
A Study on Online Aspect Mining

Yusuke Sakamoto∗, Haruhiko Sato†, Masahito Kurihara‡,

Abstract— In aspect-oriented programming, we

can encapsulate cross-cutting concerns scattered over

many modules in a system. There are many stud-

ies for detecting candidates of cross-cutting concerns

called aspect mining, and automation of it. However,

existing all aspect mining tools are batch processing

system aiming for large systems. Compared with ex-

isting batch-type tools, this paper propose an online-

type aspect mining tool. The online-type aspect min-

ing tool enables us to make cross-cutting concerns as-

pect modules during a coding stage. Therefore, it is

possible to use it also for a small-scale project which

has just started.

Keywords: cross-cutting concerns, aspect oriented pro-

gramming, aspect mining, program analysis

1 Introduction

Aspect mining is a technique derived from the software
development technology called aspect oriented program-
ming. Since aspect mining is closely related to aspect
oriented programming in this chapter we briefly explain
aspect oriented programming and aspect mining.

1.1 Aspect Oriented Programming

Aspect-oriented programming is a technology that
strengthens the ability for modularization in object-
oriented programming. Object-oriented programming
has the ability to modularize concerns, and a minimum
unit of the module is an object. However, it is known that
there exists some concern which are distributed to two or
more objects. Such distributed concerns are called cross-
cutting concerns. Aspect-oriented programming is a tech-
nology to modularize these crosscutting concerns. Addi-
tionally, cross-cutting concerns might be simply called
aspects. We show a case for logging as an example of
cross-cutting concerns. Let us consider to log the method
calls as follows:

class Dog {
static void bark(){

logger.log("start␣-␣Dog.bark");
……
logger.log("end␣-␣Dog.bark");

}

∗Graduate School of Information Science and Technology,
Hokkaido University. sayuu@complex.eng.hokudai.ac.jp

†haru@complex.eng.hokudai.ac.jp
‡kurihara@complex.eng.hokudai.ac.jp

}

However, if we need to log the all method calls in ev-
ery class, such logging codes are distributed all over the
source codes. To avoid this problem, in aspect-oriented
programming we can generate the logging codes by writ-
ing aspects as follows:

aspect Logging {
around: execution(static void Dog.bark()) {

logger.log("start␣-␣" + thisJoinPoint
.getSignature());

proceed();
logger.log("end␣-␣" + thisJoinPoint.

getSignature());
}

}

1.2 Aspect Mining

Aspect mining is a technique to detect candidates of as-
pects from existing non-aspect oriented systems. The
modularity of the codes can be improved by extracting
some aspects obtained by aspect mining. There are vari-
ous approaches for aspect mining and have been studied
so far. Here, we introduce some techniques of typical
aspect mining.

1.2.1 Clone Detection

Clone detection is a technique for making code clones an
candidates of the aspect. Code clone is some parts in a
source code which resembles or corresponds each other,
and is often made by the processing such as ”Copy and
Paste”. Because of the definition, there is a very strong
possibility that code clone is the candidate of aspects.

1.2.2 Technique using Fan-in

Fan-in is numerical information that is the number of
calls of a certain method in the source code. In this
technique we calculate Fan-In of all the methods, and
examine whether each method is a candidate of the aspect
in descending order. It is one of the advantages of Fan-in
that it can be calculated with a simple algorithm.



1.2.3 Pattern of Method Calls

This is a technique of regarding a pattern of similar
method calls as a candidate of aspect. Even if other codes
are included between the method calls, the pattern is re-
garded as the same if the order of method calls is the
same. It is thought that we can extract more aspects us-
ing this technique compared to the case using code clone
because the pattern of this technique is more flexible than
that of the technique using the code clone.

1.2.4 Technique using Execution Traces

This technique regards the main functions of a program
as use-cases (for instance, if the program executes bi-
nary search, the use-cases might be ”Insertion”, ”Search”,
etc.), and specifies all the methods used in some use-cases.
If there exists some methods which are called from two
or more use-cases, in this technique we adopt the set of
methods as a candidate of an aspect.

1.2.5 EA-Miner

EA-Miner is a technique for applying aspect mining to
specifications, instead of source codes. It is useful for
preventing big rework by rewriting the content of the
specification that is appropriate for aspect-oriented pro-
gramming before it is implemented as a source code. The
specification is written by not programming language but
natural language such as English or Japanese that we
usually use. However, since this technique only supports
English, it cannot be used for the specification written in
other languages.

2 Online Aspect Mining Tool

In this section explains the online aspect mining tool pro-
posed in this paper.

2.1 Making Tool Online

As an related study, there is a tool that supports online
refactoring of the object-oriented programs, proposed by
Hayashi et al. [2] They developed the tool in Eclipse IDE.
A similar idea is applied to the tool of aspect mining in
this study.

2.1.1 Advantages of Online-type Tool

Existing tools are studied and developed under the as-
sumption that some huge of source code group already
exists. On the other hand, the tool we propose com-
paratively targets a small-scale source code under devel-
opment. Compared with the batch-type tools, online-

type tool enables us to find candidates of aspects in the
early stage of development. Therefore, the online-type
tool have an advantage of preventing the situation that
causes big rework of the development beforehand because
we can notice the place where the refactoring should be
done ahead of time.

2.2 Design of Tool

We decided to adopt the technique using Fan-In as an as-
pect mining technique. There are two reasons to choose
Fan-in. One reason is that Fan-in is treated in many
papers which compares various methods of aspect min-
ing techniques. The reason for another is that it is
thought that implementation is easier than other tech-
niques. However, because it is the technique designed for
batch processing, it is not possible to use it for online as-
pect mining as proposed. Therefore, we need to slightly
modify the Fan-in technique for online use.

2.2.1 Fan-In for Online

In online processing, it is appropriate to apply the mining
method only for the code written just now. Therefore, in
online Fan-In technique, we only focus the method writ-
ten just now In other words, online Fan-in determines the
method last written, and calculates how many times the
method was called. The Fan-In techniques only reports
the number of times a method is called. This means that
it is work for programmers to check adequacy of each
methods whose Fan-In is high.

3 Simulation

In order to examine what effect is achieved when soft-
ware was developed with a tool proposed in this paper,
we performed experimentation explained in the following
sections.

3.1 Description of experiments

The experimentation was executed as following steps:

1. First, we prepared a open source project written
in Java, and we remove a file sample.java from the
project.

2. Next, we re-construct sample.java from scratch, that
is, we type the content original file by hand (not
copy-and-paste).

3.2 Intention

The work explains by 3.1 is a simulation of the situation
in which a new class is added to a certain project. It is
thought that two or more classes are concurrently coded



in practical software development. Therefore, this simu-
lation that concentrates and develops only one class from
first to last may not necessarily so realistic. However, we
decided to simulate it in the way explained above since
such simulation is reasonable and actual enough to obtain
the useful experimental results. We adopted JHotDraw
[15] that is an open-source project and is widely used in
the research of aspect mining.

3.3 Results

The simulation explained by 3.1 was executed
for class CommandMenu.java included in package
CH.ifa.draw.util of JHotDraw5.3.

3.3.1 Example 1

When you input addMenuItem(command, new JMenu-
Item(command. name())); to one line in the method
definition public synchronized void add(Command com-
mand) The tool reacts to call of name() method. The
identifier of the method (name, belonging package, and
class) and the frequency where the method is called in
other places are displayed in the view as follows.

[CH.ifa.draw.util.Command.name]:5

In addition, the identifiers of the method in which name()
is called are displayed. Since it is called from the
other 5 places, the 5 identifiers of the methods are dis-
played. When a method calls the target method name()
two or more times such as CH.ifa.draw.util.Command-
Button.actionPerformed, the caller method is displayed
repeatedly.

CH.ifa.draw.util.UndoableCommand.name

CH.ifa.draw.util.CommandChoice.addItem

CH.ifa.draw.util.CommandButton.CommandButton

CH.ifa.draw.util.CommandButton.actionPerformed

CH.ifa.draw.util.CommandButton.actionPerformed

3.3.2 Example 2

When you input m.addActionListener(t) to one line
in the method definition protected void addMenu-
Item(Command command, JMenuItem m) The tool re-
acts to call of addActionListener() method. The display
of the view was as follows.

[javax.swing.AbstractButton.addActionListener]:5

CH.ifa.draw.applet.DrawApplet.createButtons

CH.ifa.draw.applet.DrawApplet.createButtons

CH.ifa.draw.contrib.WindowMenu.buildChildMenus

CH.ifa.draw.samples.javadraw.JavaDrawApplet.

createButtons

CH.ifa.draw.util.CommandButton.CommandButton

For instance, you will be able here to determine that
a candidate of the aspect might be included in these
method definitions if you notice that a method is called in
the methods of the same name (createButtons) belonging
the different class.

3.4 Discussion

The frequency where the method was called ranged from
0 to 100 times. However, the methods called many times
are often basic methods such as in java.lang package.
From the results of experiments with our tool, we thought
that it seems very possible that a method which satisfies
the following conditions can be aspects:

• the method is self-made or occasional use

• the method is called with some frequency

• the method is called from some different places

4 Conclusion and Future Work

In this paper, we designed online-aspect mining tool
based on the existing Fan-In technique, and implemented
it as an Eclipse plug-in. The details are as follows.

4.1 Advantages of Online Aspect Mining

Online aspect mining is useful to discover aspects at the
early stage of software development. In addition, there is
an advantage that it becomes easy to verify the validity
of the aspect, too.

4.2 Aspect Mining Technique

The technique of the tool made in this paper was made
referring to Fan-in. We investigated existing techniques
other than Fan-in to develop a new technique. However,
because existing techniques were absolutely appropriate
for the batch-type for a large-scale project, it turned out
that it was unsuitable for the online-type that needs high-
speed response. Therefore, it is necessary to develop the
new technique that is different from existing tehniques,
and appropriate for online aspect mining.

References

[1] M. Marin, L. Moonen, and A. van Deursen. FINT:
Tool Support for Aspect Mining. In Proceedings of
the 13th Working Conference on Reverse Engineer-
ing (WCRE). IEEE, 2006.



Figure 1: A snapshot of the simulation 3.3.1 using tool made as Eclipse plug-in.

[2] S. Hayashi, M. Saeki, and M. Kurihara. Support-
ing Refactoring Activities Using Histories of Pro-
gram Modification. IEICE Transactions on Informa-
tion and Systems, vol.E89-D, no.4, pp.1403-1412.
2006.

[3] Thomas Kuhn, Olivier Thomann.
Abstract Syntax Tree. Eclipse Corner Articles,
http://www.eclipse.org/articles/.

[4] org.eclipse.jdt.astview - AST View.
http://www.eclipse.org/jdt/ui/astview/index.php

[5] M. Marin, A. van Deursen, and L. Moonen. Identi-
fying Aspects using Fan-In Analysis. In Proceedings
of the 11th Working Conference on Reverse Engi-
neering (WCRE2004), pp.132-141, IEEE Computer
Society Press, 2004.

[6] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwe. On the Use of Clone Detection for Iden-
tifying Crosscutting Concern Code. IEEE Trans-
actions on Software Engineering, Vol.31, No.10,
pp.804-818, 2005.

[7] T. Miyake, T. Ishio, K. Taniguchi, and K. Inoue. De-
tection of Crosscutting Concerns Using Method Call
Patterns. Technical report of IEICE, SS, Vol.107,
No.99, pp.1-6, 2007.

[8] Grigoreta Sofia Cojocar, Gabriela Serbian. On some
criteria for comparing aspect mining techniques. In
Proceedings of the 3rd workshop on Linking aspect
technology and evolution (LATE), ACM, 2007.

[9] M. Ceccato, M. Marin, K. Mens, L. Moonen, P.
Tonella, and T. Tourwé. A Qualitative Comparison
of Three Aspect Mining Techniques. In IWPC ’05:
Proceedings of the 13th International Workshop on
Program Comprehension, pp.13-22, IEEE Computer
Society, 2005.

[10] M. Ceccato, M. Marin, K. Mens, L. Moonen, P.
Tonella, and T. Tourwé. Applying and Combining
Three Different Aspect Mining Techniques. Software
Quality Control, 14(3):209-231, 2006.

[11] Dynamo - Dynamic Aspect Mining Tool.
http://star.itc.it/dynamo/.

[12] Wmatrix corpus analysis and comparison tool.
http://ucrel.lancs.ac.uk/wmatrix/.

[13] P. Tonella and M. Ceccato. Aspect Mining through
the Formal Concept Analysis of Execution Traces. In
Proceedings of the 11th Working Conference on Re-
verse Engineering (WCRE ’04), pp.112-121, Wash-
ington, DC, USA, IEEE Computer Society, 2004.

[14] A. Sampaio, R. Chitchyan, A. Rashid, and P.
Rayson. EA-Miner: a Tool for Automating Aspect-
Oriented Requirements Identification. In ASE ’05:
Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering,
pp.352-355, New York, NY, USA, ACM Press, 2005.

[15] JHotDraw. http://www.jhotdraw.org/.

[16] JavaTM Platform, Standard Edition 6 API Specifi-
cations.
http://java.sun.com/javase/ja/6/docs/ja/api/.




