

Abstract—In today’s market environment, change is an

integral part of all projects. As such, its proper management is
a crucial task when it comes to reducing both time and cost of
development. The classical modeling approach can improve the
situation up to a proper extent but it is not enough, because the
process is usually variable and complex. Therefore it is
necessary to introduce different level of abstractions for
modeling. Each of these levels should serve at a certain phase
for a certain purpose in the process. In the early stages several
elements are grouped together and aggregated at the higher
level, in an abstract model. Throughout time, granularity
becomes smaller while understanding of the concepts becomes
clearer and clearer and we need to see already working
prototypes. In this situation, the approaches on instance- and
meta-modeling techniques promise to bring productivity and
efficiency to the process. This paper outlines practices from
both approaches. We introduce the approach of using Object
Constraint Language (OCL) with a Domain Specific Language
(DSL) for instance-level model querying, illustrating this
method with some examples. We analyze OCL from the broad
perspective discussing its advantages and pointing out some its
limitations. Moving to a higher level of abstraction, we also
present the usage of Kermeta - an extension to the meta-data
language with an action language for specifying semantics and
behavior of meta-models. We show how Kermeta provides the
possibility of automated meta-model transformations.

Index Terms—Domain Specific Languages, Instance-model,
Kermeta, Model Driven Development, Meta-model, OCL.

I. INTRODUCTION

Models, in general, are nowadays a well-established
approach for representing processes in terms of a set of tasks
that need to be performed in order to achieve a certain output.
But in order to adapt to fast changing business requirements,
companies are in need of flexible systems that allow rapid
prototyping, testing and/or reconfiguration. From this
perspective, models are viewed as artifacts that posses
capability of querying, configuration, change and
transformation.

Over the past years, different process modeling languages
have been consequently proposed and established. They track
different levels of detail, ranging from high-level models for

V. C. Nguyen is with Software Engineering research group at Department of

Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague - Karlovo náměstí 13, 121 35 Prague 2, Czech
Republic (e-mail: nguyev1@fel.cvut.cz).

X. Qafmolla is with Software Engineering research group at Department of
Computer Science and Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague - Karlovo náměstí 13, 121 35 Prague 2, Czech
Republic (e-mail: qafmox1@fel.cvut.cz).

business analysts, to specific and executable process models.
To name the most common few of them, we could refer to
Event-driven Process Chain (EPC) [5], Business Process
Modeling Notation (BPMN) [11] or Unified Modeling
Language (UML) [3].

In UML, generic modeling approaches are used. Since the
late 90’s UML has become de-facto a standard for
Object-oriented analysis and design of information systems.
UML maintains several aspects of software engineering;
however it lacks the capability of working and supporting
queries, which are often needed since the early stages of the
Objects-first approach. Object Constraint Language (OCL)
was originally designed specifically for expressing
constraints of an UML model. Moreover, its ability to
navigate the model and form collections of objects has lead to
attempts to use it as query language [7] [8]. From this aspect
OCL should have the expressive power of relational algebra.
OCL and UML together posses enough semantics for
presenting an indirect method for forming queries. In the
first part of this paper we discuss the approach of using OCL
for querying models.

In the second part we move on to a higher level of
abstraction, meta-models. For many complex systems, a lot
of aspects need to be put together from architectural to
dynamic behaviors, functionalities and user interfaces. The
design process can be described as the weaving of all these
aspects into a detailed design model [4]. Model-driven
methods aim at automating this weaving process. Our
opinion is that the role of meta-modeling techniques is
becoming just next to model querying, more and more
significant. Meta-modeling structure, providing flexible
capabilities in different environments, has become a great
help in solving and adapting to different problems. Therefore
in the second part of this paper we give a presentation of the
meta-modeling concepts and methodologies by using
Kermeta - an open source meta-modeling environment.

II. QUERYING MODELS WITH OCL
UML is well known for its extensive graphical notation

and diagramming techniques. However, not all complicated
designs can be simplified and fully expressed by pictures.
There are cases where additional information needs to be
captured in a different way. For this reason the UML includes
the OCL, a textual language that allows a UML modeler to
specify additional constrains and other requirements that
sometimes graphical models are just not enough good for.

On Instance-model Querying and
Meta-model Transformation

Viet Cuong Nguyen, Xhevi Qafmolla

A. Preliminaries
In the Object Management Group’s (OMG) Model-driven

Architecture (MDA), precise modeling and behavior of
action, execution, query and transformation on models are
essential. OCL is one of the approaches that can be used for
this purpose. We often see OCL appear in an UML diagram
or in the supporting documentation describing a diagram
such as business rule definitions. However, this does not
mean that OCL is strictly entitled with UML. We can also use
OCL on non-UML diagram for the same purpose.

In terms of language category, OCL is a declarative
language for describing rules that apply to a UML model.
OCL was developed at IBM and now is a part of UML
standard. Initially, OCL was only a formal specification
language extension to UML. Now, as we mentioned, OCL
can be used with any Meta Object Facility (MOF) [13]
OMG’s meta-model, including UML.

UML combined with OCL enables the resolution for many
of the tasks that are required for MDA. OCL was originally
viewed as a way to introduce constrains or to restrict certain
values in a model. But moreover, OCL can also be used to
support query expressions, derived values, conditions,
business rules etc. OCL can express concepts that are not
supported by UML diagrams, hence making models at all
levels more precise. OCL can also support transformation
tools and code generation as a key component to MDA.

B. Case-study with OCL
To illustrate this approach, we discuss an example of using

OCL for supporting instance-level queries with UML. Some
of the queries can be formed quite conveniently, while some
more complicated queries may require some other techniques
and ideas in order to be built successfully within OCL. Our
example UML diagram for the case is as follow:

Fig. 1: Student Football Club models

Figure 1 depicts a class model diagram of a Student
Football Club in a very basic way. Each club can have several
players. These players are recorded with how many goals
they have scored and certainly some personal information
about them. Let’s suppose we have the data of players as
follow (instance-level): Four players are considered as
members of the Club. Obviously each player has his own
attributes. In our case-study, we are interested mainly in the
number of goals that he scored. This leads to the number of
points that he obtained accordingly. Notice that the player’s
data are presented in the diagram not in an UML way. The
arrows only represent the relationship of a player with a club,
basically showing he belongs to a club.

Fig. 2: Student Football Club sample data

We can use OCL to query data at instance-level. At first,
we can derive some values for several functions in the
models. For instance, let’s assume that each player will get 5
points for each goal he scored. The attribute point can be
derived in OCL as follow:
context Player::point: Integer
derive: 5*goalscored
To get the number of players in the club, we can derive as

follow:
context
StudentFootballClub::numberOfMembers
 :Integer
derive: players->size()
One convenient way to query data with OCL is to use the

OCL select() query. Assuming we have to query for the
number of players that have scored an amount of goals
greater than a certain value:
context StudentFootballClub::
 numberOfPlayersOverTarget(
 target:Integer):Integer
body: players->select(goalscored>target)
 ->size()
The OCL query above should return an integer value as the

number of players having numbers of scored goals greater a
value as target. If we need to query a collection, OCL can
return the result also as a collection:
context StudentFootballClub::
 playersOlderThan(
 someAge:Integer):Set(Player)
body: players->select(age>someAge)
This function returns a Set as result of the query. In

general, OCL supports several ways to define collections [7].
OCL collections can be the one of the following:

• Set: no duplicates, not ordered.
• OrderedSet: just ordered set, not sorted.
• Bag: may contain duplicates, not ordered.
• Sequence: an ordered Bag.

This provides the facility for defining the result of
querying. We know that some aggregate functions are often
used in a query language such as Structured Query Language
(SQL). In OCL this is not quite straight-ahead, but these
functions still can be implemented. A query to find the
average value of a collection can be implemented with OCL
as follow:
context StudentFootballClub::averageAge()
 : Real
body: players.age->sum()/players->size()
This function returns the average age of all players in the

Student Football Club as a real number. When translated into
SQL this could simply be the query:
SELECT AVG(player_age) FROM Player;
We see that most Database Management Systems (DBMS)

provide many built-in aggregate functions and they can be

used quite conveniently for cases like this. With OCL,
however we have to manually define our functions for such
purpose. In the case of finding the average value, we had to
get the sum of all players’ age and divided by the number of
players we have there:
players.age->sum()/players->size().
In the case of finding the maximal value, our sample is to

find the best players which are the players that scored the
highest number of goals. Some calculations need to be
performed:
context StudentFootballClub::bestPlayer()
 :Set(Player)
body: players->select(goalscored =
 players->sortedBy(goalscored)
 ->last().goalscored)
This OCL query required a sorting of all players according

to their number of scored goals. After that, we did a
projection to the list of all players with the condition where
the number of scored goals equals to the maximal number of
goals from that sorted list. Again, we see that this would have
been a lot easier with a built-in aggregate function from a
DBMS. This OCL query could be translated into SQL as
simple as:
SELECT MAX(goals_cored) FROM Player;
With this example we demonstrate that OCL is quite

handy in supporting several simple queries despite the fact
that sometimes we have to manually implement some of the
aggregate functions and manually manipulate data.
However, we still do not see the support of OCL over more
complex queries requiring, for example, join or product.

C. OCL as a Query Language for Models
We have seen examples on querying with OCL,

nevertheless, the question of whether OCL can be really
considered as a query language still remains. In order for
OCL to be considered a fully expressive query language, we
must be able to translate any SQL statement into an
equivalent OCL expression. There are some certain obstacles
to overcome in this direction for using OCL as a query
language. OCL does not provide a facility for structured
aggregation (such as a “struct” or a “tuple”) and OCL is not
expressive enough to define all of the operations required by
a relational algebra and hence it does not form an adequate
query language.

In terms of operations and functionality, OCL supports
three (out of five) required relational algebra operations.
Union, Difference, and Select are all supported by operations
defined on the OCL collection types. However, the operation
Product (or Cartesian Product) and Project are not supported,
and cannot be supported as they directly require a facility for
structured aggregation or a notion of tuples [7].

To overcome these obstacles, several research papers and
study have emerged. Some of the authors introduce the
method of combining UML and OCL together to form
expressions with the functionality of relational algebra
operators. One way to do that is to introduce the concept of a
tuple, as we mentioned above. This idea is based on the UML
concept of AssociationClass and n-ary Association. An
instance of an Association is called a Link and an instance of
an AssociationClass then can be used to represent a tuple of
other objects. The relationship between the elements of the
tuple is then expressed by the Link. With this notation we
describe an indirect method for providing the functionality of

the Product operator over a number of sets. We can start with
three sets. After that, in a similar way, we can support the
operation over n sets for any value of n.

By definition, the product of three sets S, T and U is the set
of all tuples (s,t,u) such that s ∈ S, t ∈ T and u ∈ U. Since
OCL is a side-effect-free language, an OCL expression
cannot create new objects. Thus, the result of the Product
operation must be formed by selecting appropriate tuples
from a set in which they already exist. The only way to ensure
that such a set exists is to constrain the model as a whole [7].
First thing we have to deal with, is the size of the result of the
Product operator. This can be expressed as a derivation from
the multiplication of the associated sizes of the Sets. For
instance with a model containing classes X, Y, Z, we
introduce XYZ as an AssociationClass for representing the
result of the Product, and the following constraint can define
the size:
context XYZ
inv: XYZ.allInstances->size =
 X.allInstances->size*
 Y.allInstances->size* (1)
 Z.allInstances->size

The second point is to prove the correctness of the

constraint with the semantics of UML. As we use XYZ as a
placeholder, this results in a model definition. In this model,
the instances of class XYZ correspond to the Cartesian
Product of the instances of X, Y and Z. These constraints can
be expressed as:
XYZ.allInstances = X.allInstances x
 Y.allInstances x (2)
 Z.allinstances

We need to verify that this is true with respect to our

approach. The first thing we see is that the Left Hand Side
(LHS) of (2) is a subset of the Right Hand Side (RHS). This
can be seen from our notion of XYZ, each XYZ object is a
LinkObject connecting X, Y and Z objects and a Link Object
is equivalent to a tuple. It follows that all elements of the LHS
are also elements of the RHS. In other words, LHS is a subset
of RHS.

On the other hand, the UML standard states that “There
are no two Links of the same Association which connect the
same set of Instances in the same way”. From the constraint
(1) introduced above about the sizes, we know that the sets
returned from LHS and the RHS have the same number of
elements. Combining this with the fact that LHS is a subset of
RHS, we can say that LHS equals to RHS in equation (2). A
Cartesian Product between two arbitrary Sets of objects can
be formed by selecting appropriate instances from the Set of
allInstances of an AssociationClass defined in this way [7].

OCL and its tools [12] are proven to be a good tool for
querying models, however, there are still several
disadvantages including the fact that not many people know
how to read OCL in models. This can somehow restrict the
audience of the models. Another difficulty is that OCL
statements are depicted on UML diagrams and this makes the
models complex. Vaziri et al. from MIT Labs of Computer
Science have concluded in their research that some
shortcomings of OCL make it too implementation oriented to
be a well suited language for the conceptual modeling
paradigm [9]. The problematic aspect here is that OCL uses
operations in constraints, which makes it stay closer to an

Object-oriented programming language rather than to a
conceptual language. Also OCL expressions are claimed to
be too verbose and sometimes hard to read. Finally, it is a
matter of discussion that OCL is not a standalone language,
but it needs UML class diagram for modeling. But as we have
already shown, even though we often see OCL appear in an
UML diagram or in the supporting documentation describing
a diagram, this does not mean that OCL is strictly entitled
with UML, but we can also use OCL on non-UML diagram
for the same purpose. This makes OCL enough generic and
independent.

To conclude, OCL supports three out of the five required
relational algebra operations. Union, Difference, and Select
are all supported directly by operations defined on the OCL
collection types. The operations Product (or Cartesian
Product) and Project are not directly supported. However,
indirect methods that may be introduced based on the notion
of tuple by using the instance of an AssociationClass, making
a solution to this problem. There were several proposals on
extending and aligning OCL to be a fully expressive query
language. With these aligning on OCL itself we can build
neat and accurate queries without modifying or adding more
into the underlying UML models. OCL can become more
effective as a query language in the future. For now, we can
use OCL as long as all our needs for model querying can be
fulfilled.

III. META-MODEL TRANSFORMATION WITH KERMETA

A. Introduction
In the recent years, business requirements are changing

more rapidly and the complexity of enterprise applications is
growing continuously. This makes it hard that any approach
will perform well enough and deliver a software system of
type one-size-fits-all. In this situation, the role of
meta-modeling techniques is becoming just next to (instance)
model querying, more and more significant in prototyping,
business and workflow process design etc. Meta-modeling
with its meta-model structure and flexible capabilities in
different environments has provided a great help in solving
and adapting to different problems by managing their
complexity. In this section we give an introduction to the
meta-modeling concepts and methodologies by using
Kermeta - an open source meta-modeling environment.
Kermeta has been designed as an extension to the meta-data
language Essential MOF (EMOF), adding an action
language for specifying semantics and behavior of
meta-models.

A model can give us the view of attributes such as
functionality, time constrains, security etc. In real life,
models are developed through extensive communication
among product managers, designers, and members of the
development team. As the models approach completion, they
enable the development of software and systems. A
meta-model is yet another abstraction, highlighting
properties of the model itself. A model conforms to its
meta-model in the way that a computer program conforms to
the grammar of the programming language in which it is

written. Model-driven Engineering (MDE) with
meta-models and automatic model transformation promises
to bring productivity to software development.

Kermeta, as a language dedicated to meta-model
engineering, was initiated in 2005 by the Triskell team of the
Research Institute in Computer Science and Random
Systems in France. The name Kermeta is an abbreviation for
Kernel Meta-modeling, therefore implying that it is the basis
of meta-modeling. It borrows concepts from languages such
as MOF, OCL and Query/View/Transform (QVT) [14]. The
model transformation part of Kermeta is also inspired by
BasicMTL and previous experience with Model
Transformation Language (MTL). Kermeta is an
object-oriented language that provides support for classes
and relations, multiple inheritance, late binding, static typing,
class generality, exception, typed function objects. We can
see that the object-oriented nature of Kermeta comes from
both UML and the structural part based on also the syntax
from object-oriented meta-data language EMOF [15].

Fig. 3: Representation of Kermeta domain

Kermeta can be considered as a tool for general

application of main model-oriented technologies. We found
this fact to be useful in our work, especially in generative
programming. We aim to do modeling and implementation
of systems, not only by automatically generating it from
specifications written in a Domain Specific Language (DSL),
but also for its transformation in the context of requirements
changes [8]. We see that definition of data, actions,
constraints and transformations are being shared and they
are now converging to the shape of a common denominator
in MDE.

The Kermeta platform has an open-source framework of
execution that is implemented as a plug-in to Eclipse, under
the Eclipse Public License. Features of the Kermeta
workbench are an interpreter and a debugger, a text editor
with syntax highlighting and code auto-completion, a
graphical editor and various import/export transformations.
A model prototyper that will allow running the defined
model using the behavior defined in Kermeta is under
development [6].

B. Case-study with Kermeta
We will now briefly describe how we found Kermeta useful

to implement meta-model transformation, by demonstrating
it through an example. Starting with the modeling idea, we
had a model of a conference in conceptual scheme, consisting
of papers and committee members (persons), person being
the class describing the authors of the papers too. During
development phase, we went through the process of
transformation of conceptual scheme to Relational Database
Management System (RDMS) tables. We found that this
process may be generic and common for various projects
dealing with some implementation of a management system
[10]. So we approach the usage of meta-models for this
purpose. Our meta-models are classes (conceptual scheme)
and tables (RDBMS). Kermeta provides tools that make this
transformation process automatic.

Fig. 4: Input and output meta-models

The first step is to provide input and output meta-models.

Here is how the abstraction of a relational DBMS could be
described in Kermeta language:

require kermeta
using kermeta::standard
class ForeignKey
{
reference references : Table
reference cols : Column[1..*]
}
class Column
{
attribute columnname : String
attribute type : String
}
class Table
{
attribute tablename : String
attribute columns : Column[1..*]
reference primarykey : Column[1..*]
attribute foreignkeys : ForeignKey[0..*]
}
class RDBMSModel
{
attribute table : Table[1..*]
}

To keep track and represent a 1-to-1 mapping between two

types of objects we define a Trace class that is bound with the
type of the source and target objects. Once the models are
provided the next step would be to propose the

transformation. The proposed transformation is to generate
tables from the constant classes. Then we generate columns
in the tables for the attributes and update foreign keys for the
relationships. There are three steps:

1. Create tables from constant classes
2. Create columns for each attribute of constant classes

and construct foreign keys, but we cannot initiate
them until primary keys of the references tables are
processed

3. Update the foreign keys

Using the keyword 'required ' in Kermeta, input and

output meta-models are imported and after that a class is
created that performs the actual transformation. Kermeta
gives us the possibility to execute the transformation by
running it directly in Eclipse. This transformation
demonstrates the ability of having execution paradigm of
models in Kermeta.

As shown above, from practical viewpoints in our work we
have found that static model definitions are sometimes not
well enough fitted for their purpose. Therefore, presenting
some layer of abstraction will increase effectiveness by
making code (and spent time for preparing it) more useful
and easily adaptable in the future. On the other hand,
changes in requirements, platforms and sometimes even
personnel require fast altering of existing artifacts at
minimal costs. So the need of an automatization process is in
place and indispensable. Languages like Kermeta that bring
semantics and actions in the meta-model world, while
keeping support for the smaller subdomains as its
predecessors, seem to be proper for this rationale.

IV. CONCLUSIONS
In this paper we have discussed some techniques from the

modeling paradigm, namely instance-model querying and
meta-modeling transformation. We observed and explained
the benefits of such approaches from the business viewpoint.
In today’s market environment, change is an integral part of
all projects. Therefore we find the necessity introducing
different level of abstractions for modeling. We have
introduced the usage of OCL in the sense of instance-model
processing and the approach for instance-model using OCL,
which is becoming more and more popular in the recent years.
We have illustrated such method with some practical
examples. Even though from our perspective we find OCL
very practical and useful, some limitations of this approach
were also discussed and some possible solutions to them were
pointed out. From a higher abstraction level we have also
discussed meta-modeling techniques, namely the usage of
Kermeta - an extension to the meta-data language EMOF
with an action language for specifying semantics and
behavior of meta-models and the possibility of
transformation. From practical viewpoints in our work we
have found that static model definitions are sometimes not
well enough fitted for their purpose. Therefore, presenting
some layer of abstraction will increase effectiveness by

making code (and spent time for preparing it) more useful
and easily adaptable in the future. On the other hand,
changes in requirements, platforms and sometimes even
personnel require fast altering of existing artifacts at
minimal costs. So the need of an automatization process is in
place and indispensable. Languages like Kermeta that bring
semantics and actions in the meta-model world, while
keeping support for the smaller sub-domains as its
predecessors, seem to be proper for this rationale. Both
discussed techniques are quite young and far from becoming
an actual standard in the variety of existing tools available in
the domains they belong to, therefore our research in this
area will continue and our goal is to find objective
improvements and further practical appliance of such
techniques in every day working processes.

REFERENCES

[1] D. Roberts and R. Johnson, Evolve frameworks into domain-specific

languages. In 3rd International Conference on Pattern Languages,
Allerton Park, Ill., September 1996.

[2] D.H.Akehurst and B.Bordbar, “On Querying UML data models with
OCL,” In Proceedings of the 4th International Conference on The
Unified Modeling Language, Modeling Languages, Concepts, and
Tools, 2001, pp. 91 – 103.

[3] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified Modeling
Language User Guide,” Addison Wesley Longman, 1993.

[4] J. Klein,“Weaving behavior into Metamodels with Kermeta, ” Seminars
notes, University of Luxembourg, 2008.

[5] J. Mendling, M. Nüttgens, “Exchanging EPC Business Process Models
with EPML,” In: Proc. of the 1st GI Workshop XML4BPM - XML
Interchange Formats for Business Process Management at
Modellierung 2004, Marburg Germany, 2004, pp. 61-79.

[6] Kermeta Project documentation, https://www.kermeta.org/documents/,
2008.

[7] L. Mandel and M. V. Cengarle, On the Expressive Power of OCL; FM'99
- Formal Methods, World Congress on Formal Methods in the
Development of Computing Systems, Toulouse, France, Springer LNCS
1708 (September 1999), pp 854 - 874.

[8] M. Gogolla and M. Richters, On Constraints and Queries in UML; Proc.
UML'97 Workshop `The Unified Modeling Language - Technical
Aspects and Applications' (1997).

[9] M. Vaziri and D. Jackson, Some shortcomings of OCL, the Object
Constraint Language of UML, MIT, 1999.

[10] N. V. Cuong and X. Qafmolla, Meta-model Transformation with
Kermeta, in 13th International Conference OBJEKTY 2008
proceedings, p. 109-116.

[11] Object Management Group, “Business process modeling notation,”
February 2006,
http://www.bpmn.org/Documents/OMG%20Final%20Adopted%20BP
MN%201-0%20Spec%2006-02-01.pdf.

[12] Octopus: OCL Tool for Precise UML Specications, ofcial web-site.
http://www.klasse.nl/ocl/octopus-intro.html.

[13] OMG’s Meta Object Facility Specification,
http://www.omg.org/spec/MOF/2.0/

[14] OMG‘s Revised submission for MOF 2.0 Query/View/Transformation,
Object Management Group (QVTMerge Group),
http://www.omg.org/cgi-bin/apps/doc?ad/2005-03-02, 2005.

[15] P. A. Muller, F. Fleurey, D. Vojtisek, Z. Drey, D. Pollet, F. Fondement, P.
Studer, and J. M. Jézéquel. “On executable meta-languages applied to
model transformations,” In Model Transformations In Practice
Workshop, Montego Bay, Jamaica, October 2005.

