Proceedings of the International MultiConference of Engineers and
IMECS 2010, March 17 - 19, 2010, Hong Kong

Computer Scientists 2010 Vol I,

Secure Software Development Model: A Guide for
Secure Software Life Cycle

Malik Imran Daud

Abstract---Extreme programming (XP) is a modern
approach for iterative development of softwarein which
you never wait for the complete requirements and start
development. Security is usually unnoticed during early
phases of software life cycle. In this paper, our main
objective is to focus on security requirements at each
phase of software life cycle. In thisregard, XP is a key
solution that provides us with a guide with the ease to
recheck our security requirements, if they are unnoticed
at any step of software life cycle. Based on XP technique,
a new model has been designed that focuses on the
concept of iterative development of secure software. In
addition, this paper is a guide for developers to develop
secure software as most of the software developers are
not trained for softwar e security.

Index Terms ---- Softwar e Security, Software Life cycle,
Extreme Programming (XP)

S way that the required application functions
uninterrupted and is able to nicely handle the sgcu
threats during malicious attacks. Security ensultest
application works in a desired manner and to pm®vid
defense against security threats. In common pectic
security is unnoticed in early phases of softwifee dycle
(SLC). A good software engineering approach ishiokt
about security right from beginning of SLC. Inadetgu
practice of software development can lead to insecu
software [1]. According to [2], “software assurarisethe
level of confidence that software is free from \arabilities,
either intentionally designed into the software or
accidentally inserted at any time during its lifgcle, and
that the software functions in the intended mariner.

Extreme programming (XP) is an organized approach f
developing software in an iterative manner. XP
considered best practice to improve the softwamdityuby
repeated feedback and changing requirements [3].

I. INTRODUCTION

Manuscript received October 21, 2009. This work wgsported in part
by Foundation University Institute of Engineeringnda Management
Sciences.

Malik Imran Daud is working as faculty member atp@gment of
Telecommunication Engineering, Foundation Univgrsinstitute of
Engineering and Management Sciences (FUIEMS) Lal&awalpindi,
Pakistan (email: imrandaud@gmail.com).

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

is

Security engineers never wait for the perfect neoents,
only initial requirements are gathered and devekstart
development.

During development system is presented to secarigyst
and security engineers for the recommendation amd u
gradation of the security requirements.

This research mainly focuses on the secure liféecgt
software that requires a lot of thorough considenatThat
includes security in Requirements/Analysis, Design,
Implementation and testinghase. At each phase of SLC,
security requirements are gathered and updateatiitely.
Main focus of this technique is to monitor security
requirements and identify security threats at gdwse.

Section Il describes an overview of software
vulnerabilities whereas section Il describes a tigavcycle
model and description of each life cycle modelxplained
in section IV.

IIl. SECURE SOFTWARE DEVELOPMENT

oftware security is to engineer software in such a Most of the organizations process their confidéntia

information using software systems via internet.siall
bug in software can be exploited by hackers andidemtial
information can be stolen. Besides other problerfis o
software development, security is becoming a misue.
According to CERT statistics [4] there has been
considerable increase in vulnerabilities reportegr dhe last
few years, which are depicted in figure 1.

CERT Vulnerabilities Statistics

9000
8000
7000
6000
oo 5000
Vulnerabilities 4000
3000
2000
| P
| PPP
199519961997 19981999 20002001200220032004 20052006 20072008
Year

FIGURE 1: VULNERABILITIES STATISTICS

According to statistics shown in Figure 1, secutigs
been taken as a serious challenge over the lastyéacs.
Accordingly new techniqgues and methods have been
developed to cure software issues. This resultechame
secure software and vulnerabilities reported over last

IMECS 2010

two years are comparatively less.
statistics there is a need to develop such apprdach
software development that could guaranty secutitgaeh
phase of software life cycle. [5] lists common eaite
vulnerabilities, these vulnerabilities are mainlgsiyn and
coding vulnerabilities which are unnoticed by tludtware
engineers. For any secure software there are thage core
properties which are Confidentiality, Integrity and

availability that is our guideline for designing new

approach.

lll. ITERATIVE METHOD OF SOFTWARE LIFE
CYCLE

Security itself is a complete life cycle of softwar
development. Where as iterative method is consilerere
efficient and reliable approach for software depeient.
You have few set of requirements and start devedopirand
iteratively new requirements are fulfilled. Blenflsecurity
and XP gives a new approach that is shown in figtire
Figure 3 shows an iterative model of secure softwide
cycle (SSLC) based on extreme programming concept.

Security
Functional

Reévsirement
Analysis

" SecThisas—p

ew Securi
Requirements

Vulnerabilities

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

Considering these Requirements engineering is the main building blfook

any software development. Security engineers trelicit
security requirements by different methods, e.gr gtories,
abuse cases, etc. Figure 4 lists all the main tparto be
performed during SSLC. Based on the informatiorvioled
by figure 4 we can derive following main sourcesl&ive
security requirements these are:

¢ Functional Security Requirements

« Non functional Security Requirements
e Derived Security Requirements

* User stories

* Abuse cases

During analysis phase we get security requiremiota
above listed sources. Most of the occasion requirgs
gathered from user stories and other sources arevelb
defined. These requirements can be refined by ggcur
functional requirements (SFR) module (Details axermyin
sectionV-A’).

Development

Mitigation Plan

Design

FIGURE 3: ITERATIVE LIFE CYCLE FOR SECURE SOFTWARE

Once the uncertain requirements are refined by SFRtart development by considering all vulnerab#iténd their

module, then we are ready to start designing oftwaoe.
Design phase is important and requires more coraida
in terms of security. Based on the information jaed by
analysis phase (Security Requirements by userest@nd
SFR) a threat model is developed. If security epgirfeels
some of the information is missing or some oth&usty
threats are possible then it goes back to anafgsighe
refinement of the security requirements. If seguekpert
finds no problems, then a mitigation plan is destjrio
cater all those threats listed in threat model. uBgc
vulnerabilities are identified during design phasel Table
2 gives a guideline to find such vulnerabilitiesll e
vulnerabilities that a software system may suffent are

mitigation plan designed during design phase.

Once software is developed then it is handed ower t

testing team along with the documentation. Durihgs t
phase different testing methodologies are usedsasissed
in section ‘IV-C'. In this phase engineers try tod design
or development bugs in software application. Aftbat

software application is ready for the deployment.

IV. SECURE SOFTWARE LIFE CYCLE — A
MODEL

Software is vulnerable to attack, when some securit

lapses are overlooked during software life cycleftv@are

documented and passed to development team. Develop security unnoticed during early phases of life eyds

inherited to later phases; therefore one phasesferEmits

ISBN: 978-988-17012-8-2 IMECS 2010

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,

IMECS 2010, March 17 - 19, 2010, Hong Kong

vulnerabilities to the other phase. According tpbg6ftware
is vulnerable to threats that may occur during tyaent
of software. Security engineers may disrupt thevwsok
during software development life cycle either btemtional
or unintentional modification of therequirement’s
specification, design document, source code or ¢ases
One should have a list of all major actions to kefgrmed
during life cycle of software. Therefore, to ensaoftware
security following model has been designed thatdisthe
actions to be performed during the life cycle dtware.

User Storie
Security Functional
Requirements
User Requirements

AN

Non Functional Security
Requiremen

" E r

i T Analys\ /1
- \l
| Deplo \/

AN
ML \# Secure
Software
Life

\ Cycle

v Misuse Cast
v Mitigation Plan

—
Security =
Management
Procedures
Monitoring
Requirement
Security
Upgrade Threat Mode

Input Data Types
Security Use Cases
Security

9 / \> Desqg
f—‘/‘/} ~
\ ‘\
Te
Imple
Testing menta
Penetration - \

Testing l
Fuzz Testing v Security Module
v" Known Security
vulnerabilities

ANRNANAS

Unit Testirg
Functional

AN NN

FIGURE 4: SECURE LIFE CYCLE OF SOFTWARE

Figure 4 depicts all the actions to be taken dutirglife
cycle of software to guarantee security in softwaigs life
cycle is iterative in nature; if some security mieduare left
at any phase of life cycle, then we can go badka&b phase
and fulfill those shortcomings. For example, if vege

designing a cryptographic software that enciphed an

decipher the text. Suppose we are in design phagdeft
with few cryptographic requirements during requiesin

phase. We can go back to requirement phase andeupda

those cryptographic requirements and can continue o
design from same point from where we left. Eachsphia
discussed in following sections.

A. SECURITY ANALYSIS / REQUIREMENTS

functional requirements list all the propertiesyatsm will
possess like its environment where it will run likeIX,
Windows, etc. Derived requirements are those requénts
which are derived from functional and other segurit
requirements.

As far as software security requirements are coreckr
it comes in two different ways. One directly fronseu
stories that can be user requirements and otharrigec
requirements are derived by the security enginedser
stories are an effective way to derive user requérgs in
efficient way from rapid changing real world rearrents.
Security engineers derive rest of the user requresnand
these requirements are the security functionaliremqents.
Common Criteria functional requirements [8] are thest
source to derive such functional requirements. Tikis
helpful for the consumer and developer both to tiflen
security objective and security requirements.

It is important to anticipate abnormal behavior $ecure
and reliable software application. Therefore, siégur
experts need to create use cases to mitigate #imsmmal
behaviors, i.e. misuse case. These are the casehjdh all
those actions or processes of system that cangbeitexi by
a misuser. Figure 5 show a relationship betweencase
and misuse case.

Drive the Car
Threatens
Driver

Includes

Lock the Car
-—

Includes

Mitigates
Includes

Threatens Car Thief

Short the

Ignition

Mitigates.
/

Lock the Transmission

FIGURE 5: USE CASE AND MISUSE CASES [9]
SECURITY FUNCTIONAL REQUIREMENTS

Before defining security requirements, securityipegrs
need to identify those parts of the software systeat
requires security. These parts of the softwareegysare
calledTarget of EvaluatioTOE). Once TOE is identified
then finding security functional requirements (SFRy
those parts becomes simple. [8] lists differentcatlasses
depending on the nature of application. Different sf

For any major project, requirements engineering hagfRs can be chosen for the required TOE. Once restjui

always been critical for its success. Security ireguents
may fall into three main categories [7] these: aie
Functional (Behavioral) security Requirements. Non
Functional security Requirements. iii) Derived sgéyu
Requirementsk-unctional requirements list all the functions
that a system will perform. These requirementsteeta
input and output of a system and the relationsleifgvbens
input and output. These requirements also spedify t
actions to be performed for a specific input. Whasraon

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

SFRs are chosen, then table can be designed taandsi
implementation in required software application RSFare
chosen to counter threats in TOE of software systeon
example; if we are trying to gather SFR of a web
application; Table 1 lists related SFR’s and thegtivity.
There can be different TOE in a single softwardiagpon;
therefore different set of SFRs are collected &mheTOE.

IMECS 2010

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

TABLE 1: SFR ACTIVITY MODEL

Class SFR Description SFR Levels TOE
Client Server Digital Authenti
Communicat Certificate cation
ion
Non Repudiation of FCO_NRO.1 | v v
FCO : FCO_NRO Origin FCO_NRO.2 v v
Communication Non Repudiation of | FCO_NRR.1I | v/ v
FCO_NRR Receipt FCO_NRR2 | v v
Cryptographic Key FCS_CKM.1 v v
FCS: FCS_CKM management FCS_CKM.2 v v
Cryptographic ECS CKM3 7 v
Support -
FCS_CKM .4 v v
FCS_COP Cryptographic FCS_COP.1 v v v
Operation

B. SECURITY DESIGN & IMPLEMENTATION

Design phase shapes all the requirements intdyeahis

Vulnerabilities analysis is also important part tbfeat
modeling. Table 2 shows some common areas where
vulnerabilities may occur. These vulnerabilitiesynzeccur
at any Phase of software life cycle, but it is impnot to

is a phase where, what and why of requirementsrbeco identify these vulnerabilities at design phase.
who, when, where, and how of the software to be [9]

Design phase plays very important role where yoee gi

design to security requirements. As listed in fegdr, it is | Vulnerability Vulnerability Types
significant to design a threat model for securetveare Area

9 L g Operating Buffer overflow(Stack, Heap), Null pointers, OS
application. Threat modeling is a technique to tdegn | system(0S) Resources deadlock, Exceptions etc

threats, vulnerabilities and their countermeasutagxe we
have the security requirements and we have the fiata

diagrams (DFDs), now there is need to identify emry Database/User Inva_lllc_i Data types, SQL injection, Cross Site
. . . Data Scripting, Rollback, Data integrity etc

points and exit points to the system from DFDs.SEhare [~Gnyoiography Key Management, Cryptographic openaic

the points from where attacker can enter into tysesn. [“Access Control | Authentica| Access control policy, data

Once we have identified entry and exit points ndentify
all possible threats that an attacker can exptoinfthese
points. Table 2 can be good source to find thrdats
particular application. Let's take an example offtadential
data that needs to be stored. Security Engineetisnez
identify all possible attacks by asking questidke:lwhere
to store this data, how to transfer data remotéigw
attacker will manipulate data. These are the tBrpatsible

TABLE 2: COMMON VULNERABILITY AREAS

Communication Non repudiation of origin, Non remititin of

receipt etc

authentication, information flow
control policy etc

tion

Authorizat

ion
Privileges, Anonymity, pseudo anonymity etc
Exception etc

Privacy
Programming

Vulnerability areas shown in table 2 can be takesexurity
use cases as well and their countermeasures aredigut.

on sensitive data and their countermeasure are bean Once we have identified all the attacks and vuloitities
devised accordingly. Once we have identified pdssib now system is ready for implementation phase.

attacks on software system then attack trees caviotied
to clear understanding of attacker’'s methodologgufe 6

Developing robust and vulnerability free softwasea
challenging job. During implementation we have know

shows an example attack tree of attacks possible osecurity vulnerabilities and their countermeasuf&g] lists

confidential data.

Threat #1
Obtaining
confidential data
over network

and
12

Network sniffers
used by attack

11
Data sent in clear
text

13
Network sniffers
used by attack

FIGURE 6: ATTACK TREE

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

vulnerabilities and their countermeasures that lmartaken
into consideration while developing software.

C. SECURITY TESTING AND DEPLOYMENT

Security testing is vital and plays important rdke
identifying security flaws before the release oplagation.
Security tester needs to think like an attacker @gdto
launch different attack to find bugs in softwaresteyn. In
order to check that software has met its security
requirements we have two main types these d&re:
Functional Testing 2) Risk Based Test{dd]. Functional
testing deals with to test software application with
functional requirements. Functional requirementdinde
functional behavior of the software for a spec#tate, e.qg.

IMECS 2010

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

“if this condition occurs, then system should rexpan that model can be synchronized with the software enginge
way”. Functional testing may address all the tlwemtd model and resulting model will be secure software
vulnerabilities identified in Table 2.Risk based testing engineering model for software development.

deals with all states or behaviors that a systerstmot do.

During software testing test plans are createdsfmecific ACKNOWLEDGEMENT
components of software that require security. Omeéhave
all the information about security threats, vulibdiges and | would like to thank Allah (SWT) almighty for the

their countermeasures then security tests are ctedlu strength to conduct this research, my parents kiod the
Testing techniques that may be followed can be 1jaculty members for their guidance and help while
Penetration Testing. 2) Fuzz Testing. Penetratimtirtg is conducting this research here at Foundation Urityers
performed to find vulnerabilities in software appliion. Islamabad (FUIEMS).

We have different types of penetration testing thatude

Targeted Testing, External Testing, Internal TegtiBlind REFERENCES

Testing and Double Blind Testings shown in table .3

Whereas in Fuzz testing a special tool known ag Fester [1]. C. Mann, “Why Software is so Bad” Technology Review
that is used to find vulnerabilities in softwarepbgation. (July/August 2002)

[2]. "National Information Assurance Glossary"; CNSSrinstion No.
4009 National Information Assurance Glossary

TABLE 3: PENETRATION TESTING TYPES [3]. Don wells, Copyright © 1999, 2000, 2001[Modifieebruary 17,

Targeted testing | Testing conducted by IT testing team and 2006], Extreme Programming, www.extremeprogramnoirgyg.
penetration testing team. [4]. Carnegie Mellon University, Copyright © 1995-2009ddified:
External testing | Testing conducted on external servers and February 12, 2009], CERT, http://www.cert.org/stats
firewalls [5]. M.A. Hadavi, H. M. Sangchi, V. S. Hamishagi, H. 1Sz,
Internal testing | Testing to check internal threats by authorized “Software Security; A Vulnerability-Activity Revisi ARES
user. Proceedings of the 2008 Third International Corrfeee on
Blind testing All actions and procedures are examined that Availability, Reliability and Security, Pg 866-8725BN:978-0-
real attacker can perform. 7695-3102-1 _ ‘
Doubleblind Blind tests performed by few test engineers rest [6]. Cappelli, Dawn, Trzeciak, Randall, & Moore, Andretinsider
testing do not know about these types of tests. Threats in the SDLC." Presentation at SEPG 200&nedlge

Mellon University, Software Engineering Institug£06.
[7]. Paco Hope and Peter White, Cigital, Inc., Copyright2007,
Software Security Requirements — the foundation decurity,

~ During testing phase, if some of the security bags Cigital Inc, http://www.cigital.com
identified, then these bugs are reported to theawoed life [8]. Common Criteria, Common Criteria: Part 2 Securitynétional
cycle phase iteratively as shown in figure 3. Afteat o] Eolmpl?'“%ltsy ngS'On g-L feV'Sgan ?iptéﬂ?beﬂgg o

H . Julia R. en; sean barnum; Robert J. Ison; cGraw;
§oftware system is ready for dep_loyment. Once_ Wt Nancy R. Mead, Addison Wesley Professional, Sokwaecurity
is complete then system is monitored for s_pecmmetfor Engineering- A guide for project managers, Pg &BN 978-0-
any bug. Security features are upgraded with #ssgge of 321-50917-8.
time with security upgrades. [10]. D. Gilliam, T. Wolfe, J. Sherif, and M. Bishop, “Beare Security

Checklist for the Software Life Cycle,” Proceedingfsthe 12th
IEEE International Workshop on Enabling Technolsgie

V. CONCLUSION & FUTURE WORK Infrastructure for Collaborative Enterprise pp. 2288 (June
2003).
Different software engineering approaches are Vadd [11]. McGraw, Gary. Software Security: Building Security Boston,

for the design and development of software thdtites the MA: Addison-Wesley, 2006.

spiral model, waterfall model, agile methods aretaitive
approaches. These are efficient software engingerin
approaches, but security is neglected part andiresqu
special consideration. Therefore, all these appremneeds
security blend to make secure software engineering.

This paper is a comprehensive manual of softwdee li
cycle that explains a secure approach for software
development. This paper can be a good guide for any
security engineer. Secure model explained in thigsep is
iterative model based on extreme programming cdncep
Each phase of the software life cycle is explaiasa step-
by-step guide.

Model explained in section Il can be further exted,
whereas all sub activities at each phase can furtiee
modeled. Like all the testing techniques can bemd and
their relationship can be modeled. Furthermore, skeicurity

ISBN: 978-988-17012-8-2 IMECS 2010
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

