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Abstract— In software engineering, a software pattern is a 

reusable solution to solve recurring software design problems. 

Traditionally, suitable patterns are identified by software 

designers to satisfy a set of requirements. A part of appropriate 

patterns is then applied to a recurring software design problem. 

However, the existing software patterns part has to be properly 

integrated to specific design problems.  Therefore, the 

introduction of formalization is required to describe this 

integration accurately. In this paper, we propose a framework 

of UML class diagrams and software patterns integration 

prepared for formal specification to solve different software 

designer’s experiences. The integration rules in this formal 

framework is intended to complement existing textual and 

graphical descriptions in order to eliminate the ambiguity of 

class diagrams with software patterns integration. A case study 

of our approach is illustrated in a purchase order system. 

 
Index Terms— software patterns, UML class diagrams, 

software design, formal specification.  

 

I. INTRODUCTION 

  The conventional software development starts with 

application domains modeling with software models such as 

UML models [1]. UML class diagrams are a widely used 

technique for modeling the static structure of a software 

model which is created by software designers. Therefore, 

software designers need to fully understand the problem 

domain in order to design such software models. Whereas, a 

part of solving design problem in software application is 

collected as software patterns those can be applied during 

software modeling. There are several kinds of patterns that 

can be applied to software models.  In this paper, the focus is 

on archetype patterns which are used to describe possible 

software models. The archetype patterns are always at a 

higher level of abstraction than normal analysis class that can 

be adapted to specific business domains [2].  

Many researches show reused patterns have been promoted. 

For example, [3] focused on the use of patterns for business 

processes and also the derivation of UML classes from the 

process patterns manually. [4], [5] tried to select patterns in 

different patterns to software models by expert systems such 

as ontology. As an aspect of formal specification of class 

diagrams and state diagrams in simple notation are based on 
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basic mathematics and predication logic has been proposed in 

[6]. Similarity to the approach in [7], a class diagram 

representation and software patterns have been defined with 

a suggestion of using a rule-based method to match design 

patterns into a UML model. However, these researches have 

not discussed how to apply software patterns to UML class 

diagrams in a formal specification accurately. The difference 

of our approach is trying to fabricate precise integration rules 

between UML class diagrams and software patterns in a form 

of a formal specification.  

In this paper, we present an overview of a framework for the 

integration of software patterns applying to specific design 

problem as UML class diagrams. The main objective is to 

create the integration rules based on the basic mathematics 

and the predicate logic in order to eliminate ambiguity and 

allow rigorous reasoning about the integration of class 

diagrams with software patterns. These rules are easily used 

as criterion to apply in the information such as attributes, 

methods and associations, which are extracted between UML 

class diagrams and software patterns. Our framework will 

help software designers to construct a software model as 

UML class diagrams by adding these details to classes using 

software patterns.  

The overview of framework for UML class diagrams and 

software patterns integration is proposed in Section II. The 

definition of UML class diagrams and software pattern is 

given in Section III. And Section IV is the description of 

integration rules. Section V shows the case study followed by 

integration rules used in this case and also the discussion 

about the case study. Last but not least, our future works are 

concluded in Section VI.  

II. OVERVIEW OF FRAMEWORK 

The overview of framework, software designers have 

knowledge in design software to create classes in a class 

diagram (D) for a particular design problem. These classes in 

a class diagram may be satisfied with a set of requirement but 

they may be not sufficient to derive the possible class 

diagram. However, software designers need to query existing 

solution of experts during a design decision such as looking 

for software patterns. A software pattern has a name 

corresponding to the document solution as problem domain 

name that is unique within a pattern catalog. Therefore, those 

software patterns are selected by searching problem domain 

names. The problem domain name is a meaningful name that 

will be a part of the shared design vocabulary [8]. Mostly 

software pattern description formats also contain an implicit 

or explicit related software patterns section [9], [10]. For 
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example, prototyping a class diagram (D) has labeled a 

problem domain name. The problem domain name is queried 

in software pattern catalogs that collected various software 

patterns. Software patterns are related to class diagram (D), 

which exactas software pattern P1 and P2. The class diagram 

(D) and those software patterns P1 and P2 are appropriate 

integrated by criteria selection from integration rules. These 

integration rules apply to a single new class diagram (Dnew) in 

Fig. 1.  
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Fig. 1 Overview of UML class diagram and software pattern 

integration framework. 

 

III. FORMAL SPECIFICATION OF INTEGRATION RULES 

A. Class Diagram 

A Class diagram relations are modeled by mean of labeled 

relationship between classes. Hence, D represents the set of a 

class diagram. 

 

D = (C, R) 

 

Class (C) is a set of classes and CN represents the infinite 

set of class names.  

 

C = {ci (cn, A, M) | i  ℕ, cn  CN}  

 

Thus, a class ci is a tuple ci = (cn, A, M) where, 

cn  name of ci. 

A  a finite set of attribute of ci.  

M  a finite set of operations of ci. 

 

Each of the item x in the tuple ci is denoted ci.x. For 

example, ci.cn denotes the name of ci or ci.A denotes the set 

of attributes A of ci, etc. 

Let us consider two infinite sets of AN and MN, which 

respectively represent the set of attribute name and method 

name. Given a set of basic types B includes integer, string, 

float, double, etc.  

A is a set of attributes. An attribute ai consists of a method 

name an, where an  AN and a attribute type is a basic type 

bi.  

 

A = {ai(an, bi) | i  ℕ, an  AN, bi  B  CN} 

Each of the item x in the tuple ai is denoted ai.x. For 

example, ai.an denotes the name of ai. 

 M is a set of methods. We denote a method signature by 

notation ms1, …, msnms, where ms1, …, msn, ms  B  

CN. A method mi: ms1, …, msn  ms consists of a method 

name m, where m  MN and a method signature ms1, …, 

msn  ms. 

 

M = {mi: ms1, …, msn ms | i  ℕ , mi  MN, ms  B  

CN} 

 

Relations (R) Let R is a set of relationship between classes. 

 

R = {ri (ci, cj, S) | i,j  ℕ}  

 

Thus, a relation ri is a tuple ri = (ci, cj, S), where ci, cj are 

two classes, and S = {s} is a set of description of the 

relationship between ci and cj. The description of an 

association s = (t, L, g) where t is enumeration of types 

includes association, inheritance, aggregation, composition 

etc. L is a set of labels and g is a directional flag which is 

either unidirectional, represent by ci  cj, or bidirectional 

represented by ci  cj as follows, 

 

String information users 

Role     a pair (r1, r2) also information users 

Multiplicity a pair (v1, v2) by vi is of the form li..ui where li, 

ui ≥ 0 such as 0..2, 1..*, 0..* etc. 

 

 

 

 

 

 

Fig. 2 A pair of relations of class diagram. 

 

The definition of all classes and relationships can be 

illustrated by an example with consideration the UML class 

diagram shown in Fig. 3.  

 

 
Fig. 3 Example of a part of class diagram (D). 

 

As Fig. 3, set of flight class diagram is represented by  

 

DFlight = (C, R) ,by set of classes C is 

 

C= {c1(Flight, AFlight, MFlight), c2(Plane, APlane, Mplane)} 

 

AFlight= { a1(flightNumber, Integer),  

            a2(departureTime, Date), 

            a3(flightDuration, Minutes), 

            a4(departingAirport, String), 

            a5(arrivingAirport, String) } 

 

Class ci 
Multiplicity v1 Multiplicity v2 

String 
Class cj Role r1 Role r2 



 

 

 

MFlight= { m1:delayFlight()  Minutes,   

              m2:getArrivalTime() Date} 

 

APlane= { a1(airPlaneType, String),  

            a2(maximumSpeed, MilePerHours), 

               a3(maximumDistance, Miles), 

               a4(tailId, String) } 

 

      Mplane=   

       

      R = {r1(c1,c2, S)} 

      S = (association, L, c1  c2) 

      L= (null, (assignedFlights, assignedPlane), (0..*, 0..1)) 

 

B. Software Pattens 

Software patterns are class diagram patterns which consist 

of classes and relations between classes in a class diagram 

pattern. Hence, P represents the set of class diagram patterns. 

 

P = (CP, RP) 

 

Class Patterns (CP) is a set of classes in a class diagram 

pattern and CPN represents the infinite set of class pattern 

names.  

 

CP = {cpi (cpn, AP, MP) | i ℕ, cpn  CPN}  

 

Thus, a class cpi is a tuple cpi = (cpn, AP, MP)  

 

where, 

cpn name of cpi. 

AP a finite set of attribute of cpi.  

MP a finite set of operations of cpi.  

 

Therefore, let us consider two infinite sets of ANP and 

MNP, which respectively represent the set of attribute name 

and method name. To similar, given a set of basic types B in 

class diagram (including integer, string, float, double, etc).  

AP is a set of attributes in a class pattern cpi. An attribute 

api consists of a method name anp, where anp  ANP and a 

attribute type is a basic type bi.  

 

AP = {api(anp, bi) | i ℕ, anp  ANP, bi  B  CNP} 

 

MP is a set of methods in a class pattern cpi. We denote a 

method signature in a class pattern by notation msp1, …, 

mspn  msp, where msp1, …, mspn, msp  B  CNP where 

mp  MN and a method signature ms1, …, msn  ms. 

 

MP = {mpi: msp1, …, mspn  msp | i  ℕ , mpi  MNP, 

msp  B  CNP} 

 

Relations (RP) Let RP is a set of relationship between 

classes in a class diagram pattern.  

 

 

 

 

 

RP = {rpi (cpi, cpj, SP) | i,j  ℕ }  

Thus, a relation rpi is a tuple rpi = (cpi, cpj, SP), where cpi, 

cpj are two classes in a class diagram pattern, and SP = {sp} is 

a set of description of the relations hip between cpi and cpj. 

The description of an association sp = (t, L, g) where t, L and 

g is similar to set s of class diagram (D). 

IV. INTEGRATION RULES 

The definitions of class diagram and software patterns are 

used for integration rules. This paper presents an example 

three of integration rules as follows, 

A. Integration rule 1 

 

Let ci is a class in class diagram (D) and P1 is a software 

pattern that is related to domain in class diagram of ci. Thus, 

ci will be integrated to P1 and moved details (i.e. attributes, 

methods) in cpi of P1 to original ci followed definition of set 

in Rule 1. 

 

Rule 1 If ci.cn = cpi.cpn by i ℕ, ci D, cpi  P1.  

Then ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M by iℕ. 

 

Example of Rule 1  
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Fig. 4 Example of integration rule 1. 

 

For example, a class c1 is relevant to cp1 in software pattern 

P1. Thus, the result in Fig. 4 shows new c1 that is added 

details in attributes and methods such as ap1, ap2 and mp1 

from cp1 respectively.  

 

B. Integration rule 2 

Let ci is a class in class diagram (D) and P1 is a software 

pattern that is related to domain in class diagram of ci. But 

multiple classes is related to a class cpi in software pattern. 

Thus, ci will be integrated all related to cpi in P1 and moved 

details (i.e. attributes, methods) in all cpi of P1 to original ci 

followed definition of set in Rule 2. 

 

Rule 2 If ci.cn = cpi.cpn and ri.cpi = (cpi, cpj, S) by i, j ℕ, ci 

D, cpi P1. 

Then ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M and ri.ci 

= ri.ci  rpi.cpi, and C = C  cpj  

 

 

 

 

 

 

 



 

 

 

Example of Rule 2 
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Fig. 5 Example of integration rule 2. 

 

For example, a class c1 is relevant to cp1 in software pattern 

P1 and cp1 is related to cp2 and cp3. Thus, the result in Fig. 5 

shows new c1 that is added details in attributes and methods 

such as ap1, ap2 and mp1 from cp1. And new c1 has relation to 

cp2 and cp3 and their detailed of cp2 and cp3. 

C. Integration rule 3 

Let ci is a class in class diagram (D) and P1 is a software 

pattern that is related to domain in class diagram of ci. But P1 

needs required software pattern P2. In addition, multiple 

classes is related to a class cpi in software pattern P1 and P2. 

Thus, ci will be integrated all related to cpi in P1 and P2, and 

moved details (i.e. attributes, methods) in all cpi of P1 and cpi 

of P2 to original ci followed definition of set in Rule 3. 

 

Rule 3 If ci.cn = cpi.cpn, P1.cpi.cpn = P2.cpi.cpn by P1.ri.cpi = 

(cpi, cpj, S) and P2.ri.cpi = (cpi, cpj, S) by i, j ℕ. 

Then ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M and ri.ci 

= ri.ci  P1.rpi.cpi  P2.rpi.cpi, and C = C  P1.cpj  P2.cpj 

. 

 

Example of Rule 3 
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Fig. 6 Example of integration rule 3. 

 

For example, a class c1 is relevant to cp1 in software pattern 

P1 and P2. Class cp1 of P1 is related to cp2 and cp1 of P2 is 

related to cp3. Thus, the result in Fig. 6 shows new c1 that is 

added details in attributes and methods such as ap1, ap2 and 

mp1 from cp1. And new c1 in P1 and P2 has relation to cp2 and 

cp3 respectively, so their detailed of cp2 and cp3 is also related 

to cp1. 

 

V. CASE STUDY 

An example of this case study is a vendor processing 

purchase orders of goods from its customers. Receiving a 

purchase order, it will be checked that is enough goods in 

stock to complete the purchase order. If a sale order is 

opened, the tax is also calculated. But if not, the restock 

process is performed to reorder goods from a supplier before 

the purchase order is responded as an outstanding order. 

Thus, software designer may use their experience to create a 

UML class diagram as Fig. 7. and also look up software 

patterns related to purchase order problem domain. In this 

case, the software patterns that can be extracted from 

problem domain name is purchase order such as order 

archetype pattern [2] in Fig. 8 and restock policy pattern that 

is solved by domain expert based on the Economic Quantity 

Order model [11] which consider the quantity to order that 

minimizes the total variable costs required to order and hold 

inventory in Fig. 9.  

 

 
 

Fig. 7 An example of UML purchase order class diagram. 

 

As Fig. 7, Purchase Order Class Diagram is presented as 

follows, 

 

DPurchaseOrder = (C, R) , by set of classes C is 

 

C = {c1(ProductCatalog, AProductCatalog, MProductCatalog), 

c2(CatalogEntry, ACatalogEntry, MCatalogEntry), c3(ProductType,  

AProductType, MProductType), c4(ProductIdentifier, , ), 

c5(RestockPolicy, ARestockPolicy, MRestockPolidy), c6(OrderLine, 

AOrderLine, MOrderLine)} 

 

The set of Attributes in the class diagram can be 

represented by A of a class. For example, the class c6 is 

OrderLine that has the set of attribute as follows, 

 

AOrderLine= { a1 (productType, ProductIdentifier),  

                 a2 (serialNumber, String), 

                 a3 (description, String), 

                 a4 (comment, String), 

                 a5 (unitPrice, Double). } 

c1 

c2 

c3 c6 

c5 c4 

c7 



 

 

 

MOrderLine= {m1: getOrderLineIdentifier ()  null,   

                 m2: addTax ()  null, 

                   m3:getTax ()  null, 

                   m4: removeTax ()  null. } 

 

      The relationship between classes in PurchaseOrder 

Class diagram is presented in R by, 

 

      R = {r1 (ProductCatalog, CatalogEntry, S1),…, r5 

(OrderLine, ProductType, S1), r6 (OrderLine, Tax, S2)} 

 

      S1= (aggregation, L1, ProductCatalog  

CatalogEntry) 

      … 

      S5 = (aggregation, L5, OrderLine  ProductType) 

      S6 = (composition, L6, OrderLine  Tax) 

       

      L1= (null, (null, null), (1, 0..*)) 

      ... 

      L5= (null, (null, null), (0..1, 1..*)) 

      L6= (null, (null, null), (0..1, 1..*)) 

 

 
 

Fig. 8 Order archetype pattern. 

 

As Fig. 8, Order Class Diagram pattern also is presented as 

follows, 

 

POrder = (CP, RP) , by set of classes CP is 

 

CP= {cp1(OrderLine, APOrderLine, MPOrderLine), cp2(Order, 

APOrder, MPOrder), cp3(PurchaseOrder, APPurchaseOrder, 

MPPurchaseOrder), cp4(SaleOrder, APSaleOrder, MPSaleOrder) } 

 

Thus, the set of Attributes in the class diagram pattern can 

be represented by AP of a class pattern.  

 

APOrderLine= {ap1 (productType, ProductIdentifier),  

              ap2 (serialNumber, String), 

              ap3 (description, String), 

              ap4 (comment, String), 

              ap5 (unitPrice, Double), 

              ap6 (expectedDeliveryDate, TimeDate)} 

 

MPOrderLine= {mp1: getOrderLineIdentifier ()  null,  

             mp2: increaseNumberOrdered () null, 

                mp3: getNumberOrdered ()  null, 

                mp4: decreaseNumberOrdered ()  null, 

              mp5: addTax ()  null, 

                mp6: getTax ()null, 

                mp7: removeTax () null. } 

 

The relationship between OrderLine class pattern and 

others class is presented by RP. For example, 

 

      RPOrderLine = {rp1 (OrderLine, Order, SP1), rp2 (Order, 

PurchseOrder, SP2), rp3 (Order, SaleOrder, SP3)} 

 

      SP1 = (aggregation, LP1, OrderLine  Order) 

      SP2 = (Inheritance, LP2, Order  PurchaseOrder) 

      SP3 = (Inheritance, LP3, Order  SalsOrder) 

       

      LP1= (null, (null, null), (0..*, 1)) 

      LP2= (null, (null, null), (null, null)) 

      LP3= (null, (null, null), (null, null)) 

       

Therefore, the result is applied by integration with order 

archetype pattern based on Rule 2 in Fig. 10. The c6 of 

Purchase Order class diagram is OrderLine class that is found 

in cp1 of Order archetype pattern.  

 

c6.OrderLine = cp1.OrderLine 

 

The result of ci.A = ci.A  cpi.A and ci.M = ci.M  cpi.M 

ri.ci = ri.ci  rpi.cpi , and C = C  cpj is details (i.e. attributes, 

methods, relations) of OrderLine (cp1) class in Order 

archetype pattern are moved to OrderLine (c6) in Purchase 

Order class diagram firstly as follows , 

 

AOrderLine= { a1 (productType, ProductIdentifier),  

            a2 (serialNumber, String), 

            a3 (description, String), 

            a4 (comment, String), 

            a5 (unitPrice, Double) 

               ap6 (expectedDeliveryDate, TimeDate). } 

 

MOrderLine= {m1: getOrderLineIdentifier ()  null,  

             mp2: increaseNumberOrdered () null, 

             mp3: getNumberOrdered ()  null, 

             mp4: decreaseNumberOrdered ()  null, 

             m5: addTax ()  null, 

             m6: getTax ()  null, 

             m7: removeTax ()  null. } 

 

DNew_PurchaseOrder = (C, R)  

 

R = {r1 (ProductCatalog, CatalogEntry, S1),…, r5 

(OrderLine, ProductType, S1), r6 (OrderLine, Tax, S2), rp1 

(OrderLine, Order, SP1), rp2 (Order, PurchseOrder, 

SP2), rp3 (Order, SaleOrder, SP3)} 

 

C = {c1(ProductCatalog, AProductCatalog, MProductCatalog), 

c2(CatalogEntry, ACatalogEntry, MCatalogEntry), c3(ProductType,  

AProductType, MProductType), c4(ProductIdentifier, , ), 

c5(RestockPolicy, ARestockPolicy, MRestockPolidy), c6(OrderLine, 

AOrderLine, MOrderLine), cp2(Order, APOrder, MPOrder), 

cp1 cp2 

cp4 cp3 



 

 

 

cp3(PurchaseOrder, APPurchaseOrder, MPPurchaseOrder), 

cp4(SaleOrder, APSaleOrder, MPSaleOrder) } 

 

 
 

Fig. 9 Restock policy pattern. 

 

In addition, restock policy pattern is integrated to purchase 

order class diagram, which also is based on Rule 2. The ci of 

purchase order class diagram is RestockPolicy class that 

found in cpi of restock policy pattern. Therefore, the details 

(i.e. attributes, methods) of RestockPolicy classes, 

RestockOnHand, RestockEconomic classes which are moved 

to purchase order class diagram. The new purchase order 

class diagram is applied completely. 

 

 
 

Fig. 10 Applied integration rules. 

 

VI. CONCLUSION 

We have presented a framework to enhance a class 

diagram with software patterns by integration rules. This 

framework helps software designer to identify classes for the 

class diagrams. Although, the traditional approach is done by 

their experience, the integration rules in formal specification 

are intended to complement existing textual and graphical 

descriptions in order to eliminate ambiguity and allow 

rigorous reasoning about integration fabrication between 

UML class diagrams and software patterns. In additional, the 

integration rules can be mapped based on a formal 

specification language meant to specify them to achieve 

simplicity for a better understanding and accuracy for a 

precise semantics.  

The case study shows results that are completed more 

details of class diagrams to fully satisfy with the 

requirements. We have tried to apply them to other case 

studies but more rules need to be added to achieve class 

diagram details.  However, the detail of UML is a wide 

scope; we have not included other complex aspects of UML 

in this paper. It will be addressed in our future work. 
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