Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

A Framework for UML Class Diagrams and
Software Patterns Integration

Wararat Rungworawut

Abstract— In software engineering, a software pattern is a
reusable solution to solve recurring software design problems.
Traditionally, suitable patterns are identified by software
designers to satisfy a set of requirements. A part of appropriate
patterns is then applied to a recurring software design problem.
However, the existing software patterns part has to be properly
integrated to specific design problems. Therefore, the
introduction of formalization is required to describe this
integration accurately. In this paper, we propose a framework
of UML class diagrams and software patterns integration
prepared for formal specification to solve different software
designer’s experiences. The integration rules in this formal
framework is intended to complement existing textual and
graphical descriptions in order to eliminate the ambiguity of
class diagrams with software patterns integration. A case study
of our approach is illustrated in a purchase order system.

Index Terms— software patterns, UML class diagrams,
software design, formal specification.

. INTRODUCTION

The conventional software development starts with
application domains modeling with software models such as
UML models [1]. UML class diagrams are a widely used
technique for modeling the static structure of a software
model which is created by software designers. Therefore,
software designers need to fully understand the problem
domain in order to design such software models. Whereas, a
part of solving design problem in software application is
collected as software patterns those can be applied during
software modeling. There are several kinds of patterns that
can be applied to software models. In this paper, the focus is
on archetype patterns which are used to describe possible
software models. The archetype patterns are always at a
higher level of abstraction than normal analysis class that can
be adapted to specific business domains [2].

Many researches show reused patterns have been promoted.
For example, [3] focused on the use of patterns for business
processes and also the derivation of UML classes from the
process patterns manually. [4], [5] tried to select patterns in
different patterns to software models by expert systems such
as ontology. As an aspect of formal specification of class
diagrams and state diagrams in simple notation are based on

Manuscript received December 16, 2009.

W. Rungworawut is with the Information Systems Engineering
Laboratory, Department of Computer Engineering, Chulalongkorn
University, Bangkok 10330 Thailand (phone: +66 2 2186991; fax: +66 2
2186955; e-mail: wararatkku@yahoo.com).

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

basic mathematics and predication logic has been proposed in
[6]. Similarity to the approach in [7], a class diagram
representation and software patterns have been defined with
a suggestion of using a rule-based method to match design
patterns into a UML model. However, these researches have
not discussed how to apply software patterns to UML class
diagrams in a formal specification accurately. The difference
of our approach is trying to fabricate precise integration rules
between UML class diagrams and software patterns in a form
of a formal specification.

In this paper, we present an overview of a framework for the
integration of software patterns applying to specific design
problem as UML class diagrams. The main objective is to
create the integration rules based on the basic mathematics
and the predicate logic in order to eliminate ambiguity and
allow rigorous reasoning about the integration of class
diagrams with software patterns. These rules are easily used
as criterion to apply in the information such as attributes,
methods and associations, which are extracted between UML
class diagrams and software patterns. Our framework will
help software designers to construct a software model as
UML class diagrams by adding these details to classes using
software patterns.

The overview of framework for UML class diagrams and
software patterns integration is proposed in Section Il. The
definition of UML class diagrams and software pattern is
given in Section Ill. And Section IV is the description of
integration rules. Section V shows the case study followed by
integration rules used in this case and also the discussion
about the case study. Last but not least, our future works are
concluded in Section VI.

Il. OVERVIEW OF FRAMEWORK

The overview of framework, software designers have
knowledge in design software to create classes in a class
diagram (D) for a particular design problem. These classes in
a class diagram may be satisfied with a set of requirement but
they may be not sufficient to derive the possible class
diagram. However, software designers need to query existing
solution of experts during a design decision such as looking
for software patterns. A software pattern has a name
corresponding to the document solution as problem domain
name that is unique within a pattern catalog. Therefore, those
software patterns are selected by searching problem domain
names. The problem domain name is a meaningful name that
will be a part of the shared design vocabulary [8]. Mostly
software pattern description formats also contain an implicit
or explicit related software patterns section [9], [10]. For

IMECS 2010

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,

IMECS 2010, March 17 - 19, 2010, Hong Kong

example, prototyping a class diagram (D) has labeled a
problem domain name. The problem domain name is queried
in software pattern catalogs that collected various software
patterns. Software patterns are related to class diagram (D),
which exactas software pattern P1 and P2. The class diagram
(D) and those software patterns P1 and P2 are appropriate
integrated by criteria selection from integration rules. These
integration rules apply to a single new class diagram (D) in
Fig. 1.

Integration Rules Related Software Patterns

i
55

Class Diagrams

&

Rule 1

Integrate Integrate

Rule 2

Rule 3

Rule n

ntegrated Class Diagrams
Dnew

i)

Fig. 1 Overview of UML class diagram and software pattern
integration framework.

I1l. FORMAL SPECIFICATION OF INTEGRATION RULES

A. Class Diagram

A Class diagram relations are modeled by mean of labeled
relationship between classes. Hence, D represents the set of a
class diagram.

D=(C,R)

Class (C) is a set of classes and CN represents the infinite
set of class names.

C={ci(cn, A, M) |i e N, cn e CN}

Thus, a class ¢; is a tuple ¢; = (cn, A, M) where,
cn name of c;.

A afinite set of attribute of c;.

M afinite set of operations of c;.

Each of the item x in the tuple ci is denoted c;.x. For
example, c;.cn denotes the name of c¢; or ¢;.A denotes the set
of attributes A of ¢;, etc.

Let us consider two infinite sets of AN and MN, which
respectively represent the set of attribute name and method
name. Given a set of basic types B includes integer, string,
float, double, etc.

A is a set of attributes. An attribute a; consists of a method
name an, where an € AN and a attribute type is a basic type
bi.

A={ai(an, bi)|i e N,an € AN, bi € B CN}
Each of the item x in the tuple a is denoted a;.x. For
example, a;.an denotes the name of a;.

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

M is a set of methods. We denote a method signature by
notation msi, ..., msn—ms, where msl, ..., msn, ms € B U
CN. A method mi: msl, ..., msn — ms consists of a method
name m, where m € MN and a method signature ms1, ...,
msn — ms.

M={m;:msl,...,msn>ms|ie N,meMN,mseBuU
CN}

Relations (R) Let R is a set of relationship between classes.
R={ri(cic;, S)|ije N}

Thus, a relation ri is a tuple r; = (c;, ¢;, S), where ¢;, c; are
two classes, and S = {s} is a set of description of the
relationship between c¢; and c;. The description of an
association s = (t, L, g) where t is enumeration of types
includes association, inheritance, aggregation, composition
etc. L is a set of labels and g is a directional flag which is
either unidirectional, represent by c; — ¢;, or bidirectional
represented by ¢; <> ¢; as follows,

String information users

Role a pair (ry, rp) also information users

Multiplicity a pair (v4, v2) by v;is of the form I;..u; where [,
u;>0suchas0..2,1..*%, 0..* etc.

Multiplicity v, >""9 Muttiplicity v,
Classc, |&€

Roler,

Class c

Roler,

Fig. 2 A pair of relations of class diagram.

The definition of all classes and relationships can be
illustrated by an example with consideration the UML class
diagram shown in Fig. 3.

Flight

Plane

flight Mumber: Integer
departureTime: Date
flight Duration: Minutes 0.# 0.1
departingAirport: String
arrivingAirport: String

aiPlaneType: String
maximumSpeed: MilePerHours
maximumDistances: Miles
assigned Plane| tailld : String

assignedFlights

delayFlight(): Minutes
getArival Time(): Date

Fig. 3 Example of a part of class diagram (D).
As Fig. 3, set of flight class diagram is represented by
Driignt = (C, R) ,by set of classes C is
C= {ci(Flight, Agiight, Meiigh), C2(Plane, Apiane, Mpiane) }
Ariigh= { a1(flightNumber, Integer),
a,(departureTime, Date),
ag(flightDuration, Minutes),

a,(departingAirport, String),
as(arrivingAirport, String) }

IMECS 2010

Meiigh= { my:delayFlight() — Minutes,
m,:getArrival Time() —»Date}

Apiane= { a1(airPlaneType, String),
a,(maximumSpeed, MilePerHours),
as(maximumbDistance, Miles),
a,(tailld, String) }

Mplane=)

R = {ri(cy,co, S)}
S = (association, L, ¢; <> C,)
L= (null, (assignedFlights, assignedPlane), (0..*, 0..1))

B. Software Pattens

Software patterns are class diagram patterns which consist
of classes and relations between classes in a class diagram
pattern. Hence, P represents the set of class diagram patterns.

P = (CP, RP)

Class Patterns (CP) is a set of classes in a class diagram
pattern and CPN represents the infinite set of class pattern
names.

CP ={cpi (cpn, AP, MP) | i eN, cpn € CPN}
Thus, a class cp; is a tuple cp; = (cpn, AP, MP)

where,

cpn name of cp;.

AP a finite set of attribute of cp;.
MP a finite set of operations of cp;.

Therefore, let us consider two infinite sets of ANP and
MNP, which respectively represent the set of attribute name
and method name. To similar, given a set of basic types B in
class diagram (including integer, string, float, double, etc).

AP is a set of attributes in a class pattern cp;. An attribute
api consists of a method name anp, where anp € ANP and a
attribute type is a basic type bi.

AP = {api(anp, bi) | i €N, anp € ANP, bi € B U CNP}

MP is a set of methods in a class pattern cpi. We denote a
method signature in a class pattern by notation mspil, ...,

mspn — msp, where mspl, ..., mspn, msp € B U CNP where
mp € MN and a method signature ms1, ..., msn — ms.

MP = {mp;: mspl, ..., mspn - msp |i € N, mpi € MNP,
msp € B W CNP}

Relations (RP) Let RP is a set of relationship between
classes in a class diagram pattern.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

RP = {rpi (cp;, cp;, SP) | i,j e N }

Thus, a relation rpi is a tuple rp; = (cp;, cp;, SP), where cp;,
cp;j are two classes in a class diagram pattern, and SP = {sp} is
a set of description of the relations hip between cp; and cp;.

The description of an association sp = (t, L, g) where t, L and
g is similar to set s of class diagram (D).

IV. INTEGRATION RULES
The definitions of class diagram and software patterns are

used for integration rules. This paper presents an example
three of integration rules as follows,

A. Integration rule 1

Let ¢; is a class in class diagram (D) and P1 is a software
pattern that is related to domain in class diagram of c;. Thus,
c; will be integrated to P1 and moved details (i.e. attributes,
methods) in cp; of P1 to original ¢; followed definition of set
in Rule 1.

Rule 1 If ¢i.cn = cpi.cpn by ie N, ¢cie D, cp; € P1.
Thenci.A=c.AuUcpiAand ci.M=c¢.M U cpi.M by ieN.

Example of Rule 1

P1
Cy

C cp :1

a ap; 2
a + ap; j— ap;
ap:
ml mp; m;}

1

Fig. 4 Example of integration rule 1.

For example, a class c; is relevant to cp; in software pattern
P1. Thus, the result in Fig. 4 shows new c; that is added
details in attributes and methods such as ap;, ap, and mp;
from cp; respectively.

B. Integration rule 2

Let ¢; is a class in class diagram (D) and P1 is a software
pattern that is related to domain in class diagram of c;. But
multiple classes is related to a class cp; in software pattern.
Thus, ¢; will be integrated all related to cp; in P1 and moved
details (i.e. attributes, methods) in all cp; of P1 to original c;
followed definition of set in Rule 2.

Rule 2 If ci.cn = cp;.cpn and ri.cp; = (cpi, €p;, S) by i, j €N, cie
D, cpie PL.

Then ¢;.A = ¢;.A U ¢cp;.A and ¢;.M = ¢;.M U ¢p;.M and r;.c;
=r.ci U rpi.cp;, and C=C U cp;

ISBN: 978-988-17012-8-2 IMECS 2010

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Example of Rule 2
P1
Cp2 cp2
an ap;
ap; [ap;
Cy Cps1 a
a + || am mps = |a mpy
& ap, ap;
CPs ap, ¢
ml mp an m, TplL
ap; mp; ap;
M mpy

Fig. 5 Example of integration rule 2.

For example, a class c; is relevant to cp; in software pattern
P1 and cp; is related to cp, and cps. Thus, the result in Fig. 5
shows new c; that is added details in attributes and methods
such as aps, ap, and mp; from cp;. And new ¢, has relation to
cp, and cp; and their detailed of cp, and cps.

C. Integration rule 3

Let ¢; is a class in class diagram (D) and P1 is a software
pattern that is related to domain in class diagram of ¢;. But P1
needs required software pattern P2. In addition, multiple
classes is related to a class cp; in software pattern P1 and P2.
Thus, c; will be integrated all related to cp; in P1 and P2, and
moved details (i.e. attributes, methods) in all cp; of P1 and cp;
of P2 to original c; followed definition of set in Rule 3.

Rule 3 If ¢;.cn = cp;.cpn, P1.cp;.cpn = P2.cp;.cpn by P1.ri.cp; =
(cpi, cp;, S) and P2.ri.cp; = (cpi, cp;, S) by i, j eN.

Then ¢;.A =¢;.A U ¢cp;.A and ¢;.M = ¢;.M U ¢cp;.M and r;.c;
=r;.c; U PL.rpi.cp; L P2.rp;.cp;, and C = C U Pl.cp; U P2.cp;

Example of Rule 3
P1 P2
C1
C1 a; Cps
a Cp1 [= a [| ap:
a + ap; ap; ap; ap;
ap; El aj
i 2 P2 mplz mpl
mpl mpl mp;
Cp2 CP3
apy ap; Cp2
apz ap; ap,
ap,
mpl mpl
mpl

Fig. 6 Example of integration rule 3.

For example, a class c; is relevant to cp; in software pattern
P1 and P2. Class cp; of P1 is related to cp, and cp; of P2 is
related to cps. Thus, the result in Fig. 6 shows new c; that is
added details in attributes and methods such as ap;, ap, and
mp, from cp;. And new c; in P1 and P2 has relation to cp, and
cps respectively, so their detailed of cp, and cps is also related
to cp;.

V. CASE STUDY

An example of this case study is a vendor processing
purchase orders of goods from its customers. Receiving a

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

purchase order, it will be checked that is enough goods in
stock to complete the purchase order. If a sale order is
opened, the tax is also calculated. But if not, the restock
process is performed to reorder goods from a supplier before
the purchase order is responded as an outstanding order.
Thus, software designer may use their experience to create a
UML class diagram as Fig. 7. and also look up software
patterns related to purchase order problem domain. In this
case, the software patterns that can be extracted from
problem domain name is purchase order such as order
archetype pattern [2] in Fig. 8 and restock policy pattern that
is solved by domain expert based on the Economic Quantity
Order model [11] which consider the quantity to order that
minimizes the total variable costs required to order and hold
inventory in Fig. 9.
C1

ProductCatalog

¢name : String
«description - String

*addProductType() C7
Sremov eProductTy pe()
*findProductTy peBy C atalogl de ntifier() Tax
gtaxationRate : Double
¢taxationType - String
14 gcomment : String

A indProductTy peByProductldentifier()
*fineProductTy peByname()

CZ *calculateTax()
1=

0.
CatalogEntry
catalogldentifier : String

<description : String

0=
1.+ C3 0.1 CG

ProductTy pe OrderLine
@name : String ¢productType - Productldentifier
¢description - String eserialN u.mber: ﬁtrmg
@amount - Integer @description : String

eprice - real 0.1 | gcomment : String
= — gunitPrice - Double

‘getQuamny OnOrder()
®gstQuantity AcceptBy Date()
‘getRestockPuh:y 0
*gstProductl dentif ier()

1 T
1/(34 "G

Productldentifier RestockPaolicy

%getOrderLineldentfier()
®addTax()

®getTaxes()

®emov eTax()

‘setResta:kRule()

Fig. 7 An example of UML purchase order class diagram.

As Fig. 7, Purchase Order Class Diagram is presented as
follows,

Dpurchaseorder = (C, R) , by set of classes C is

c = {cl(ProductCatalog, AProductCatang, MProductCatalog)n
Co(CatalogEntry, Acatiogentrys Mcatalogentry), Cs(ProductType,
Aproducttyper Meroguctype), Ca(Productldentifier, &, &),
CS(ReStOCkPOIiCy: ARestockPoIicyv MRestockPoIidy): C6(Order|—inea
AOrderLine: IVIOrderLine)}

The set of Attributes in the class diagram can be
represented by A of a class. For example, the class cs is
OrderLine that has the set of attribute as follows,

AorderLine= { a1 (productType, Productldentifier),
a, (serialNumber, String),
as (description, String),
a4 (comment, String),
as (unitPrice, Double). }

IMECS 2010

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,

IMECS 2010, March 17 - 19, 2010, Hong Kong

MorderLine= {my: getOrderLineldentifier () — null,
m,: addTax () — null,
ms:getTax () — null,
my: removeTax () —» null. }

The relationship between classes in PurchaseOrder
Class diagram is presented in R by,

R = {r; (ProductCatalog, CatalogEntry, S1),..., 15
(OrderLine, ProductType, S1), rs (OrderLine, Tax, S2)}

S1= (aggregation, L1,
CatalogEntry)

ProductCatalog -

S5 = (aggregation, L5, OrderLine — ProductType)
S6 = (composition, L6, OrderLine — Tax)
L1=(null, (null, null), (1, 0..%))

.I:S: (null, (null, null), (0.1, 1..%))
L6=(null, (null, null), (0..1, 1..*))

Cps CP4

<<archety pe=>
SalesOrder

¢dateSent : Tim eD ate

sDespatchE vent() pron
oiceE vent() .imc

essAcceptPay mentE vent() -
- pro
processMakeR e fundEvent()

[
Cp2 JZ Cp1

<carchetypes>
Order

s
cessAcceptR sfucdEvent ()

<<archety pe=>
OrderLine

@productTy pe : String
seri

dsteCreated : TimeDate
#orderldentifier : String

0
®getTaxes()
%rem oveTax()

Fig. 8 Order archetype pattern.

As Fig. 8, Order Class Diagram pattern also is presented as
follows,

Porger = (CP, RP) , by set of classes CP is

CP= {cp,(OrderLine, APogertines MPorgerLine), CP2(Order,
APOrden MPOrder)v Cpa(PUVChaseordery APPurchaseOrderv
MPPurchaseOrder)y de(saleorder: APSaIeOrder: IVIF)SaIeOrder) }

Thus, the set of Attributes in the class diagram pattern can
be represented by AP of a class pattern.

APorerLine= {ap1 (productType, Productldentifier),
ap, (serialNumber, String),
apz (description, String),
ap4 (comment, String),
aps (unitPrice, Double),
ape (expectedDeliveryDate, TimeDate)}

MPorderLine= {mp1: getOrderLineldentifier () — null,
mp,: increaseNumberOrdered ()— null,
mpz: getNumberOrdered () — null,

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

mp,: decreaseNumberOrdered () — null,
mps: addTax () — null,

mpe: getTax ()—null,

mp;: removeTax ()— null. }

The relationship between OrderLine class pattern and
others class is presented by RP. For example,

RPorderLine = {rp1 (OrderLine, Order, SP1), rp2 (Order,
PurchseQrder, SP2), rp3 (Order, SaleOrder, SP3)}

SP1 = (aggregation, LP1, OrderLine <« Order)
SP2 = (Inheritance, LP2, Order «— PurchaseOrder)
SP3 = (Inheritance, LP3, Order «— SalsOrder)

LP1= (null, (null, null), (0..*, 1))
LP2= (null, (null, null), (null, null))
LP3= (null, (null, null), (null, null))

Therefore, the result is applied by integration with order
archetype pattern based on Rule 2 in Fig. 10. The cg of
Purchase Order class diagram is OrderLine class that is found
in cp, of Order archetype pattern.

Cs.OrderLine = cp;.OrderLine

The result of ¢;.A = ¢.A U cp;.A and ¢;.M = ¢;.M U cp.M
r.Ci = ri.Ci U rpi.cp;, and C = C L cpyj is details (i.e. attributes,
methods, relations) of OrderLine (cp;) class in Order
archetype pattern are moved to OrderLine (cs) in Purchase
Order class diagram firstly as follows ,

AorderLine= { a1 (productType, Productldentifier),
a, (serialNumber, String),
a3 (description, String),
a4 (comment, String),
as (unitPrice, Double)
aps (expectedDeliveryDate, TimeDate). }

MorderLine= {mMy: getOrderLineldentifier () — null,
mp,: increaseNumberOrdered () —null,
mp3: getNumberOrdered () — null,
mp,: decreaseNumberOrdered () — null,
ms: addTax () — null,
me: getTax () — null,

m;: removeTax () —» null. }

DNew_PurchaseOrder = (C, R)

R = {r; (ProductCatalog, CatalogEntry, Sl),..., 15
(OrderLine, ProductType, S1), r¢ (OrderLine, Tax, S2), rp;
(OrderLine, Order, SP1), rp, (Order, PurchseOrder,
SP2), rps; (Order, SaleOrder, SP3)}

c = {Cl(PI'OdUCtCBIBJOQ, AProductCatanga MProductCatalog),
CZ(CataIOgEntrYa ACatangEntry, MCatangEntry)r CB(PrOdUCtType,
Aproducttyper Mproductype), Ca(Productldentifier, &, @),
CS(ReStOCkPO“Cy: ARestockPoIicw MRestockPoIidy): Cs(orderl—ine,
sz(order, APOrder’ MPOrder):

AOrderLine: MOrderLine):

IMECS 2010

Cp3(PU rchaseOrder, APPurchaseOrder' MPPurchaseOrder),
Cp4(SaIeOrder, APSaIeOrdery MPSaIeOrder) }
CPs
Resto dPalicy
BzetResto ckRuled
Tw
CPs cp7

FestockOn Hand Resto deEcon omi ¢

®1e0rd erPoin =)

BreOrderPointsEO0QModek)
%e0rd er0pti ma IP of s

BreOrderOptimalPointsEOR Mo dek)

Fig. 9 Restock policy pattern.

In addition, restock policy pattern is integrated to purchase
order class diagram, which also is based on Rule 2. The c; of
purchase order class diagram is RestockPolicy class that
found in cp; of restock policy pattern. Therefore, the details
(i.e. attributes, methods) of RestockPolicy classes,
RestockOnHand, RestockEconomic classes which are moved
to purchase order class diagram. The new purchase order
class diagram is applied completely.

Cps Cp4

PurchaseOrder

¢datePurchaseOrderReceiv ed : TimeDate
¢customerPurchaseOrderRef erence : String[0..1]

SalesOrder
¢dateSent : TimeDate

%processReceiptEvent()

%,
processDespatchi ert() ‘pmcess\wmceEv ent()

@
processlm oicebv ert() %processMakePay mentEv ent()

%processAcceptPay mentEv ent() ®processAcoeptRel uGdEy nt()

%processMakeRef undEv ent() Ll id

[|
C Cp2
ProductCatalog Order Cy

¢name : Sting ¢dateCreated : TimeDate
¢description : String ¢orderldentifier : String

Tax
¢taxationRate : Real
¢taxationTy pe : String
¢comment : String

%addOrderLine()

SaddProductTy pe()
%remov eOrderLine()

“remaov eProduct Ty pe()
%findProductTy peBy Catalogl dertifier() #sav eOrderLine()
findProductTy peBy Productidentifier() | | *getOrderLine()

$fineProductTy peBy name() “acceptEvent() 1=
Ty %getEv ents()
]
0= C2 [C6 0.1

CatalogEntry OrderLine
gcatalogldentifier : String ¢productTy pe : Product| dentff ier
¢description : String ¢senalNumber : SerialNumber
¢description : String

0= ¢comment : String
B ¢numberOrderd : Integer
1= C3

<unitPrice : Money
¢expectedDeliveryDate : TimeDate
ProductTy pe
¢name : String

¢description : String
¢amount : Integer

ScalculateTax ()

01 *getOrderLinel dentifier()
/ “incrementNumberOrdered()
“gethumberOrdered()

1.* 4,
eprice : real ‘de:rememNumherOrderedo
addTax ()
SgetQuantity OnOrder() *getTaxes()
“remav eTax()

%getQuantity AcceptBy Date()
[

‘getRestockPolicy ()
%getProduct| dentifier() Cp7

1 i
i‘ 1
Cs 1 \ Cs

Productidentifier RestockPolicy

RestockEconomic

“re0rderPointsEQQModel()
‘reOrderOpllmaJPumlsEOQMndEIO

CPs

RestockOnHand

“reOrderPoints()
“reOrderO ptimalPoints()

%setRestockRule()

Fig. 10 Applied integration rules.

VI. CONCLUSION

We have presented a framework to enhance a class
diagram with software patterns by integration rules. This
framework helps software designer to identify classes for the
class diagrams. Although, the traditional approach is done by
their experience, the integration rules in formal specification
are intended to complement existing textual and graphical
descriptions in order to eliminate ambiguity and allow
rigorous reasoning about integration fabrication between

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

UML class diagrams and software patterns. In additional, the
integration rules can be mapped based on a formal
specification language meant to specify them to achieve
simplicity for a better understanding and accuracy for a
precise semantics.

The case study shows results that are completed more
details of class diagrams to fully satisfy with the
requirements. We have tried to apply them to other case
studies but more rules need to be added to achieve class
diagram details. However, the detail of UML is a wide
scope; we have not included other complex aspects of UML
in this paper. It will be addressed in our future work.

REFERENCES

[1] O.H. Booch, J. Rumbaugh and I. Jaboson. The Unified Modeling
Language User Guide. Addison Wesley, Reading, MA, 1999.

[2] J. Arlowand I. Neustadt, Enterprise Pattern and MDA: Building Better
Software with Archetype Patterns and UML, Pearson Education, Inc.,
2003.

[3] O. H. Barros, Business Information System Design Based on Process
Pattern and Frameworks. BPtrends, September 2004, Available:
www.bptrends.com

[4] G.P.Moynihan, A. Suki and D. J. Fonseca, “An Expert System for the
Selection of Software Design Patterns”, Blackwell Publishing, Vol. 23,
No. 1, February 2006, pp. 39-52.

[5] H.S. Hamza, “Improving Analysis Patterns Reuse: An Ontological
Approac”, Ontologies as Software Engineering Artifacts Workshop
(OOPSLA’04), 2004.

[6] G. Hu, “A Formal Specication of UML Class and State Diagrams”,
Proceeding of 9th ACIS International Conference on Software
Engineering, Artificial Intelligence, Network & Parallel and
Distributed Computer (SPDN 2008), Studies in Computational
Intelligence, Vol. 149, Springer, August 2008, pp. 247-257.

[7] D.Ballis, A. Baruzzo and M. Comini, “A Rule-Based Method to Match
Software Patterns Against UML Models”, Proceeding of the 8"
International Workshops on Rule-Based Programming (RULE’07),
France, Paris, 2007, pp. 239-248.

[8] N.B. Harrison, P. Avgeriou and U.Zdlin, “Using Patterns to Capture
Architecture Decisions”, IEEE Software, Vol. 24, Issue 4, July-Aug,
2007, pp. 38-45.

[91 U. Zdun, “Systematic Pattern Selection Using Pattern Language
Grammars and Design Space Analysis”, Software: Practice and
Experience, Vol. 37, Issue 9, 2006, pp. 983-1016.

[10] S. Henninger, P. Ashokkumar, “An Ontology-Based Metamodel for
Software Patterns”, Proceeding of the 18" International Conference on
Software Engineering and Knowledge Engineering (SEKE2006), San
Francisco, July 5-7, 2006, pp. 327-330.

[11] R.H. Wison, “A Scientific Routine for Stock Control”, Harvard
Business Review, Vol. 13, 1934, pp. 116-128.

IMECS 2010

../../../AppData/Roaming/Microsoft/Word/www.bptrends.com

