŋ௖ ′ ൌ 11.0 ൈ  ଵ.଺଴

ଵ.଴଴
ൌ 17.6. 

IV. EXPERIMENTS 
The benc  and 6 (Table 2) are 

us

athematical definition for the ZDT benchmark problems. 

 n Variable Objective functions  

hmark problems ZDT1, 2, 3, 4
ed to evaluate the performance of NSGA-II using SAM. 

The following parameter setting is used: ŋc = 20.0, ŋm = 50.0, 
pc = 1.0, pm = 1 / (number of variables). Each set of 
experiments (where 100,000 fitness evaluations are 
conducted) is repeated ten times.  
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Two benchmark metrics, Inverted Generational Distance 

(IGD) and SPREAD are employed to measure the 
performance. IGD uses the true Pareto front1 as a reference 
and measure the distance of each of the solution points with 
respect to the front as (13):  
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Where ݀௜  is the Euclidean distance between the solution 
points and the closet member of the true Pareto front. ݊ is the 
number of solution points in the true Pareto front. When 

, it indicates that the obtained solution set is in the 
true Pareto front. The SPREAD indicates the extent of spread 
among the obtained solutions and is computed as follows. 
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Where ݀  and ݀  are the Euclidean distances between the 
boundary solutions (of the obtained solution set). ݀௟  is the 
Euclidean distance between consecutive solution points. 
Tables 3 and 4 summarize the experimental results.  
 

Table 3: Results for the Inverted Generational Distance Metric between 
SAM NSGA-II and NSGA-II. 

Inverted Generational Distance (IGD) Metric 
  NSGA-II with SAM NSGA-II 

  Mean Standard 
Deviation Mean Standard 

Deviation 
ZDT1 1.74E-04 5.10E-06 1.91E-04 1.08E-05 
ZDT2 1.79E-04 5.64E-06 1.88E-04 8.36E-06 
ZDT3 2.46E-04 7.74E-06 2.59E-04 1.16E-05 
ZDT4 1.67E-04 8.02E-06 1.84E-04 9.86E-06 
ZDT6 1.51E-04 1.06E-05 1.59E-04 1.24E-05 

 
Table 4: Results for the Spread Diversity Metric between SAM NSGA-II and 

NSGA-II. 

Spread Diversity Metric 
  NSGA-II with SAM NSGA-II 

  Mean Standard 
Deviation Mean Standard 

Deviation 
ZDT1 2.92E-01 3.25E-02 3.83E-01 3.14E-02 
ZDT2 3.15E-01 2.01E-02 3.52E-01 7.25E-02 
ZDT3 7.31E-01 1.20E-02 7.49E-01 1.49E-02 
ZDT4 3.27E-01 2.71E-02 3.96E-01 2.94E-02 
ZDT6 4.73E-01 2.98E-02 4.80E-01 4.49E-02 

 
As observed in Tables 3 and 4, SAM achieved lower 

means for both IGD and Spread diversity metrics in all ZDT 
problem sets compared to NSGA-II with fixed distribution 
index. Note that no prior parameter-tuning was conducted for 
the runs using SAM. As depicted in Figure 6, CVR for ࢏ࢼ is 
defined from 0.9 to 1.1. Differing CRV definitions may result 
 
1 The true Pareto front used in these experiments was taken from the jMetal 
website (http://jmetal.sourceforge.net). 

 

http://jmetal.sourceforge.net/


 
 

 

CVR א ሾ0.6,1.4ሿ.  and CVR א ሾ0.5,1.5ሿ.  The 
complementary experimental condition, settings, an
benchmark are same as in pr

in significantly different reference crossover indexes. To 
explore the effects upon SAM’s performance, we conduct a 
parametric study of CRV. Again, we use the ZDT benchmark 
problem sets to measure the effects of different CVR 
definition. We evaluate SAM with the following CVR 
definitions: CVR א ሾ0.9,1.1ሿ, CVR א ሾ0.8,1.2ሿ, CVR א
ሾ0.7,1.3ሿ ,

d 
the evious experiments.  

 
Table 5: Results for the Inverted Generational Distance Metric  with 

different CVR for SAM NSGA-II and NSGA-II. 
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ibution and exploration in evolutionary multi-objective 
optimization. European Journal of Operational Research 171 (2), 
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Com

n
when compared with other ZDT benchmark problems. 
Hence, a wider CVR may potentially be more suitable to 
handle non-continuous large search space. Future work may 
illuminate this issue. 

V. CONCLUSION 
Utilizing the feedback from diversity running performance 

metric and the crowding distance, a self-adaptive mechanism 

was suggested to dynamically ad
e SBX operator. SAM is able to exploit and control the 

between exploration and exploitation during the 
different evolutionary search stages. We demonstrated that 
SAM can effectively alleviate the tedious process of 
parameter tuning which is a time-consuming trial-and-error 
optimization process.  On several benchmark problem sets, 
SAM was found to outperform NSGA-II with fixed 
distribution index. F
evaluate SAM
Pareto fro t may be dynamic. Finally,

plemented and evaluated in other MOEAs such as the Bee 
Colony Optimization and Artificial Immune System 
techniques. 
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