



Abstract— In software engineering, a software pattern is a

reusable solution to solve recurring software design problems.

Traditionally, suitable patterns are identified by software

designers to satisfy a set of requirements. A part of appropriate

patterns is then applied to a recurring software design problem.

However, the existing software patterns part has to be properly

integrated to specific design problems. Therefore, the

introduction of formalization is required to describe this

integration accurately. In this paper, we propose a framework

of UML class diagrams and software patterns integration

prepared for formal specification to solve different software

designer’s experiences. The integration rules in this formal

framework is intended to complement existing textual and

graphical descriptions in order to eliminate the ambiguity of

class diagrams with software patterns integration. A case study

of our approach is illustrated in a purchase order system.

Index Terms— software patterns, UML class diagrams,

software design, formal specification.

I. INTRODUCTION

 The conventional software development starts with

application domains modeling with software models such as

UML models [1]. UML class diagrams are a widely used

technique for modeling the static structure of a software

model which is created by software designers. Therefore,

software designers need to fully understand the problem

domain in order to design such software models. Whereas, a

part of solving design problem in software application is

collected as software patterns those can be applied during

software modeling. There are several kinds of patterns that

can be applied to software models. In this paper, the focus is

on archetype patterns which are used to describe possible

software models. The archetype patterns are always at a

higher level of abstraction than normal analysis class that can

be adapted to specific business domains [2].

Many researches show reused patterns have been promoted.

For example, [3] focused on the use of patterns for business

processes and also the derivation of UML classes from the

process patterns manually. [4], [5] tried to select patterns in

different patterns to software models by expert systems such

as ontology. As an aspect of formal specification of class

diagrams and state diagrams in simple notation are based on

Manuscript received December 16, 2009.

W. Rungworawut is with the Information Systems Engineering

Laboratory, Department of Computer Engineering, Chulalongkorn

University, Bangkok 10330 Thailand (phone: +66 2 2186991; fax: +66 2

2186955; e-mail: wararatkku@yahoo.com).

basic mathematics and predication logic has been proposed in

[6]. Similarity to the approach in [7], a class diagram

representation and software patterns have been defined with

a suggestion of using a rule-based method to match design

patterns into a UML model. However, these researches have

not discussed how to apply software patterns to UML class

diagrams in a formal specification accurately. The difference

of our approach is trying to fabricate precise integration rules

between UML class diagrams and software patterns in a form

of a formal specification.

In this paper, we present an overview of a framework for the

integration of software patterns applying to specific design

problem as UML class diagrams. The main objective is to

create the integration rules based on the basic mathematics

and the predicate logic in order to eliminate ambiguity and

allow rigorous reasoning about the integration of class

diagrams with software patterns. These rules are easily used

as criterion to apply in the information such as attributes,

methods and associations, which are extracted between UML

class diagrams and software patterns. Our framework will

help software designers to construct a software model as

UML class diagrams by adding these details to classes using

software patterns.

The overview of framework for UML class diagrams and

software patterns integration is proposed in Section II. The

definition of UML class diagrams and software pattern is

given in Section III. And Section IV is the description of

integration rules. Section V shows the case study followed by

integration rules used in this case and also the discussion

about the case study. Last but not least, our future works are

concluded in Section VI.

II. OVERVIEW OF FRAMEWORK

The overview of framework, software designers have

knowledge in design software to create classes in a class

diagram (D) for a particular design problem. These classes in

a class diagram may be satisfied with a set of requirement but

they may be not sufficient to derive the possible class

diagram. However, software designers need to query existing

solution of experts during a design decision such as looking

for software patterns. A software pattern has a name

corresponding to the document solution as problem domain

name that is unique within a pattern catalog. Therefore, those

software patterns are selected by searching problem domain

names. The problem domain name is a meaningful name that

will be a part of the shared design vocabulary [8]. Mostly

software pattern description formats also contain an implicit

or explicit related software patterns section [9], [10]. For

A Framework for UML Class Diagrams and

Software Patterns Integration

Wararat Rungworawut

example, prototyping a class diagram (D) has labeled a

problem domain name. The problem domain name is queried

in software pattern catalogs that collected various software

patterns. Software patterns are related to class diagram (D),

which exactas software pattern P1 and P2. The class diagram

(D) and those software patterns P1 and P2 are appropriate

integrated by criteria selection from integration rules. These

integration rules apply to a single new class diagram (Dnew) in

Fig. 1.

Class Diagrams

P1

P2

Related Software Patterns

D

Integrated Class Diagrams

Integrate Integrate

Dnew

Integration Rules

Rule 1

Rule 2

Rule 3

Rule n

.

.

.

Fig. 1 Overview of UML class diagram and software pattern

integration framework.

III. FORMAL SPECIFICATION OF INTEGRATION RULES

A. Class Diagram

A Class diagram relations are modeled by mean of labeled

relationship between classes. Hence, D represents the set of a

class diagram.

D = (C, R)

Class (C) is a set of classes and CN represents the infinite

set of class names.

C = {ci (cn, A, M) | i  ℕ, cn  CN}

Thus, a class ci is a tuple ci = (cn, A, M) where,

cn name of ci.

A a finite set of attribute of ci.

M a finite set of operations of ci.

Each of the item x in the tuple ci is denoted ci.x. For

example, ci.cn denotes the name of ci or ci.A denotes the set

of attributes A of ci, etc.

Let us consider two infinite sets of AN and MN, which

respectively represent the set of attribute name and method

name. Given a set of basic types B includes integer, string,

float, double, etc.

A is a set of attributes. An attribute ai consists of a method

name an, where an  AN and a attribute type is a basic type

bi.

A = {ai(an, bi) | i  ℕ, an  AN, bi  B  CN}

Each of the item x in the tuple ai is denoted ai.x. For

example, ai.an denotes the name of ai.

 M is a set of methods. We denote a method signature by

notation ms1, …, msnms, where ms1, …, msn, ms  B 

CN. A method mi: ms1, …, msn  ms consists of a method

name m, where m  MN and a method signature ms1, …,

msn  ms.

M = {mi: ms1, …, msn ms | i  ℕ , mi  MN, ms  B 

CN}

Relations (R) Let R is a set of relationship between classes.

R = {ri (ci, cj, S) | i,j  ℕ}

Thus, a relation ri is a tuple ri = (ci, cj, S), where ci, cj are

two classes, and S = {s} is a set of description of the

relationship between ci and cj. The description of an

association s = (t, L, g) where t is enumeration of types

includes association, inheritance, aggregation, composition

etc. L is a set of labels and g is a directional flag which is

either unidirectional, represent by ci  cj, or bidirectional

represented by ci  cj as follows,

String information users

Role a pair (r1, r2) also information users

Multiplicity a pair (v1, v2) by vi is of the form li..ui where li,

ui ≥ 0 such as 0..2, 1..*, 0..* etc.

Fig. 2 A pair of relations of class diagram.

The definition of all classes and relationships can be

illustrated by an example with consideration the UML class

diagram shown in Fig. 3.

Fig. 3 Example of a part of class diagram (D).

As Fig. 3, set of flight class diagram is represented by

DFlight = (C, R) ,by set of classes C is

C= {c1(Flight, AFlight, MFlight), c2(Plane, APlane, Mplane)}

AFlight= { a1(flightNumber, Integer),

 a2(departureTime, Date),

 a3(flightDuration, Minutes),

 a4(departingAirport, String),

 a5(arrivingAirport, String) }

Class ci
Multiplicity v1 Multiplicity v2

String
Class cj Role r1 Role r2

MFlight= { m1:delayFlight()  Minutes,

 m2:getArrivalTime() Date}

APlane= { a1(airPlaneType, String),

 a2(maximumSpeed, MilePerHours),

 a3(maximumDistance, Miles),

 a4(tailId, String) }

 Mplane= 

 R = {r1(c1,c2, S)}

 S = (association, L, c1  c2)

 L= (null, (assignedFlights, assignedPlane), (0..*, 0..1))

B. Software Pattens

Software patterns are class diagram patterns which consist

of classes and relations between classes in a class diagram

pattern. Hence, P represents the set of class diagram patterns.

P = (CP, RP)

Class Patterns (CP) is a set of classes in a class diagram

pattern and CPN represents the infinite set of class pattern

names.

CP = {cpi (cpn, AP, MP) | i ℕ, cpn  CPN}

Thus, a class cpi is a tuple cpi = (cpn, AP, MP)

where,

cpn name of cpi.

AP a finite set of attribute of cpi.

MP a finite set of operations of cpi.

Therefore, let us consider two infinite sets of ANP and

MNP, which respectively represent the set of attribute name

and method name. To similar, given a set of basic types B in

class diagram (including integer, string, float, double, etc).

AP is a set of attributes in a class pattern cpi. An attribute

api consists of a method name anp, where anp  ANP and a

attribute type is a basic type bi.

AP = {api(anp, bi) | i ℕ, anp  ANP, bi  B  CNP}

MP is a set of methods in a class pattern cpi. We denote a

method signature in a class pattern by notation msp1, …,

mspn  msp, where msp1, …, mspn, msp  B  CNP where

mp  MN and a method signature ms1, …, msn  ms.

MP = {mpi: msp1, …, mspn  msp | i  ℕ , mpi  MNP,

msp  B  CNP}

Relations (RP) Let RP is a set of relationship between

classes in a class diagram pattern.

RP = {rpi (cpi, cpj, SP) | i,j  ℕ }

Thus, a relation rpi is a tuple rpi = (cpi, cpj, SP), where cpi,

cpj are two classes in a class diagram pattern, and SP = {sp} is

a set of description of the relations hip between cpi and cpj.

The description of an association sp = (t, L, g) where t, L and

g is similar to set s of class diagram (D).

IV. INTEGRATION RULES

The definitions of class diagram and software patterns are

used for integration rules. This paper presents an example

three of integration rules as follows,

A. Integration rule 1

Let ci is a class in class diagram (D) and P1 is a software

pattern that is related to domain in class diagram of ci. Thus,

ci will be integrated to P1 and moved details (i.e. attributes,

methods) in cpi of P1 to original ci followed definition of set

in Rule 1.

Rule 1 If ci.cn = cpi.cpn by i ℕ, ci D, cpi  P1.

Then ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M by iℕ.

Example of Rule 1

c1
a1
a2

m1

cp1
ap1
ap2

mp1

 =

c1
a1
a2
ap1
ap2
m1

mp1

P1

Fig. 4 Example of integration rule 1.

For example, a class c1 is relevant to cp1 in software pattern

P1. Thus, the result in Fig. 4 shows new c1 that is added

details in attributes and methods such as ap1, ap2 and mp1

from cp1 respectively.

B. Integration rule 2

Let ci is a class in class diagram (D) and P1 is a software

pattern that is related to domain in class diagram of ci. But

multiple classes is related to a class cpi in software pattern.

Thus, ci will be integrated all related to cpi in P1 and moved

details (i.e. attributes, methods) in all cpi of P1 to original ci

followed definition of set in Rule 2.

Rule 2 If ci.cn = cpi.cpn and ri.cpi = (cpi, cpj, S) by i, j ℕ, ci

D, cpi P1.

Then ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M and ri.ci

= ri.ci  rpi.cpi, and C = C  cpj

Example of Rule 2

=

c1
a1
a2
ap1
ap2
m1

mp1

c1
a1
a2

m1


cp1

ap1
ap2

mp1

cp2
ap1
ap2

mp1

cp3

ap1
ap2

mp1

cp2
ap1
ap2

mp1

cp3

ap1
ap2

mp1

P1

Fig. 5 Example of integration rule 2.

For example, a class c1 is relevant to cp1 in software pattern

P1 and cp1 is related to cp2 and cp3. Thus, the result in Fig. 5

shows new c1 that is added details in attributes and methods

such as ap1, ap2 and mp1 from cp1. And new c1 has relation to

cp2 and cp3 and their detailed of cp2 and cp3.

C. Integration rule 3

Let ci is a class in class diagram (D) and P1 is a software

pattern that is related to domain in class diagram of ci. But P1

needs required software pattern P2. In addition, multiple

classes is related to a class cpi in software pattern P1 and P2.

Thus, ci will be integrated all related to cpi in P1 and P2, and

moved details (i.e. attributes, methods) in all cpi of P1 and cpi

of P2 to original ci followed definition of set in Rule 3.

Rule 3 If ci.cn = cpi.cpn, P1.cpi.cpn = P2.cpi.cpn by P1.ri.cpi =

(cpi, cpj, S) and P2.ri.cpi = (cpi, cpj, S) by i, j ℕ.

Then ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M and ri.ci

= ri.ci  P1.rpi.cpi  P2.rpi.cpi, and C = C  P1.cpj  P2.cpj

.

Example of Rule 3

c1
a1
a2

m1

P1



P2

cp2
ap1
ap2

mp1

cp3
ap1
ap2

mp1

cp1
ap1
ap2

mp1

cp1
ap1
ap2

mp1

=

c1
a1
a2
ap1
ap2
m1

mp1

cp2
ap1
ap2

mp1

cp3
ap1
ap2

mp1

Fig. 6 Example of integration rule 3.

For example, a class c1 is relevant to cp1 in software pattern

P1 and P2. Class cp1 of P1 is related to cp2 and cp1 of P2 is

related to cp3. Thus, the result in Fig. 6 shows new c1 that is

added details in attributes and methods such as ap1, ap2 and

mp1 from cp1. And new c1 in P1 and P2 has relation to cp2 and

cp3 respectively, so their detailed of cp2 and cp3 is also related

to cp1.

V. CASE STUDY

An example of this case study is a vendor processing

purchase orders of goods from its customers. Receiving a

purchase order, it will be checked that is enough goods in

stock to complete the purchase order. If a sale order is

opened, the tax is also calculated. But if not, the restock

process is performed to reorder goods from a supplier before

the purchase order is responded as an outstanding order.

Thus, software designer may use their experience to create a

UML class diagram as Fig. 7. and also look up software

patterns related to purchase order problem domain. In this

case, the software patterns that can be extracted from

problem domain name is purchase order such as order

archetype pattern [2] in Fig. 8 and restock policy pattern that

is solved by domain expert based on the Economic Quantity

Order model [11] which consider the quantity to order that

minimizes the total variable costs required to order and hold

inventory in Fig. 9.

Fig. 7 An example of UML purchase order class diagram.

As Fig. 7, Purchase Order Class Diagram is presented as

follows,

DPurchaseOrder = (C, R) , by set of classes C is

C = {c1(ProductCatalog, AProductCatalog, MProductCatalog),

c2(CatalogEntry, ACatalogEntry, MCatalogEntry), c3(ProductType,

AProductType, MProductType), c4(ProductIdentifier, , ),

c5(RestockPolicy, ARestockPolicy, MRestockPolidy), c6(OrderLine,

AOrderLine, MOrderLine)}

The set of Attributes in the class diagram can be

represented by A of a class. For example, the class c6 is

OrderLine that has the set of attribute as follows,

AOrderLine= { a1 (productType, ProductIdentifier),

 a2 (serialNumber, String),

 a3 (description, String),

 a4 (comment, String),

 a5 (unitPrice, Double). }

c1

c2

c3 c6

c5 c4

c7

MOrderLine= {m1: getOrderLineIdentifier ()  null,

 m2: addTax ()  null,

 m3:getTax ()  null,

 m4: removeTax ()  null. }

 The relationship between classes in PurchaseOrder

Class diagram is presented in R by,

 R = {r1 (ProductCatalog, CatalogEntry, S1),…, r5

(OrderLine, ProductType, S1), r6 (OrderLine, Tax, S2)}

 S1= (aggregation, L1, ProductCatalog 

CatalogEntry)

 …

 S5 = (aggregation, L5, OrderLine  ProductType)

 S6 = (composition, L6, OrderLine  Tax)

 L1= (null, (null, null), (1, 0..*))

 ...

 L5= (null, (null, null), (0..1, 1..*))

 L6= (null, (null, null), (0..1, 1..*))

Fig. 8 Order archetype pattern.

As Fig. 8, Order Class Diagram pattern also is presented as

follows,

POrder = (CP, RP) , by set of classes CP is

CP= {cp1(OrderLine, APOrderLine, MPOrderLine), cp2(Order,

APOrder, MPOrder), cp3(PurchaseOrder, APPurchaseOrder,

MPPurchaseOrder), cp4(SaleOrder, APSaleOrder, MPSaleOrder) }

Thus, the set of Attributes in the class diagram pattern can

be represented by AP of a class pattern.

APOrderLine= {ap1 (productType, ProductIdentifier),

 ap2 (serialNumber, String),

 ap3 (description, String),

 ap4 (comment, String),

 ap5 (unitPrice, Double),

 ap6 (expectedDeliveryDate, TimeDate)}

MPOrderLine= {mp1: getOrderLineIdentifier ()  null,

 mp2: increaseNumberOrdered () null,

 mp3: getNumberOrdered ()  null,

 mp4: decreaseNumberOrdered ()  null,

 mp5: addTax ()  null,

 mp6: getTax ()null,

 mp7: removeTax () null. }

The relationship between OrderLine class pattern and

others class is presented by RP. For example,

 RPOrderLine = {rp1 (OrderLine, Order, SP1), rp2 (Order,

PurchseOrder, SP2), rp3 (Order, SaleOrder, SP3)}

 SP1 = (aggregation, LP1, OrderLine  Order)

 SP2 = (Inheritance, LP2, Order  PurchaseOrder)

 SP3 = (Inheritance, LP3, Order  SalsOrder)

 LP1= (null, (null, null), (0..*, 1))

 LP2= (null, (null, null), (null, null))

 LP3= (null, (null, null), (null, null))

Therefore, the result is applied by integration with order

archetype pattern based on Rule 2 in Fig. 10. The c6 of

Purchase Order class diagram is OrderLine class that is found

in cp1 of Order archetype pattern.

c6.OrderLine = cp1.OrderLine

The result of ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M

ri.ci = ri.ci  rpi.cpi , and C = C  cpj is details (i.e. attributes,

methods, relations) of OrderLine (cp1) class in Order

archetype pattern are moved to OrderLine (c6) in Purchase

Order class diagram firstly as follows ,

AOrderLine= { a1 (productType, ProductIdentifier),

 a2 (serialNumber, String),

 a3 (description, String),

 a4 (comment, String),

 a5 (unitPrice, Double)

 ap6 (expectedDeliveryDate, TimeDate). }

MOrderLine= {m1: getOrderLineIdentifier ()  null,

 mp2: increaseNumberOrdered () null,

 mp3: getNumberOrdered ()  null,

 mp4: decreaseNumberOrdered ()  null,

 m5: addTax ()  null,

 m6: getTax ()  null,

 m7: removeTax ()  null. }

DNew_PurchaseOrder = (C, R)

R = {r1 (ProductCatalog, CatalogEntry, S1),…, r5

(OrderLine, ProductType, S1), r6 (OrderLine, Tax, S2), rp1

(OrderLine, Order, SP1), rp2 (Order, PurchseOrder,

SP2), rp3 (Order, SaleOrder, SP3)}

C = {c1(ProductCatalog, AProductCatalog, MProductCatalog),

c2(CatalogEntry, ACatalogEntry, MCatalogEntry), c3(ProductType,

AProductType, MProductType), c4(ProductIdentifier, , ),

c5(RestockPolicy, ARestockPolicy, MRestockPolidy), c6(OrderLine,

AOrderLine, MOrderLine), cp2(Order, APOrder, MPOrder),

cp1 cp2

cp4 cp3

cp3(PurchaseOrder, APPurchaseOrder, MPPurchaseOrder),

cp4(SaleOrder, APSaleOrder, MPSaleOrder) }

Fig. 9 Restock policy pattern.

In addition, restock policy pattern is integrated to purchase

order class diagram, which also is based on Rule 2. The ci of

purchase order class diagram is RestockPolicy class that

found in cpi of restock policy pattern. Therefore, the details

(i.e. attributes, methods) of RestockPolicy classes,

RestockOnHand, RestockEconomic classes which are moved

to purchase order class diagram. The new purchase order

class diagram is applied completely.

Fig. 10 Applied integration rules.

VI. CONCLUSION

We have presented a framework to enhance a class

diagram with software patterns by integration rules. This

framework helps software designer to identify classes for the

class diagrams. Although, the traditional approach is done by

their experience, the integration rules in formal specification

are intended to complement existing textual and graphical

descriptions in order to eliminate ambiguity and allow

rigorous reasoning about integration fabrication between

UML class diagrams and software patterns. In additional, the

integration rules can be mapped based on a formal

specification language meant to specify them to achieve

simplicity for a better understanding and accuracy for a

precise semantics.

The case study shows results that are completed more

details of class diagrams to fully satisfy with the

requirements. We have tried to apply them to other case

studies but more rules need to be added to achieve class

diagram details. However, the detail of UML is a wide

scope; we have not included other complex aspects of UML

in this paper. It will be addressed in our future work.

REFERENCES

[1] O.H. Booch, J. Rumbaugh and I. Jaboson. The Unified Modeling
Language User Guide. Addison Wesley, Reading, MA, 1999.

[2] J. Arlow and I. Neustadt, Enterprise Pattern and MDA: Building Better
Software with Archetype Patterns and UML, Pearson Education, Inc.,
2003.

[3] O. H. Barros, Business Information System Design Based on Process
Pattern and Frameworks. BPtrends, September 2004, Available:
www.bptrends.com

[4] G. P. Moynihan, A. Suki and D. J. Fonseca, “An Expert System for the
Selection of Software Design Patterns”, Blackwell Publishing, Vol. 23,
No. 1, February 2006, pp. 39-52.

[5] H.S. Hamza, “Improving Analysis Patterns Reuse: An Ontological
Approac”, Ontologies as Software Engineering Artifacts Workshop
(OOPSLA’04), 2004.

[6] G. Hu, “A Formal Specication of UML Class and State Diagrams”,
Proceeding of 9th ACIS International Conference on Software
Engineering, Artificial Intelligence, Network & Parallel and
Distributed Computer (SPDN 2008), Studies in Computational
Intelligence, Vol. 149, Springer, August 2008, pp. 247-257.

[7] D. Ballis, A. Baruzzo and M. Comini, “A Rule-Based Method to Match
Software Patterns Against UML Models”, Proceeding of the 8th
International Workshops on Rule-Based Programming (RULE’07),
France, Paris, 2007, pp. 239-248.

[8] N.B. Harrison, P. Avgeriou and U.Zdlin, “Using Patterns to Capture
Architecture Decisions”, IEEE Software, Vol. 24, Issue 4, July-Aug,
2007, pp. 38-45.

[9] U. Zdun, “Systematic Pattern Selection Using Pattern Language
Grammars and Design Space Analysis”, Software: Practice and
Experience, Vol. 37, Issue 9, 2006, pp. 983-1016.

[10] S. Henninger, P. Ashokkumar, “An Ontology-Based Metamodel for
Software Patterns”, Proceeding of the 18th International Conference on
Software Engineering and Knowledge Engineering (SEKE2006), San
Francisco, July 5-7, 2006, pp. 327-330.

[11] R.H. Wison, “A Scientific Routine for Stock Control”, Harvard
Business Review, Vol. 13, 1934, pp. 116-128.

cp5

cp6 cp7

c5

c1

c2

c3

c4

c6

c7
cp2

cp3 cp4

cp6

cp7

../../../AppData/Roaming/Microsoft/Word/www.bptrends.com

