
 
 

 

  
Abstract—In today’s market environment, change is an 

integral part of all projects. As such, its proper management is 
a crucial task when it comes to reducing both time and cost of 
development. The classical modeling approach can improve the 
situation up to a proper extent but it is not enough, because the 
process is usually variable and complex. Therefore it is 
necessary to introduce different level of abstractions for 
modeling. Each of these levels should serve at a certain phase 
for a certain purpose in the process. In the early stages several 
elements are grouped together and aggregated at the higher 
level, in an abstract model. Throughout time, granularity 
becomes smaller while understanding of the concepts becomes 
clearer and clearer and we need to see already working 
prototypes. In this situation, the approaches on instance- and 
meta-modeling techniques promise to bring productivity and 
efficiency to the process. This paper outlines practices from 
both approaches. We introduce the approach of using Object 
Constraint Language (OCL) with a Domain Specific Language 
(DSL) for instance-level model querying, illustrating this 
method with some examples. We analyze OCL from the broad 
perspective discussing its advantages and pointing out some its 
limitations. Moving to a higher level of abstraction, we also 
present the usage of Kermeta - an extension to the meta-data 
language with an action language for specifying semantics and 
behavior of meta-models. We show how Kermeta provides the 
possibility of automated meta-model transformations. 
 

Index Terms—Domain Specific Languages, Instance-model, 
Kermeta, Model Driven Development, Meta-model, OCL. 
 

I. INTRODUCTION 

Models, in general, are nowadays a well-established 
approach for representing processes in terms of a set of tasks 
that need to be performed in order to achieve a certain output. 
But in order to adapt to fast changing business requirements, 
companies are in need of flexible systems that allow rapid 
prototyping, testing and/or reconfiguration. From this 
perspective, models are viewed as artifacts that posses 
capability of querying, configuration, change and 
transformation.   

Over the past years, different process modeling languages 
have been consequently proposed and established. They track 
different levels of detail, ranging from high-level models for 
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business analysts, to specific and executable process models. 
To name the most common few of them, we could refer to 
Event-driven Process Chain (EPC) [5], Business Process 
Modeling Notation (BPMN) [11] or Unified Modeling 
Language (UML) [3]. 

In UML, generic modeling approaches are used. Since the 
late 90’s UML has become de-facto a standard for 
Object-oriented analysis and design of information systems. 
UML maintains several aspects of software engineering; 
however it lacks the capability of working and supporting 
queries, which are often needed since the early stages of the 
Objects-first approach. Object Constraint Language (OCL) 
was originally designed specifically for expressing 
constraints of an UML model. Moreover, its ability to 
navigate the model and form collections of objects has lead to 
attempts to use it as query language [7] [8]. From this aspect 
OCL should have the expressive power of relational algebra. 
OCL and UML together posses enough semantics for 
presenting an indirect method for forming queries.  In the 
first part of this paper we discuss the approach of using OCL 
for querying models. 

In the second part we move on to a higher level of 
abstraction, meta-models. For many complex systems, a lot 
of aspects need to be put together from architectural to 
dynamic behaviors, functionalities and user interfaces. The 
design process can be described as the weaving of all these 
aspects into a detailed design model [4]. Model-driven 
methods aim at automating this weaving process. Our 
opinion is that the role of meta-modeling techniques is 
becoming just next to model querying, more and more 
significant. Meta-modeling structure, providing flexible 
capabilities in different environments, has become a great 
help in solving and adapting to different problems. Therefore 
in the second part of this paper we give a presentation of the 
meta-modeling concepts and methodologies by using 
Kermeta - an open source meta-modeling environment. 

 

II. QUERYING MODELS WITH OCL 
UML is well known for its extensive graphical notation 

and diagramming techniques. However, not all complicated 
designs can be simplified and fully expressed by pictures. 
There are cases where additional information needs to be 
captured in a different way. For this reason the UML includes 
the OCL, a textual language that allows a UML modeler to 
specify additional constrains and other requirements that 
sometimes graphical models are just not enough good for. 
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A. Preliminaries 
In the Object Management Group’s (OMG) Model-driven 

Architecture (MDA), precise modeling and behavior of 
action, execution, query and transformation on models are 
essential. OCL is one of the approaches that can be used for 
this purpose. We often see OCL appear in an UML diagram 
or in the supporting documentation describing a diagram 
such as business rule definitions. However, this does not 
mean that OCL is strictly entitled with UML. We can also use 
OCL on non-UML diagram for the same purpose.  

In terms of language category, OCL is a declarative 
language for describing rules that apply to a UML model. 
OCL was developed at IBM and now is a part of UML 
standard. Initially, OCL was only a formal specification 
language extension to UML. Now, as we mentioned, OCL 
can be used with any Meta Object Facility (MOF) [13] 
OMG’s meta-model, including UML.   

UML combined with OCL enables the resolution for many 
of the tasks that are required for MDA. OCL was originally 
viewed as a way to introduce constrains or to restrict certain 
values in a model. But moreover, OCL can also be used to 
support query expressions, derived values, conditions, 
business rules etc.  OCL can express concepts that are not 
supported by UML diagrams, hence making models at all 
levels more precise. OCL can also support transformation 
tools and code generation as a key component to MDA. 

B. Case-study with OCL 
To illustrate this approach, we discuss an example of using 

OCL for supporting instance-level queries with UML. Some 
of the queries can be formed quite conveniently, while some 
more complicated queries may require some other techniques 
and ideas in order to be built successfully within OCL. Our 
example UML diagram for the case is as follow: 

 
Fig. 1: Student Football Club models 

Figure 1 depicts a class model diagram of a Student 
Football Club in a very basic way. Each club can have several 
players. These players are recorded with how many goals 
they have scored and certainly some personal information 
about them. Let’s suppose we have the data of players as 
follow (instance-level): Four players are considered as 
members of the Club. Obviously each player has his own 
attributes. In our case-study, we are interested mainly in the 
number of goals that he scored. This leads to the number of 
points that he obtained accordingly. Notice that the player’s 
data are presented in the diagram not in an UML way. The 
arrows only represent the relationship of a player with a club, 
basically showing he belongs to a club. 

 
Fig. 2: Student Football Club sample data 

We can use OCL to query data at instance-level. At first, 
we can derive some values for several functions in the 
models. For instance, let’s assume that each player will get 5 
points for each goal he scored. The attribute point can be 
derived in OCL as follow: 
context Player::point: Integer  
derive: 5*goalscored 
To get the number of players in the club, we can derive as 

follow: 
context  
StudentFootballClub::numberOfMembers 
                            :Integer  
derive: players->size() 
One convenient way to query data with OCL is to use the 

OCL select() query. Assuming we have to query for the 
number of players that have scored an amount of goals 
greater than a certain value: 
context StudentFootballClub:: 
        numberOfPlayersOverTarget(  
        target:Integer):Integer  
body:   players->select(goalscored>target) 
        ->size() 
The OCL query above should return an integer value as the 

number of players having numbers of scored goals greater a 
value as target. If we need to query a collection, OCL can 
return the result also as a collection: 
context StudentFootballClub:: 
        playersOlderThan(  
        someAge:Integer):Set(Player)  
body:   players->select(age>someAge) 
This function returns a Set as result of the query. In 

general, OCL supports several ways to define collections [7]. 
OCL collections can be the one of the following: 

• Set: no duplicates, not ordered.  
• OrderedSet: just ordered set, not sorted. 
• Bag: may contain duplicates, not ordered. 
• Sequence: an ordered Bag. 

This provides the facility for defining the result of 
querying. We know that some aggregate functions are often 
used in a query language such as Structured Query Language 
(SQL). In OCL this is not quite straight-ahead, but these 
functions still can be implemented. A query to find the 
average value of a collection can be implemented with OCL 
as follow: 
context StudentFootballClub::averageAge() 
                            : Real  
body:   players.age->sum()/players->size() 
This function returns the average age of all players in the 

Student Football Club as a real number. When translated into 
SQL this could simply be the query: 
SELECT AVG(player_age) FROM Player; 
We see that most Database Management Systems (DBMS) 

provide many built-in aggregate functions and they can be 



 
 

 

used quite conveniently for cases like this. With OCL, 
however we have to manually define our functions for such 
purpose. In the case of finding the average value, we had to 
get the sum of all players’ age and divided by the number of 
players we have there:  
players.age->sum()/players->size(). 
In the case of finding the maximal value, our sample is to 

find the best players which are the players that scored the 
highest number of goals. Some calculations need to be 
performed: 
context StudentFootballClub::bestPlayer() 
                            :Set(Player)  
body: players->select(goalscored =  
      players->sortedBy(goalscored) 
               ->last().goalscored) 
This OCL query required a sorting of all players according 

to their number of scored goals. After that, we did a 
projection to the list of all players with the condition where 
the number of scored goals equals to the maximal number of 
goals from that sorted list. Again, we see that this would have 
been a lot easier with a built-in aggregate function from a 
DBMS. This OCL query could be translated into SQL as 
simple as: 
SELECT MAX(goals_cored) FROM Player; 
With this example we demonstrate that OCL is quite 

handy in supporting several simple queries despite the fact 
that sometimes we have to manually implement some of the 
aggregate functions and manually manipulate data. 
However, we still do not see the support of OCL over more 
complex queries requiring, for example, join or product.   

C. OCL as a Query Language for Models 
We have seen examples on querying with OCL, 

nevertheless, the question of whether OCL can be really 
considered as a query language still remains. In order for 
OCL to be considered a fully expressive query language, we 
must be able to translate any SQL statement into an 
equivalent OCL expression. There are some certain obstacles 
to overcome in this direction for using OCL as a query 
language. OCL does not provide a facility for structured 
aggregation (such as a “struct” or a “tuple”) and OCL is not 
expressive enough to define all of the operations required by 
a relational algebra and hence it does not form an adequate 
query language. 

In terms of operations and functionality, OCL supports 
three (out of five) required relational algebra operations. 
Union, Difference, and Select are all supported by operations 
defined on the OCL collection types. However, the operation 
Product (or Cartesian Product) and Project are not supported, 
and cannot be supported as they directly require a facility for 
structured aggregation or a notion of tuples [7].  

To overcome these obstacles, several research papers and 
study have emerged. Some of the authors introduce the 
method of combining UML and OCL together to form 
expressions with the functionality of relational algebra 
operators. One way to do that is to introduce the concept of a 
tuple, as we mentioned above. This idea is based on the UML 
concept of AssociationClass and n-ary Association. An 
instance of an Association is called a Link and an instance of 
an AssociationClass then can be used to represent a tuple of 
other objects. The relationship between the elements of the 
tuple is then expressed by the Link. With this notation we 
describe an indirect method for providing the functionality of 

the Product operator over a number of sets. We can start with 
three sets. After that, in a similar way, we can support the 
operation over n sets for any value of n.   

By definition, the product of three sets S, T and U is the set 
of all tuples (s,t,u) such that s ∈ S, t ∈ T and u ∈ U. Since 
OCL is a side-effect-free language, an OCL expression 
cannot create new objects. Thus, the result of the Product 
operation must be formed by selecting appropriate tuples 
from a set in which they already exist. The only way to ensure 
that such a set exists is to constrain the model as a whole [7]. 
First thing we have to deal with, is the size of the result of the 
Product operator. This can be expressed as a derivation from 
the multiplication of the associated sizes of the Sets. For 
instance with a model containing classes X, Y, Z, we 
introduce XYZ as an AssociationClass for representing the 
result of the Product, and the following constraint can define 
the size: 
context XYZ 
inv: XYZ.allInstances->size =  
                X.allInstances->size* 
                Y.allInstances->size*    (1) 
                Z.allInstances->size 
 
The second point is to prove the correctness of the 

constraint with the semantics of UML. As we use XYZ as a 
placeholder, this results in a model definition. In this model, 
the instances of class XYZ correspond to the Cartesian 
Product of the instances of X, Y and Z. These constraints can 
be expressed as:  
XYZ.allInstances = X.allInstances x  
                   Y.allInstances x       (2)  
                   Z.allinstances  
 
We need to verify that this is true with respect to our 

approach. The first thing we see is that the Left Hand Side 
(LHS) of (2) is a subset of the Right Hand Side (RHS). This 
can be seen from our notion of XYZ, each XYZ object is a 
LinkObject connecting X, Y and Z objects and a Link Object 
is equivalent to a tuple. It follows that all elements of the LHS 
are also elements of the RHS. In other words, LHS is a subset 
of RHS.  

On the other hand, the UML standard states that “There 
are no two Links of the same Association which connect the 
same set of Instances in the same way”. From the constraint 
(1) introduced above about the sizes, we know that the sets 
returned from LHS and the RHS have the same number of 
elements. Combining this with the fact that LHS is a subset of 
RHS, we can say that LHS equals to RHS in equation (2). A 
Cartesian Product between two arbitrary Sets of objects can 
be formed by selecting appropriate instances from the Set of 
allInstances of an AssociationClass defined in this way [7]. 

OCL and its tools [12] are proven to be a good tool for 
querying models, however, there are still several 
disadvantages including the fact that not many people know 
how to read OCL in models. This can somehow restrict the 
audience of the models. Another difficulty is that OCL 
statements are depicted on UML diagrams and this makes the 
models complex.  Vaziri et al. from MIT Labs of Computer 
Science have concluded in their research that some 
shortcomings of OCL make it too implementation oriented to 
be a well suited language for the conceptual modeling 
paradigm [9]. The problematic aspect here is that OCL uses 
operations in constraints, which makes it stay closer to an 



 
 

 

Object-oriented programming language rather than to a 
conceptual language. Also OCL expressions are claimed to 
be too verbose and sometimes hard to read. Finally, it is a 
matter of discussion that OCL is not a standalone language, 
but it needs UML class diagram for modeling. But as we have 
already shown, even though we often see OCL appear in an 
UML diagram or in the supporting documentation describing 
a diagram, this does not mean that OCL is strictly entitled 
with UML, but we can also use OCL on non-UML diagram 
for the same purpose. This makes OCL enough generic and 
independent. 

To conclude, OCL supports three out of the five required 
relational algebra operations. Union, Difference, and Select 
are all supported directly by operations defined on the OCL 
collection types. The operations Product (or Cartesian 
Product) and Project are not directly supported. However, 
indirect methods that may be introduced based on the notion 
of tuple by using the instance of an AssociationClass, making 
a solution to this problem.  There were several proposals on 
extending and aligning OCL to be a fully expressive query 
language. With these aligning on OCL itself we can build 
neat and accurate queries without modifying or adding more 
into the underlying UML models. OCL can become more 
effective as a query language in the future. For now, we can 
use OCL as long as all our needs for model querying can be 
fulfilled. 

 

III. META-MODEL TRANSFORMATION WITH KERMETA 

A. Introduction 
In the recent years, business requirements are changing 

more rapidly and the complexity of enterprise applications is 
growing continuously. This makes it hard that any approach 
will perform well enough and deliver a software system of 
type one-size-fits-all. In this situation, the role of 
meta-modeling techniques is becoming just next to (instance) 
model querying, more and more significant in prototyping, 
business and workflow process design etc. Meta-modeling 
with its meta-model structure and flexible capabilities in 
different environments has provided a great help in solving 
and adapting to different problems by managing their 
complexity. In this section we give an introduction to the 
meta-modeling concepts and methodologies by using 
Kermeta - an open source meta-modeling environment. 
Kermeta has been designed as an extension to the meta-data 
language Essential MOF (EMOF), adding an action 
language for specifying semantics and behavior of 
meta-models.  

A model can give us the view of attributes such as 
functionality, time constrains, security etc. In real life, 
models are developed through extensive communication 
among product managers, designers, and members of the 
development team. As the models approach completion, they 
enable the development of software and systems. A 
meta-model is yet another abstraction, highlighting 
properties of the model itself. A model conforms to its 
meta-model in the way that a computer program conforms to 
the grammar of the programming language in which it is 

written. Model-driven Engineering (MDE) with 
meta-models and automatic model transformation promises 
to bring productivity to software development.  

Kermeta, as a language dedicated to meta-model 
engineering, was initiated in 2005 by the Triskell team of the 
Research Institute in Computer Science and Random 
Systems in France. The name Kermeta is an abbreviation for 
Kernel Meta-modeling, therefore implying that it is the basis 
of meta-modeling. It borrows concepts from languages such 
as MOF, OCL and Query/View/Transform (QVT) [14]. The 
model transformation part of Kermeta is also inspired by 
BasicMTL and previous experience with Model 
Transformation Language (MTL). Kermeta is an 
object-oriented language that provides support for classes 
and relations, multiple inheritance, late binding, static typing, 
class generality, exception, typed function objects. We can 
see that the object-oriented nature of Kermeta comes from 
both UML and the structural part based on also the syntax 
from object-oriented meta-data language EMOF [15]. 

 

 
Fig. 3: Representation of Kermeta domain 

 
Kermeta can be considered as a tool for general 

application of main model-oriented technologies. We found 
this fact to be useful in our work, especially in generative 
programming. We aim to do modeling and implementation 
of systems, not only by automatically generating it from 
specifications written in a Domain Specific Language (DSL), 
but also for its transformation in the context of requirements 
changes [8]. We see that definition of data, actions, 
constraints and transformations are being shared and they 
are now converging to the shape of a common denominator 
in MDE.  

The Kermeta platform has an open-source framework of 
execution that is implemented as a plug-in to Eclipse, under 
the Eclipse Public License. Features of the Kermeta 
workbench are an interpreter and a debugger, a text editor 
with syntax highlighting and code auto-completion, a 
graphical editor and various import/export transformations. 
A model prototyper that will allow running the defined 
model using the behavior defined in Kermeta is under 
development [6].  



 
 

 

B. Case-study with Kermeta 
We will now briefly describe how we found Kermeta useful 

to implement meta-model transformation, by demonstrating 
it through an example. Starting with the modeling idea, we 
had a model of a conference in conceptual scheme, consisting 
of papers and committee members (persons), person being 
the class describing the authors of the papers too. During 
development phase, we went through the process of 
transformation of conceptual scheme to Relational Database 
Management System (RDMS) tables. We found that this 
process may be generic and common for various projects 
dealing with some implementation of a management system 
[10]. So we approach the usage of meta-models for this 
purpose. Our meta-models are classes (conceptual scheme) 
and tables (RDBMS). Kermeta provides tools that make this 
transformation process automatic. 

 
Fig. 4: Input and output meta-models 

 
The first step is to provide input and output meta-models. 

Here is how the abstraction of a relational DBMS could be 
described in Kermeta language:  

 
require kermeta  
using kermeta::standard  
class ForeignKey  
{  
reference references : Table  
reference cols : Column[1..*]  
}  
class Column  
{  
attribute columnname : String  
attribute type : String  
}  
class Table  
{  
attribute tablename : String  
attribute columns : Column[1..*] 
reference primarykey : Column[1..*]  
attribute foreignkeys : ForeignKey[0..*]  
}  
class RDBMSModel  
{  
attribute table : Table[1..*]  
}  
 
To keep track and represent a 1-to-1 mapping between two 

types of objects we define a Trace class that is bound with the 
type of the source and target objects. Once the models are 
provided the next step would be to propose the 

transformation. The proposed transformation is to generate 
tables from the constant classes. Then we generate columns 
in the tables for the attributes and update foreign keys for the 
relationships. There are three steps:  

 
1. Create tables from constant classes  
2. Create columns for each attribute of constant classes 

and construct foreign keys, but we cannot initiate 
them until primary keys of the references tables are 
processed  

3. Update the foreign keys  
 
Using the keyword 'required ' in Kermeta, input and 

output meta-models are imported and after that a class is 
created that performs the actual transformation. Kermeta 
gives us the possibility to execute the transformation by 
running it directly in Eclipse. This transformation 
demonstrates the ability of having execution paradigm of 
models in Kermeta. 

As shown above, from practical viewpoints in our work we 
have found that static model definitions are sometimes not 
well enough fitted for their purpose. Therefore, presenting 
some layer of abstraction will increase effectiveness by 
making code (and spent time for preparing it) more useful 
and easily adaptable in the future. On the other hand, 
changes in requirements, platforms and sometimes even 
personnel require fast altering of existing artifacts at 
minimal costs. So the need of an automatization process is in 
place and indispensable. Languages like Kermeta that bring 
semantics and actions in the meta-model world, while 
keeping support for the smaller subdomains as its 
predecessors, seem to be proper for this rationale.  

 

IV. CONCLUSIONS 
In this paper we have discussed some techniques from the 

modeling paradigm, namely instance-model querying and 
meta-modeling transformation. We observed and explained 
the benefits of such approaches from the business viewpoint. 
In today’s market environment, change is an integral part of 
all projects. Therefore we find the necessity introducing 
different level of abstractions for modeling. We have 
introduced the usage of OCL in the sense of instance-model 
processing and the approach for instance-model using OCL, 
which is becoming more and more popular in the recent years. 
We have illustrated such method with some practical 
examples. Even though from our perspective we find OCL 
very practical and useful, some limitations of this approach 
were also discussed and some possible solutions to them were 
pointed out. From a higher abstraction level we have also 
discussed meta-modeling techniques, namely the usage of 
Kermeta - an extension to the meta-data language EMOF 
with an action language for specifying semantics and 
behavior of meta-models and the possibility of 
transformation. From practical viewpoints in our work we 
have found that static model definitions are sometimes not 
well enough fitted for their purpose. Therefore, presenting 
some layer of abstraction will increase effectiveness by 



 
 

 

making code (and spent time for preparing it) more useful 
and easily adaptable in the future. On the other hand, 
changes in requirements, platforms and sometimes even 
personnel require fast altering of existing artifacts at 
minimal costs. So the need of an automatization process is in 
place and indispensable. Languages like Kermeta that bring 
semantics and actions in the meta-model world, while 
keeping support for the smaller sub-domains as its 
predecessors, seem to be proper for this rationale. Both 
discussed techniques are quite young and far from becoming 
an actual standard in the variety of existing tools available in 
the domains they belong to, therefore our research in this 
area will continue and our goal is to find objective 
improvements and further practical appliance of such 
techniques in every day working processes. 
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