
S

Secure Software Development Model: A Guide for
Secure Software Life Cycle

Malik Imran Daud

Abstract---Extreme programming (XP) is a modern
approach for iterative development of software in which
you never wait for the complete requirements and start
development. Security is usually unnoticed during early
phases of software life cycle. In this paper, our main
objective is to focus on security requirements at each
phase of software life cycle. In this regard, XP is a key
solution that provides us with a guide with the ease to
recheck our security requirements, if they are unnoticed
at any step of software life cycle. Based on XP technique,
a new model has been designed that focuses on the
concept of iterative development of secure software. In
addition, this paper is a guide for developers to develop
secure software as most of the software developers are
not trained for software security.

Index Terms ---- Software Security, Software Life cycle,
Extreme Programming (XP)

I. INTRODUCTION

oftware security is to engineer software in such a
way that the required application functions

uninterrupted and is able to nicely handle the security
threats during malicious attacks. Security ensures that
application works in a desired manner and to provide
defense against security threats. In common practice,
security is unnoticed in early phases of software life cycle
(SLC). A good software engineering approach is to think
about security right from beginning of SLC. Inadequate
practice of software development can lead to insecure
software [1]. According to [2], “software assurance is the
level of confidence that software is free from vulnerabilities,
either intentionally designed into the software or
accidentally inserted at any time during its life cycle, and
that the software functions in the intended manner.”

Extreme programming (XP) is an organized approach for
developing software in an iterative manner. XP is
considered best practice to improve the software quality by
repeated feedback and changing requirements [3].

Manuscript received October 21, 2009. This work was supported in part

by Foundation University Institute of Engineering and Management
Sciences.

Malik Imran Daud is working as faculty member at Department of
Telecommunication Engineering, Foundation University Institute of
Engineering and Management Sciences (FUIEMS) Lalazar Rawalpindi,
Pakistan (email: imrandaud@gmail.com).

Security engineers never wait for the perfect requirements,
only initial requirements are gathered and developers start
development.
During development system is presented to security analyst
and security engineers for the recommendation and up
gradation of the security requirements.

This research mainly focuses on the secure life cycle of
software that requires a lot of thorough consideration. That
includes security in Requirements/Analysis, Design,
Implementation and testing phase. At each phase of SLC,
security requirements are gathered and updated iteratively.
Main focus of this technique is to monitor security
requirements and identify security threats at each phase.

Section II describes an overview of software
vulnerabilities whereas section III describes a new life cycle
model and description of each life cycle model is explained
in section IV.

II. SECURE SOFTWARE DEVELOPMENT

Most of the organizations process their confidential
information using software systems via internet. A small
bug in software can be exploited by hackers and confidential
information can be stolen. Besides other problems of
software development, security is becoming a major issue.
According to CERT statistics [4] there has been
considerable increase in vulnerabilities reported over the last
few years, which are depicted in figure 1.

171 345 311 262 417
1,090

2,437

4,1293,7843,780

5,990

8,064
7,236

6,058

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Vulnerabilities

19951996199719981999200020012002200320042005200620072008

Year

CERT Vulnerabilities Statistics

FIGURE 1: VULNERABILITIES STATISTICS

According to statistics shown in Figure 1, security has

been taken as a serious challenge over the last two years.
Accordingly new techniques and methods have been
developed to cure software issues. This resulted in more
secure software and vulnerabilities reported over the last

two years are comparatively less. Considering these
statistics there is a need to develop such approach for
software development that could guaranty security at each
phase of software life cycle. [5] lists common software
vulnerabilities, these vulnerabilities are mainly design and
coding vulnerabilities which are unnoticed by the software
engineers. For any secure software there are three main core
properties which are Confidentiality, Integrity and
availability that is our guideline for designing new
approach.

III. ITERATIVE METHOD OF SOFTWARE LIFE
CYCLE

Security itself is a complete life cycle of software
development. Where as iterative method is considered more
efficient and reliable approach for software development.
You have few set of requirements and start development and
iteratively new requirements are fulfilled. Blend of security
and XP gives a new approach that is shown in figure 3.
Figure 3 shows an iterative model of secure software life
cycle (SSLC) based on extreme programming concept.

Requirements engineering is the main building block for
any software development. Security engineers try to elicit
security requirements by different methods, e.g. user stories,
abuse cases, etc. Figure 4 lists all the main operation to be
performed during SSLC. Based on the information provided
by figure 4 we can derive following main sources to derive
security requirements these are:

• Functional Security Requirements
• Non functional Security Requirements
• Derived Security Requirements
• User stories
• Abuse cases

During analysis phase we get security requirements from

above listed sources. Most of the occasion requirements
gathered from user stories and other sources are not well
defined. These requirements can be refined by security
functional requirements (SFR) module (Details are given in
section ‘IV-A’).

FIGURE 3: ITERATIVE LIFE CYCLE FOR SECURE SOFTWARE

Once the uncertain requirements are refined by SFR

module, then we are ready to start designing our software.
Design phase is important and requires more consideration
in terms of security. Based on the information provided by
analysis phase (Security Requirements by user stories and
SFR) a threat model is developed. If security engineer feels
some of the information is missing or some other security
threats are possible then it goes back to analysis for the
refinement of the security requirements. If security expert
finds no problems, then a mitigation plan is designed to
cater all those threats listed in threat model. Security
vulnerabilities are identified during design phase and Table
2 gives a guideline to find such vulnerabilities. All the
vulnerabilities that a software system may suffer from are
documented and passed to development team. Developers

start development by considering all vulnerabilities and their
mitigation plan designed during design phase.

Once software is developed then it is handed over to
testing team along with the documentation. During this
phase different testing methodologies are used as discussed
in section ‘IV-C’. In this phase engineers try to find design
or development bugs in software application. After that
software application is ready for the deployment.

IV. SECURE SOFTWARE LIFE CYCLE – A
MODEL

Software is vulnerable to attack, when some security
lapses are overlooked during software life cycle. Software
security unnoticed during early phases of life cycle is
inherited to later phases; therefore one phase transfers its

Refined
Requirements

Coding
vulnerabilities Known Security

Vulnerabilities

Implementation
Risks

Testing

Design Bugs

Mitigation Plan

New Security
Requirements

Sec Threats

Test Cases

Uncertain
Requirements

Requirements

User Stories

Analysis

Security
Functional
Requirement

Design

Development

vulnerabilities to the other phase. According to [6] software
is vulnerable to threats that may occur during development
of software. Security engineers may disrupt the software
during software development life cycle either by intentional
or unintentional modification of the requirement’s
specification, design document, source code or test cases.
One should have a list of all major actions to be performed
during life cycle of software. Therefore, to ensure software
security following model has been designed that list all the
actions to be performed during the life cycle of software.

FIGURE 4: SECURE LIFE CYCLE OF SOFTWARE

Figure 4 depicts all the actions to be taken during the life

cycle of software to guarantee security in software. This life
cycle is iterative in nature; if some security modules are left
at any phase of life cycle, then we can go back to that phase
and fulfill those shortcomings. For example, if we are
designing a cryptographic software that encipher and
decipher the text. Suppose we are in design phase and left
with few cryptographic requirements during requirement
phase. We can go back to requirement phase and update
those cryptographic requirements and can continue our
design from same point from where we left. Each phase is
discussed in following sections.

A. SECURITY ANALYSIS / REQUIREMENTS

For any major project, requirements engineering has

always been critical for its success. Security requirements
may fall into three main categories [7] these are: i)
Functional (Behavioral) security Requirements. ii) Non
Functional security Requirements. iii) Derived security
Requirements. Functional requirements list all the functions
that a system will perform. These requirements relate to
input and output of a system and the relationship betweens
input and output. These requirements also specify the
actions to be performed for a specific input. Whereas non

functional requirements list all the properties a system will
possess like its environment where it will run like UNIX,
Windows, etc. Derived requirements are those requirements
which are derived from functional and other security
requirements.

As far as software security requirements are concerned
it comes in two different ways. One directly from user
stories that can be user requirements and other security
requirements are derived by the security engineers. User
stories are an effective way to derive user requirements in
efficient way from rapid changing real world requirements.
Security engineers derive rest of the user requirements and
these requirements are the security functional requirements.
Common Criteria functional requirements [8] are the best
source to derive such functional requirements. This is
helpful for the consumer and developer both to identify
security objective and security requirements.

It is important to anticipate abnormal behavior for secure
and reliable software application. Therefore, security
experts need to create use cases to mitigate those abnormal
behaviors, i.e. misuse case. These are the cases, in which all
those actions or processes of system that can be exploited by
a misuser. Figure 5 show a relationship between use case
and misuse case.

FIGURE 5: USE CASE AND MISUSE CASES [9]

SECURITY FUNCTIONAL REQUIREMENTS

Before defining security requirements, security engineers
need to identify those parts of the software system that
requires security. These parts of the software system are
called Target of Evaluation (TOE). Once TOE is identified
then finding security functional requirements (SFR) for
those parts becomes simple. [8] lists different set of classes
depending on the nature of application. Different set of
SFRs can be chosen for the required TOE. Once required
SFRs are chosen, then table can be designed to monitor its
implementation in required software application. SFRs are
chosen to counter threats in TOE of software system. For
example; if we are trying to gather SFR of a web
application; Table 1 lists related SFR’s and their activity.
There can be different TOE in a single software application;
therefore different set of SFRs are collected for each TOE.

� Threat Model
� Input Data Types
� Security Use Cases
� Security

� Unit Testing
� Functional

Testing
� Penetration

Testing
� Fuzz Testing

� Misuse Cases
� Mitigation Plan

Secure
Software
Life
Cycle

Require
ments

Analysi
s

Desig
n

Testin

Imple
mentat

� Security
Management
Procedures

� Monitoring
Requirement

� Security
Upgrade

� User Stories
� Security Functional

Requirements
� User Requirements
� Non Functional Security

Requirements

� Security Modules
� Known Security

vulnerabilities

Deplo
yment

TOE

Class

SFR

Description

SFR Levels
Client Server
Communicat
ion

Digital
Certificate

Authenti
cation

FCO_NRO.1 � �
FCO_NRO

Non Repudiation of
Origin FCO_NRO.2 � �

FCO_NRR.1 � �

 FCO :
Communication

FCO_NRR
Non Repudiation of
Receipt FCO_NRR.2 � �

FCS_CKM.1 � �
FCS_CKM.2 � �

FCS_CKM.3 � �

FCS_CKM

Cryptographic Key
management

FCS_CKM.4 � �

 FCS :
Cryptographic
Support

FCS_COP Cryptographic
Operation

FCS_COP.1 � � �

B. SECURITY DESIGN & IMPLEMENTATION

Design phase shapes all the requirements into reality. This

is a phase where, what and why of requirements become
who, when, where, and how of the software to be [9].
Design phase plays very important role where you give
design to security requirements. As listed in figure 4, it is
significant to design a threat model for secure software
application. Threat modeling is a technique to identify
threats, vulnerabilities and their countermeasures. Once we
have the security requirements and we have the data flow
diagrams (DFDs), now there is need to identify the entry
points and exit points to the system from DFDs. These are
the points from where attacker can enter into the system.
Once we have identified entry and exit points now identify
all possible threats that an attacker can exploit from these
points. Table 2 can be good source to find threats for
particular application. Let’s take an example of confidential
data that needs to be stored. Security Engineer needs to
identify all possible attacks by asking questions like: where
to store this data, how to transfer data remotely, how
attacker will manipulate data. These are the threats possible
on sensitive data and their countermeasure are can be
devised accordingly. Once we have identified possible
attacks on software system then attack trees can be plotted
to clear understanding of attacker’s methodology. Figure 6
shows an example attack tree of attacks possible on
confidential data.

FIGURE 6: ATTACK TREE

Vulnerabilities analysis is also important part of threat
modeling. Table 2 shows some common areas where
vulnerabilities may occur. These vulnerabilities may occur
at any Phase of software life cycle, but it is important to
identify these vulnerabilities at design phase.

Vulnerability
Area

Vulnerability Types

Operating
system(OS)

Buffer overflow(Stack, Heap), Null pointers, OS
Resources deadlock, Exceptions etc

Communication Non repudiation of origin, Non repudiation of
receipt etc

Database/User
Data

Invalid Data types, SQL injection, Cross Site
Scripting, Rollback, Data integrity etc

Cryptography Key Management, Cryptographic operation, etc
Authentica
tion

Access Control

Authorizat
ion

Access control policy, data
authentication, information flow
control policy etc

Privacy Privileges, Anonymity, pseudo anonymity etc
Programming Exception etc

Vulnerability areas shown in table 2 can be taken as security
use cases as well and their countermeasures are figured out.
Once we have identified all the attacks and vulnerabilities
now system is ready for implementation phase.

Developing robust and vulnerability free software is a
challenging job. During implementation we have known
security vulnerabilities and their countermeasures. [10] lists
vulnerabilities and their countermeasures that can be taken
into consideration while developing software.

C. SECURITY TESTING AND DEPLOYMENT

Security testing is vital and plays important role in
identifying security flaws before the release of application.
Security tester needs to think like an attacker and try to
launch different attack to find bugs in software system. In
order to check that software has met its security
requirements we have two main types these are: 1)
Functional Testing 2) Risk Based Testing [11]. Functional
testing deals with to test software application with
functional requirements. Functional requirements define
functional behavior of the software for a specific state, e.g.

Threat # 1
Obtaining
confidential data
over network

1.1
Data sent in clear
text

1.2
Network sniffers
used by attacker

1.3
Network sniffers
used by attacker

and

TABLE 1: SFR ACTIVITY MODEL

TABLE 2: COMMON VULNERABILITY AREAS

“if this condition occurs, then system should respond in that
way”. Functional testing may address all the threats and
vulnerabilities identified in Table 2. Risk based testing
deals with all states or behaviors that a system must not do.
During software testing test plans are created for specific
components of software that require security. Once we have
all the information about security threats, vulnerabilities and
their countermeasures then security tests are conducted.
Testing techniques that may be followed can be 1)
Penetration Testing. 2) Fuzz Testing. Penetration testing is
performed to find vulnerabilities in software application.
We have different types of penetration testing that include
Targeted Testing, External Testing, Internal Testing, Blind
Testing and Double Blind Testing as shown in table 3.
Whereas in Fuzz testing a special tool known as Fuzz tester
that is used to find vulnerabilities in software application.

Targeted testing Testing conducted by IT testing team and
penetration testing team.

External testing Testing conducted on external servers and
firewalls

Internal testing Testing to check internal threats by authorized
user.

Blind testing All actions and procedures are examined that a
real attacker can perform.

Double blind
testing

Blind tests performed by few test engineers rest
do not know about these types of tests.

During testing phase, if some of the security bugs are
identified, then these bugs are reported to the concerned life
cycle phase iteratively as shown in figure 3. After that
software system is ready for deployment. Once deployment
is complete then system is monitored for specific time for
any bug. Security features are upgraded with the passage of
time with security upgrades.

V. CONCLUSION & FUTURE WORK

Different software engineering approaches are followed

for the design and development of software that includes the
spiral model, waterfall model, agile methods and iterative
approaches. These are efficient software engineering
approaches, but security is neglected part and requires
special consideration. Therefore, all these approaches needs
security blend to make secure software engineering.

This paper is a comprehensive manual of software life
cycle that explains a secure approach for software
development. This paper can be a good guide for any
security engineer. Secure model explained in this paper is
iterative model based on extreme programming concept.
Each phase of the software life cycle is explained as a step-
by-step guide.

Model explained in section III can be further extended,
whereas all sub activities at each phase can further be
modeled. Like all the testing techniques can be ordered and
their relationship can be modeled. Furthermore, this security

model can be synchronized with the software engineering
model and resulting model will be secure software
engineering model for software development.

ACKNOWLEDGEMENT

I would like to thank Allah (SWT) almighty for the

strength to conduct this research, my parents and all of the
faculty members for their guidance and help while
conducting this research here at Foundation University
Islamabad (FUIEMS).

REFERENCES

[1]. C. Mann, “Why Software is so Bad” Technology Review
(July/August 2002)

[2]. "National Information Assurance Glossary"; CNSS Instruction No.
4009 National Information Assurance Glossary

[3]. Don wells, Copyright © 1999, 2000, 2001[Modified: February 17,
2006], Extreme Programming, www.extremeprogramming.org

[4]. Carnegie Mellon University, Copyright © 1995-2009 [Modified:
February 12, 2009], CERT, http://www.cert.org/stats/

[5]. M.A. Hadavi, H. M. Sangchi, V. S. Hamishagi, H. Shirazi,
“Software Security; A Vulnerability-Activity Revisit” ARES
Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security, Pg 866-872, ISBN:978-0-
7695-3102-1

[6]. Cappelli, Dawn, Trzeciak, Randall, & Moore, Andrew. "Insider
Threats in the SDLC." Presentation at SEPG 2006. Carnegie
Mellon University, Software Engineering Institute, 2006.

[7]. Paco Hope and Peter White, Cigital, Inc., Copyright © 2007,
Software Security Requirements – the foundation for security,
Cigital Inc, http://www.cigital.com

[8]. Common Criteria, Common Criteria: Part 2 Security Functional
Components, Version 3.1, revision 2, September 2007.

[9]. Julia H. Allen; Sean Barnum; Robert J. Ellison; Gary McGraw;
Nancy R. Mead, Addison Wesley Professional, Software Security
Engineering- A guide for project managers, Pg 82, ISBN 978-0-
321-50917-8.

[10]. D. Gilliam, T. Wolfe, J. Sherif, and M. Bishop, “Software Security
Checklist for the Software Life Cycle,” Proceedings of the 12th
IEEE International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprise pp. 243–248 (June
2003).

[11]. McGraw, Gary. Software Security: Building Security In. Boston,
MA: Addison-Wesley, 2006.

TABLE 3: PENETRATION TESTING TYPES

