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Self-Adaptive Mechanism for Multi-objective
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Abstract—Evolutionary algorithms can efficiently solve
multi-objective optimization problems (MOPs) by obtaining
diverse and near-optimal solution sets. However, the
performance of multi-objective evolutionary algorithms
(MOEAs) is often limited by the suitability of their
corresponding parameter settings with respect to different
optimization problems. The tuning of the parameters is a
crucial task which concerns resolving the conflicting goals of
convergence and diversity. Moreover, parameter tuning is a
time-consuming trial-and-error optimization process which
restricts the applicability of MOEAs to provide real-time
decision support. To address this issue, we propose a
self-adaptive mechanism (SAM) to exploit and optimize the
balance between exploration and exploitation during the
evolutionary search. This “explore first and exploit later”
approach is addressed through the automated and dynamic
adjustment of the distribution index of the simulated binary
crossover (SBX) operator. Our experimental results suggest
that SAM can produce satisfactory results for different problem
sets without having to predefine/pre-optimize the MOEA’s
parameters. SAM can effectively alleviate the tedious process of
parameter tuning thus making on-line decision support using
MOEA more feasible.

Index Terms— Self-adaptive, parameter tuning, simulated
binary crossover, evolutionary algorithm.

I. INTRODUCTION

Evolutionary  algorithms  can  efficiently  solve
multi-objective optimization problems (MOPs) by obtaining
diverse and near-optimal solution sets. Multiple evolutionary
techniques have been proposed for MOPs. Among them,
Non-dominated Sorting Genetic Algorithms I (NSGA-II) [1]
and Strength Pareto Evolutionary Algorithm II (SPEAII) [2]
are commonly regarded as the state-of-the-art multi-objective
evolutionary algorithms (MOEAs).

In MOEAs, crossover and mutation operators are typically
utilized to produce offspring solutions from selected parent
individuals. Both operators involve parameters which dictate:

1. The frequency (crossover and mutation rate) of the

evolutionary operations.

2. The spread (crossover and mutation distribution index)

of offspring solutions.
Both the frequency and spread properties govern the
conflicting convergence and diversity dynamics of the
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evolutionary process. Consequently, the performance of
MOEASs depends on the suitability of the above parameters
setting with respect to specific optimization problems. The
tuning of these parameters is thus a critical time-consuming
optimization process. As a result, this limits the applicability
of MOEAs to provide online decision support for real life
problems.

To address this issue, we propose a novel self-adaptive
mechanism (SAM) which aims at improving the MOEA’s
performance (when applied to different optimization
problems) through automatically adjusting/balancing the
exploration and exploitation of candidate solutions during the
evolutionary search. SAM can dynamically adjust the
distribution index of SBX operator in NSGA-II. Identifying a
suitable distribution index (7.) enables NSGA-II to optimize
the balance between exploration and exploitation during the
different stages of the evolutionary search.

The essential idea of SAM is that if the diversity running
performance is poor, strong evolutionary operation should be
applied to break the clusters of candidate solutions and vice
versa. Also, the crowding distance is an estimate of the
surrounding density of a given solution point and it could be
regarded as a criterion to determine the value of this solution.
Hence, if the crowding distance is relatively high, soft
evolutionary operation is required to preserve the solution
points.

The remainder of the paper is structured as follows: A
description of related work is first presented. This is followed
with an introduction to the SBX operator and diversity
running performance metric. Then, a detailed description of
the self-adaptive mechanism is provided. A series of
experiments  involving  multi-objective  optimization
problems are conducted and discussed. Our conclusion and
future work are then finally outlined.

II. RELATED WORK

Past studies [3, 4] have proven the efficiency of the
“explore first and exploit later” concept which relies on the
intensive exploration of candidate solutions during the early
stage and local fine-tuning during the later/final stage of the
search.

To exploit this concept in MOEAs, several self-adaptation
approaches have been proposed [3, 5, 6]. Utilizing the
feedback from the search, several adaptive parameter control
mechanisms were used to obtain a smooth navigation over
the search space. For instance, Abbass ef al. [5] proposed a
self-adaptive Pareto Differential Evolution (PDE) algorithm
which self-adapts the crossover and mutation rate. Tan et al.
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[3] defined a deterministic-scheduled decreasing mutation
rate and also implemented an adaptive variation operator that
facilitated the exchange of search information in MOPs [6].
These self-adaptation approaches demonstrated significant
improvements over static counterparts; note that these
methods focused on the effects of changing the
crossover/mutation rates (i.e., frequency) instead of the
distribution index parameter (i.e., spread). Here we propose
a complementary investigation examining the effects of the
spread property.

To our knowledge, the only significant reported study
addressing spread was carried out by Deb et al. [7], in which
a self-adaptive SBX (SA-SBX) was introduced to
dynamically adjust (at each generation) the distribution
index of SBX in NSGA-II. SA-SBX was found to produce
better results on both single and multiple objective
optimization problems compared to the SBX with fixed
value of the distribution index. Nevertheless, a drawback of
SA-SBX is that it requires another critical user-predefined
parameter a. According to the experiments reported in [7],
SA-SBX would outperform the traditional non self-adaptive
counterpart only when « is manually “well tuned”.

Although the Deb et al.’s approach demonstrated better
performances, their method introduced an additional
difficulty in the already complex parameter tuning process.
Consequently such approaches do not resolve the robustness
and applicability issues of MOEAs for real-time applications.

In contrast with Deb et al.’s approach, we propose a
self-adaptive method which does not introduce another
critical parameter to be predefined by the user. This
self-adaptive mechanism is presented in the next section.

III. SELF-ADAPTIVE MECHANISM

The working principles of SBX are described to emphasize
the importance of distribution index . in generating the
offspring solutions. Then, the implementation details of the
diversity running performance metric are presented and the
concept of crowding distance is introduced. Finally, we
present the self-adaptive mechanism (SAM) which can
dynamically adjust the distribution index in SBX using the
feedback information from both the diversity running
performance metric and the crowding distance.

A. Simulated Binary Crossover (SBX)

The SBX crossover operator [8] creates two offspring
solutions (represented as real values) from two selected
parent solutions. The procedure of deriving offspring
solutions x;"**" and x;**"" from the parent solutions x," and
x®Yis as follow.

A random number u € [0,1] is generated. Given a
pre-specified probability distribution function (Eq. 1), the
value of f; (mathematical definition of S, see Eq. 9) is
determined so that the area under the probability curve from
zero to f; is equal to u. The distribution index 7. is a
non-negative real number. Figure 1 illustrates the probability
density function for creating offspring solutions using the
SBX operator from two example parents x; "? =3 and x; *" =6
with distribution index of . =2.0 and 5. =5.0. Larger values
of 5. are more likely to produce “near parent” solutions
whereas smaller values of 7, lead to a more diverse search.
After obtaining f; from Eq. 2, the offspring solutions are
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calculated using Eq. 3 and 4.
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Figure 1: The probability density function for creating offspring solutions
with the SBX operator (adapted from [7]).
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B. Diversity Running Performance Metric

A modified diversity running performance metric is
implemented to dynamically assess the diversity performance
of the generated solution sets. This diversity running
performance metric is based on the running performance
metrics proposed by Deb et al. [9]. Two principal
modifications are introduced:

1. The number of grids (approximating the diversity of the
population, see Fig. 2) is derived by dividing the
population size by the number of objectives (instead of
requiring the user to manually define it).

2. Deb et al.’s approach is limited by the requirement of a
priori knowledge of the target solutions distribution.
Using this information, the number of grids can be
determined/fitted. Nevertheless in real time/life
optimization problems, this information is usually
unavailable. Here the running metric does not refer to
any pre-specified target set of solution points. Instead
the running metric is employed to converge towards an
ideal target set of solutions where each grid would
possess a representative solution point.

Given the minimal and maximal boundary values, the
hyperplane is thus divided into a number of grids (population
size divided by the number of objectives). The diversity
performance metric is based on whether each grid contains a
solution point or not. The best diversity performance is
achieved if all grids contain at least a solution point. The
steps to calculate the diversity are as follows.
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Step 1: Calculate diversity array.

The number of integer variables in the diversity array is equal
to the number of grids in the hyperplane. Each variable in the
diversity array corresponds to one particular grid i. The value
h(i) of the i" elements is derived using Eq. 5.

1,if grid i contains a representative point;
0, otherwise.

h(i) = { (5)

Step 2: Assign a value, m() to each grid i depending on its
neighboring grids’ h() values in the diversity array. The
value of the i" grid is calculated as shown in Table 1.

Table 1: Mapping table to assign a value to m(). (adapted from [9])

h(i-1)
0

=

Wit D) | m(hG-1), h(), h(it]))
0 0.00

0.50

0.50

0.67

0.67

0.75

0.75

1.00

=
—|o|—=|—=|~|o|o|e|R

—|—|o—|o|~|o
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For example let us consider the grid patterns p;=|0|1/0| (i.e.,
h(i-1)=0, h(i)=1 and h(i+1)=0 and p,=|1/0|1]. According to
Table 1, we obtain m(p;) = m(p,) = 0.75 which represent a
good periodic spread pattern. Whereas if we consider
p3=|1]110], we obtain m(p;)= 0.67 meaning that the p; covers a
smaller spread.

Step 3: For each objective, calculate the diversity measure d,,
by averaging the m() values.

Znumber of grids

4 2 Z m(h(i — 1), h(i), h(i + 1))

Number of Grids

(6)

To illustrate the procedure to calculate the diversity measure,
an example is presented in Figure 2.
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Figure 2: Example of computing the diversity metric.

In this example, a two-objective (f; and f>) minimization
problem is examined. The solution points are marked as
points. The f> = 0 plane is used as the reference plane and the
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range of f; values are divided into, suppose the population
size is 10, 10/2 = 5 grids. Then, for each grid, the value of /()
is calculated based on whether the grid contains a
representative solution point or not. Then, the value of m()
and the diversity measure are calculated based on a sliding
window containing three consecutive grids. The /() values of
the imaginary boundary grids are always 1 as shown in the

shaded grids.
0.67 +0.50 + 0.50 + 0.67 + 1
dm(f1) = .

= 0.668

Step 4: Calculate overall diversity performance metric by
averaging the diversity measures of all objective spaces.

number of objectives d .
i m ()

Diversity Metric = (7

L
Number of Objectives

Figure 3 illustrates the running diversity metric obtained
using NSGA-II with population size=100, crossover
distribution index #.~20.0, mutation distribution index
7,=50.0, crossover probability p.=1.0, mutation probability
pn=1/30 and 1/10 for the benchmark problems ZDT1 and
ZDT6 respectively, and maximum number of generations
=500. For ZDTI, after the 100™ generation, the diversity
metric oscillates around a value of 0.85. In ZDT6 case, this
diversity metric reaches steady state after 160 generations.
Similar observations have been reported in Laumanns et al.
[10]. In our implementation, this diversity running
performance metric is used to return feedback about the
search space. Once the diversity metric stabilizes (i.e., when
the exploration phase terminates) the exploitation phase may
initiate.
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Figure 3: Diversity metric dynamics for ZDT1 and ZDT6 using NSGA-II.

C. The Crowding Distance

The crowding distance indicator was proposed by Deb et
al. [1]. It serves as an estimation of the size of the largest
cuboid enclosing the solution point.

» £

Figure 4: Example of computing the crowding distance for point i.
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It could be regarded as a criterion to determine the value of
the solution point. In this scheme, “boundary solutions” or
highest and lowest objectives are given the maximum value
in order to retain them. The crowding distance can be
calculated by measuring the distance between the two
immediate neighbors of a given point along each of the
objective dimensions. Lastly, the “final crowding distance” is
computed by adding the crowding distances obtained for
each objective. Figure 4 shows a two-objective example
illustrating the crowding distance technique. The crowding
distance for point i can be computed as follows:

Crowding distance fori = a + b (8)

D. Self-Adaptive SBX

In most applications of NSGA-II, the crossover rate and
mutation distribution index 7, and 7,, are fixed. Specifically, a
fixed value of 5,=2.0 is typically chosen for single-objective
optimization problems [11]. Whereas #.=20.0 is commonly
used for ZDT benchmark problem sets. Although using a
fixed value of 7. can also lead to the implementation of
self-adaptive techniques, past studies using the SBX operator
with fixed distribution index could not solve multi-modal
problems such as the Rastrigin’s function [8].

We suggest a self-adaptive mechanism to dynamically
update 7. Here we assume that for MOPs, the optimal
diversity performance could only be achieved when the
solution set is close to the optimal solution set. Hence, if
optimal diversity performance is achieved, the distribution
index 7. should be large enough to make the offspring
solutions very similar to their parents. On the other hand, if
the diversity performance is poor, strong crossover operation
should be applied to break the clusters of solution points. In
the beginning stage of the search process, relatively low
diversity metric results in strong crossover operation to
explore the search space and in the later stage, soft crossover
operation is applied to exploit local near-optimal solutions.
Thus, this diversity-driven SAM can effectively exploit the
concept of “explore first and exploit later”.

Also, a large crowding distance means that the surrounding
density of the solution point is low, consequently soft
crossover operation should be applied to preserve it. Figure 5
provides an overview of SAM.

Stepl: Calculate
Diversity Metric

Step2: Determine
Reference Crossover

Population
Distribution Index

Step3: Apply
Evolutionary Operation

Figure 5: Schematic overview of SAM. Firstly, the diversity running
performance metric is calculated. Then, a reference distribution index is
derived based on the diversity performance of the solution set. Lastly,
according to the crowding distances of the selected parents, individual
crossover index is assigned to improve the efficiency and accuracy of the
crossover operator.
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The above SAM algorithm is now detailed:

Step 1: Calculate the diversity running performance metric
(Section I11.B).

Step 2: Derive the reference crossover distribution index
1, based on the diversity performance.

The spread f3; of the offspring solution points with respect to
the parent points is obtained in Eq. 9. Based on S;, crossover
can be classified into three classes, namely contracting
crossover (f; < 1), stationary crossover (f; =1), and
expanding crossover (f8; > 1). The expanding crossover can
“expand” the parent points to form more diverse the offspring
points. Contracting crossover has the opposite effect of
contracting the parent points. We define the value range of f5;
from 0.9 to 1.1 as the close value range (CVR) where the
generated offspring solutions are very similar to parent
solutions. This range was determined based on parametric
studies (more details in next section).

(2t+1) _ L (Lt+1)
X Xi

Bi = 9

x; 20 — 5, (10

0.5 — Diversity/2 0.5 + Diversity/2

Diversity

Y T u
Expanding >
Crossover

+——— Contracting
Crossover

Close Value Range i

09 1.1
Figure 6: Mapping between f; and « value in SAM.

Here we determine the reference distribution index 7, such
that the probability of g; falling into the CVR (i.e., B, €
[0.9,1.1]) equals to the diversity performance metric as
illustrated in Figure 6. For example, if the diversity running
performance metric is 0.70, then we should make sure that
70% of the time g, € [0.9,1.1]. By mapping the random
number u to g, (using Eq. 2), we have u € [0.15,0.85]. Then
7. can be calculated using Eq. 10 and 11:

log2u
J: 88 1, u<05  (10)
logB,
b = lo —
_ g2(1—u)
L_ (1 + Togf ,  u>05 (11)
_ log2x015 .
De = “logos 1 =10.42 and
_ log2(1-0.85)\ _ .
n, = (1 i ) = 11.63 respectively.

The distribution indexes n_ =10.42 and n = 11.63 are
averaged and we obtain a reference crossover distribution
index n_ = 11.0 to produce offspring solutions.

Randomly initialized population causes poor diversity
performance at the beginning and consequently lowers the
probability of g; falling into CVR. In the later stage, the
diversity performance stabilizes at a relatively higher value
and the exploitation phase starts as the probability of
B; in-between CVR is higher.
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Step 3: According to the crowding distances cd of the
selected parents, individual crossover distribution indexes
are assigned to improve the efficiency and accuracy of the
crossover operator.

For each generated offspring solution, individual crossover
indexes are computed using the expression below.

cd, +cd,

— 12
2 Xcd (12)

Ny = . X

where cd; and cd, are the crowding distances of the two
selected parents and cd is the average crowding distance of
the entire population. As devised in the crowding distance
scheme, the boundary solutions have maximum values.
Consequently these values are not included in the calculation
of the average crowding distance. Instead, offspring solutions
having boundary solutions as parent points are assigned with
the highest distribution index to retain them. Following the
previous example, . = 11.0 and the crowding distances of the
two parents of offspring solution ¢ are 0.65 and 0.95
respectively with an average crowding distance of 0.50.

Given Eq. 12, we have: y_ = 11.0 X % =17.6.

IV. EXPERIMENTS

The benchmark problems ZDT1, 2, 3, 4 and 6 (Table 2) are
used to evaluate the performance of NSGA-II using SAM.
The following parameter setting is used: 5. = 20.0, 5, = 50.0,
pe = 1.0, p, = 1 / (number of variables). Each set of
experiments (where 100,000 fitness evaluations are
conducted) is repeated ten times.

Table 2: Mathematical definition for the ZDT benchmark problems.

F10x) = x1
260 = g(x) [1 -(

fl(x>>2]
g(x)

ZDT6 10 [0,1]

Two benchmark metrics, Inverted Generational Distance
(IGD) and SPREAD are employed to measure the
performance. IGD uses the true Pareto front' as a reference
and measure the distance of each of the solution points with
respect to the front as (13):

n 2
Y2 di
n

Where d; is the Euclidean distance between the solution
points and the closet member of the true Pareto front. n is the
number of solution points in the true Pareto front. When
IGD = 0, it indicates that the obtained solution set is in the
true Pareto front. The SPREAD indicates the extent of spread
among the obtained solutions and is computed as follows.

IGD = (13)

de +dy + 215 d; — d
de+d;+(N—1)d

Spread = (14)

Where d; and d; are the Euclidean distances between the
boundary solutions (of the obtained solution set). d; is the
Euclidean distance between consecutive solution points.
Tables 3 and 4 summarize the experimental results.

Table 3: Results for the Inverted Generational Distance Metric between
SAM NSGA-II and NSGA-II.

Variable L .
Problem " bounds Objective functions Inverted Generational Distance (IGD) Metric
NSGA-II with SAM NSGA-II
f1) = x1 M Standard Standard
ean . Mean .
£200 = g(0) [1 N ( a1 )] Deviation Deviation
gx) ZDT1 1.74E-04 5.10E-06 1.91E-04 1.08E-05
ZDTl 30 [0.1] n ZDT2 | 1.79E-04 5.64E-06 1.88E-04 8.36E-06
900 = 1+ LZ xi ZDT3 | 2.46E-04 | 7.74E-06 2.59E-04 1.16E-05
n-l1 i=2 ZDT4 1.67E-04 8.02E-06 1.84E-04 9.86E-06
ZDT6 1.51E-04 1.06E-05 1.59E-04 1.24E-05
1 =x1 x1 12 Table 4: Results for the Spread Diversity Metric between SAM NSGA-II and
2 = a1~ [ | NSGAL
ZDT2 30 [0,1] 5 &
g =1 +mz xi Spread Diversity Metric
=2 NSGA-II with SAM NSGA-II
Mean Star}dqrd Mean Star}dqrd
F1(x) = x1 Deviation Deviation
f2(x) ZDT1 2.92E-01 3.25E-02 3.83E-01 3.14E-02
= g [1 _ [X_l ZDT2 3.15E-01 2.01E-02 3.52E-01 7.25E-02
g(x) ZDT3 7.31E-01 1.20E-02 7.49E-01 1.49E-02
ZDT3 30 [0,1] _ x_15m(10m)] ZDT4 | 3.27E-01 2.71E-02 3.96E-01 2.94E-02
9() n ZDT6 4.73E-01 2.98E-02 4.80E-01 4.49E-02
gl) =1+ % xi
i=2 As observed in Tables 3 and 4, SAM achieved lower
means for both IGD and Spread diversity metrics in all ZDT
f1(x) = x1 problem sets compared to NSGA-II with fixed distribution
£200 = 900 [1 B ( x1 )] index. Note that no prior parameter-tuning was conducted for
Xle 0] 9() the runs using SAM. As depicted in Figure 6, CVR for g; is
ZDT4 10 xie[-55]i g(xl) oG- 1) defined from 0.9 to 1.1. Differing CRV definitions may result
=2,..n = n+ n-—

+ Z(xiZ — 10 cos(4mxi))
i=2
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! The true Pareto front used in these experiments was taken from the jMetal
website (http:/jmetal.sourceforge.net).
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in significantly different reference crossover indexes. To
explore the effects upon SAM’s performance, we conduct a
parametric study of CRV. Again, we use the ZDT benchmark
problem sets to measure the effects of different CVR
definition. We evaluate SAM with the following CVR

definitions: CVR € [0.9,1.1], CVR € [0.8,1.2], CVR €
[0.7,1.3] , CVRE [0.6,1.4]. and CVR € [0.5,1.5]. The
complementary experimental condition, settings, and

benchmark are the same as in previous experiments.

Table 5: Results for the Inverted Generational Distance Metric with
different CVR for SAM NSGA-II and NSGA-II.

Inverted Generational Distance (IGD) Metric

SAM SAM SAM SAM SAM [ \s6A
CVRe | CVRe | CVRe | CVRe | CVRe i
[0.5,1.5] | [0.6,1.4] | [0.7,1.3] | [0.8,1.2] | [0.9,1.1]
/DT 1.81 1.82 1.80 1.80 1.74 1.91
E-04 E-04 E-04 E-04 E-04 | E-04
1.78 1.79 172 1.76 1.79 1.88
ZDT2 | gy E-04 E-04 E-04 E-04 E-04
D73 | 236 2.44 2.46 2.44 2.46 2.59
E-04 E-04 E-04 E-04 E-04 | E-04
1.78 1.72 1.73 1.74 167 1.84
ZDT4 1 Eog E-04 E-04 E-04 E-04 | E-04
1.76 1.57 1.57 1.37 1.51 1.59
ZDT6 1 Eoq E-04 E-04 E-04 E-04 E-04

Table 6: Results for the Spread Diversity Metric with different CVR for
SAM NSGA-II and NSGA-II.

Spread Diversity Metric

SAM | SAM | SAM | SAM | SAM [ o
CVRe | CVRe | cVRe | cvRe | cvre .
[0.5,1.5] | [0.6,1.4] | [0.7,1.3] | [0.8,1.2] | [0.9,1.1]
Jot1 | 295 2.96 2.77 2.98 2.92 383
E-01 E-01 E01 | E-0I E0l | E-01
2.96 297 2.80 287 315 3.52
ZDT2 | By E-01 E01 | E-0I E01 | E-01
7.23 728 732 7.30 731 7.49
ZDT3 1 o1 | Rl E-01 E-01 B0l | E-o0l
3.64 3.56 361 3.40 327 3.96
ZDT4 | gy E-01 E-01 E-01 E01 | E-01
496 489 471 457 473 480
ZDT6 | By E-01 E-01 E01 | EO01 | E-01

Tables 5 and 6 compare the performance of different CVR
definitions. The best solutions are marked in bold. We can
observe that except for ZDT1, optimal IGD and SPREAD
performances were achieved with specific CRV settings.

Although the optimal CVR wvaries with respect to
different benchmark problem sets, all results using SAM
outperformed the base NSGA-II with fixed distribution
index. This demonstrates the performance of SAM is robust
against different CVR settings.

Also, we note in ZDT3 that the optimal CVR setting
(0.5,1.5) is relatively wider than the other optimal CVRs
found for ZDT 1,2,4 and 6. The Pareto front of ZDT3 is
non-continuous convex with relatively larger search space
when compared with other ZDT benchmark problems.
Hence, a wider CVR may potentially be more suitable to
handle non-continuous large search space. Future work may
illuminate this issue.

V. CONCLUSION

Utilizing the feedback from diversity running performance
metric and the crowding distance, a self-adaptive mechanism
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was suggested to dynamically adjust the distribution index of
the SBX operator. SAM is able to exploit and control the
balance between exploration and exploitation during the
different evolutionary search stages. We demonstrated that
SAM can effectively alleviate the tedious process of
parameter tuning which is a time-consuming trial-and-error
optimization process. On several benchmark problem sets,
SAM was found to outperform NSGA-II with fixed
distribution index. Further investigations are needed to
evaluate SAM when applied to real-time problems where the
Parcto front may be dynamic. Finally, SAM will also be
implemented and evaluated in other MOEAs such as the Bee
Colony Optimization and Artificial Immune System
techniques.
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