
 
 

 

Abstract—The intercarrier interference (ICI) resulted from fast 
fading channel destroys the orthogonality of the orthogonal 
frequency-division multiplexing (OFDM) signal and 
deteriorates receiver performance. In this paper, we propose 
two-stage interference canceller, which combines zero-forcing 
(ZF) equalizer with complex sphere decoder in a group-based 
version, to tackle the severe ICI on the OFDM. The algorithm is 
developed in accordance with the sparsity of ICI matrix, in 
which the channel power of subcarrier of interest primarily 
leaks to its neighboring subcarriers. First, we use the 
group-based ZF equalizer in place of direct ZF to obtain initial 
estimates. In so doing, prohibitive complexity of large matrix 
inversion can be avoided. Second, after removing the 
out-of-group ICI components, the complex sphere decoder 
(CSD) is presented further improving the accuracy of data 
estimates. The CSD algorithm is based on maximum-likelihood 
criterion and QR decomposition. Complexity analysis shows 
that the CSD algorithm use only a half of multipliers which is 
required in the real-valued SD. Finally, simulation results 
demonstrate the proposed two-stage canceller has superior 
performance than those of direct ZF and of direct CSD. 

Index Terms—Intercarrier interference (ICI), fast fading, 
orthogonal-frequency-division multiplexing (OFDM), sphere 
decoding algorithm. 
 

I. INTRODUCTION 
 1Orthogonal frequency-division multiplexing (OFDM) is 

the technique most widely applied in multipath slow fading 
environment because of its simple one-tap frequency domain 
equalizer. However, intercarrier interference (ICI) resulted 
from fast fading channel destroys the orthogonality of the 
OFDM and thus deteriorates receiver performance. In 
literatures, number of algorithms have been proposed to 
mitigate the effect of ICI [1-2]. The minimum-mean- 
square-error (MMSE) and zero-forcing (ZF) algorithms have 
been proposed, but these algorithms could not effectively 
tackle the high Doppler spread effect. When the number of 
subcarriers becomes large, the prohibitive computation load 
leads it not feasible to be implemented.  

Recently, sphere decoding (SD) algorithm is well 
studied in the multiple-input/multiple-output (MIMO) 
system, because it provides near maximum-likelihood (ML) 
performance but reduces exponential-order complexity into 
polynomial-order complexity. In [3], the Schnorr-Euchner 
strategy is employed in the SD algorithm, leading to O(lavgN) 
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complexity, where lavg means the average number of loops for 
executing SD algorithm. In [4], the author first applies the SD 
algorithm to solve the Doppler-induced ICI problem on the 
OFDM. In so doing, frequency diversity gain can be well 
taken advantage of. However, complexity issue still sets the 
limit to the algorithm on the OFDM system with larger 
subcarriers size.  
 In this paper, we aim to solve the ICI problem of OFDM in 
a group-based version by using channel sparsity of the ICI 
matrix. The sparsity means dominant channel power is only 
leaking to the neighboring subcarriers of the interested 
subcarrier. Aware of this good property, we divide all the 
subcarriers by several successive groups, and propose 
moderate-complexity two-stage ICI canceller, which 
combines group-based zero-forcing (G-ZF) equalizer with 
modified sphere decoder. Simulation results demonstrate the 
proposed two-stage canceller has superior performance than 
those of direct ZF and of direct SD. The remainder of the 
paper is organized as follows. Section II formulates the 
Doppler-induced ICI problem of the OFDM system, and 
sparsity property is addressed. In the section III, we first 
re-formulate the ICI problem in the group-based version, and 
use G-ZF to obtain the initial data estimates. Then, we 
present modified SD algorithm to suit for group decoding to 
enhance the estimation accuracy. A double complexity 
reduction is further achieved by replacing the real-valued SD 
(RSD) algorithm with complex-valued algorithm. Simulation 
results and complexity analysis are shown in the section IV. 
Concluding remarks are made in the section V. 

II. SIGNAL MODEL FOR FAST-FADING MULTIPATH 
CHANNELS 

Fig. 1 depicts an N-subcarrier OFDM transmitter, where 
S/P, and P/S denote serial-to-parallel, and parallel-to-serial. 
First, the data bits {bi} are modulated as data symbol ][kX  
at the kth subcarrier, for k=0,1,…,N-1. Let vectors 

[ [0],..., [ 1]]TX X N= −X  and [ [0],..., [ 1]]Tx x N= −x  denote 
the frequency-domain and the time-domain OFDM symbols, 
respectively. Thus, the relationship between x and X is given 
by 
 H=x F X  (1) 

 
where F is a unitary FFT matrix, expressed by 
 

 

2 11/ 2 1( 1)/

2 ( 1)1/ 2 ( 1) ( 1)/

1 1
11

1

j N j N N

j N N j N N N

e e
N

e e

π π

π π

− ⋅ − ⋅ −

− − ⋅ − − ⋅ −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

F

" "
"

# % % #
"  (2) 

 
For avoiding the inter-block interference and intersymbol 

Group-Based ICI Canceller Combined with Complex 
Sphere Decoding for Fast-Fading OFDM System  

 
 

Rih-Lung Chung, Chi-Hung Chen, and Hou-Ting Chen 



 
 

 

interference, the length of cyclic prefix (CP) of the OFDM, L, 
is assumed to be equal to or longer than the maximum 
channel delay spread. Next, let [ [0],..., [ 1]]Ty y N= −y  be the 
received data vector after removing  the CP. We can then 
express y as 
 = +y Hx w . (3) 
where w is an N×1 white Guassian random vector with zero 
mean and covariance matrix 2σ IN, and IN stands for N×N 
identity matrix. The time-varying channel matrix H is 
expressed by 
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where l

nh for 0,..., 1n N= −  and 1,...,1,0 −= Ll , denotes the 
fading coefficient of  the lth path and the nth data symbol.  
Then, the frequency-domain received signal vector Y is the 
FFT of y  

 

 H

=

= +
= +

Y Fy
FHF X Fw
AX Z

    (5) 

 
where H=A FHF  is called an ICI channel matrix.  
 
 

 
Fig. 2.    The illustration of ICI channel matrix A. 

 

As for the flat fading channel or no frequency mismatch 
between transmitter and receiver, the ICI channel matrix A 
becomes a diagonal matrix. However, due to the fast fading 
channel, matrix A is not a diagonal matrix. Therefore, each 
subcarrier interference causes the channel spread as shown in 
Fig. 2. Because the FFT matrix F is unitary, the noise vector 

[ [0],..., [ 1]]TZ Z N= −Z  is still white Gaussian noise. 
 

III. GROUP-BASED ICI CANCELLER  
In this section, we present two-stage ICI canceller. In the 

first stage, we formulate the ICI problem in a group version, 
and use group ZF to obtain the initial data estimates. In the 
second stage, complex SD (CSD) is presented to improve the 
accuracy of estimates. 
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Fig. 3. Block diagram of the two-stage group-based ICI 
canceller. 

A. Group-Based Zero-Forcing (G-ZF) Algorithm 
Noticing that ICI matrix inherits sparsity property, we 

rewrite (5) in a group version. We divide the received data 
vector Y of N-by-1 by G groups, nY� , for n=0, 1, …, G-1. 
Thus, every group consists of M=N/G data samples. 
Collecting nY�  = [Y(nM), Y(nM+1),…, Y(nM+M-1)] where 
Y(n) is the nth element of Y, we rewrite the received data 
model in the group version as 

 ,    0,  1,  ,  1,n n n n G= + = −Y A X Z�� "      (6) 

where ( : -1,1: )n nM nM M N= +A A�  denotes the submatrix 
of A,  and Zn denotes the corresponding noise vector for the 
n-th group. The notation A(i1:i2, j1:j2) stands for the 
rectangular region of A determined by two diagonal points  
(i1,  j1) and (i2,  j2). Next, we let An=A(nM:nM+M-1, 
nM:nM+M-1) denotes the diagonal block matrix of the nth 
group. Thus, (6) is rewritten as 
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Fig. 1.    An OFDM system with group-based ICI canceller: (a) Transmitter (b) Receiver. 



 
 

 

 ,    0,  1,  ,  1.n n n n n n G= + + = −Y A X W Z� "  (7) 
where Xn=[X(nM), X(nM+1),…, X(nM+M-1)], and Wn 
denotes the ICI effect on the Xn. Then, the G-ZF vector for 
detecting Xn is calculated by 

 
1( )GZF H H

n n n n
−=C A A A .      (8) 

Finally, the initial data estimates is obtained by =Xn

�
 

( )C YGZF
n nQ � ,  where ( )Q i  denotes decision device.    

B.  The G-ZF Combined with Complex Sphere Decoding 
After the first-stage data estimates by the G-ZF, we then 

remove the out-of-group matrix effect on Xn, obtaining Yn. If 
total out-out-group ICI  is removed, Yn is expressed by 

 ,    0,  1,  ,  1.n n n n n G= + = −Y A X Z "      (9) 
Next, the complex sphere decoding algorithm is employed to 
improve the estimation accuracy of information data. The 
algorithm is performed in the complex domain. First, note 
that the complex sphere decoding (CSD) algorithm is derived 
in the maximum-likelihood (ML) sense, and thus problem 
formulation is to find the sequence nX such that the 
Euclidean distance is minimized, which is stated as follows 
 2ˆ arg min

n

n n n n
S∈

= −
X

X Y A X  (10) 

where S denotes the set of all possible signal sequences. In 
the complex sphere decoding algorithm, the searching radius 
will be limited to reduce complexity, i.e., 

2 2
n n n ρ− ≤Y A X for ρ is the sphere decoding radius. The 

algorithm becomes ML detection when ρ = ∞. Now, to 
perform the SD algorithm more effectively, QR 
decomposition is taken on the ICI matrix, thus yielding 
 n n n=A Q R  (11) 
where Qn and Rn are unitary matrix and upper triangular 
matrix [4]. Next, let H

n n n=U Q Y , where H stands for 
Hermitian operation, and using the Schnorr-Euchner based 
searching strategy to find the most probability closest lattice 
point [3]. We then define  
 1 GZF

n n n n n
−= =e R U C Y ,  (12) 

In so doing, the cost function in (10) can be equal to 
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and then let 1
n
−R  be decomposed by two parts 

 1
1

−
−⎡ ⎤= ⎣ ⎦R R vn n M

�  (14) 

where nR� is a  an ( 1)M M× −  matrix, and 1M −v is M- 
elements column vector which is decomposed to vertical 
vector 

1,M − ⊥v  and parallel vector 
1,M − ||v , thus 

1 1, 1,M M M− − ⊥ −= + ||v v v , where 

 
1, 1[0 0 ]T

M Mv− ⊥ −=v "  (15) 

 1, 0 2[ 0]T
M Mv v− −=||v "  (16) 

Next, figures 4 (a) and 4(b) show the lattice tree of the 
complex (modified) sphere decoding algorithm. In the 
decoding strategy, we estimate complex signal by real part 
and imaginary part, separately. First, we only estimate the 
real part of information data, and then only estimate the 

imaginary part of the data. Finally, we combine two real 
sequences to form one complex sequence. In so doing, one 
possible bridge can be constructed, where we can apply the 
complex data from G-ZF to the SD algorithm. Although 
using this procedure incurs some information loss, the 0.2-dB 
performance degradation almost can be ignored, as compared 
to the RSD which will be shown in Fig. 5.  
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Fig. 4. (a) The binary tree with M-dimensional lattice for real 
part of signal, and (b) The binary tree with M-dimensional 
lattice for imaginary part of signal. 
 
 
The recursion part of the complex SD is summarized as 
follows. First, we obtain the last symbol estimate in the 
received block. 
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where R, I stand for real part, and imaginary part, and 
1, [ ]M m− ⊥v , 1, [ ]M m− ||v , and [ ]n me  denote the m-th element of 

vectors 
1,M − ⊥v , 1,M − ||v , and ne , respectively. The square of 

Euclidean distance is 
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where [ , ]r m m  denotes the (m,m)-th element of the matrix 

nR . Thus, the real part and imaginary part of the distance 
square in the last symbol in block are expressed by 
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and 
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The factor 1/2 in (20) and (21) is to reflect the fact that the 
searching dimension is reduced from two to one. After 
calculating the distance in the last row, we have to move up 
and cumulate distance in each row. The distance square of the 
second last symbol are computed by 
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and 
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Next, the general representation for the mth symbol estimate 
is given by 
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and 
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where ,m ⊥v and

 
,||mv  denote the vertical vector and parallel 

vector of the m-th column vector of  1
n
−R . Finally, we 

combine two part of symbol estimate as 
 ˆ [ ] sgn{ [ ]} sgn{ [ ]}R I

n n nX m X m j X m= + ×� �      (26) 
where sgn{x} denotes signum function, which returns -1 if 
x≤0 and 1 if x>0.   
 

IV. SIMULATION RESULTS 
A. Performance Evaluation  

In this section, we investigate the performance of the 
proposed ICI canceller on the OFDM system over the fast 
fading channels. The simulation parameters are set as follows. 
We study the OFDM system employing QPSK signal as data 
symbol and having N=256 subcarriers. The carrier frequency 
and the CP length are set to fc=2.4 GHz and N/8, respectively. 
The doubly selective channel used in the simulation is 
modeled as a six-tap exponential-decayed distribution with 
Jakes spectrum. We set the normalized Doppler frequency, 
i.e., the product of maximum Doppler spread (fd) and OFDM 
symbol duration (T), fdT, to be 0.1. Perfect channel estimation 
is assumed.  

Fig. 5 first compares the performance of three ICI 
cancellers including the proposed group-based ICI canceller, 
direct complex sphere decoder, i.e., the case of G=1, direct 
zero-forcing equalizer. In the simulation, the subcarriers of 
the OFDM are divided by G=32 groups for the group-based 
canceller, and thus every group consists M=8 received data 
samples. From the figure, it can be seen that the proposed 
two-stage canceller with CSD is obviously better than the 
other two ICI cancellers. The error performance of 
real-valued sphere decoder (RSD) is also shown for 
comparison. It is shown that the performance of CSD is very 
close to that of the RSD. The 0.2-dB performance loss almost 
can be ignored. 

To understand the effect of the group number on the 
proposed ICI canceller, Fig. 6 plots the error performance 
simulated under G={8, 16, 32}. The figure shows the better 
performance is achieved as the group size M becomes smaller. 
This is because noise enhancement of the GZF with larger 
group number becomes more severe, thus resulting in “poor” 
initial estimates in the first stage and introducing more 
background noise due to mismatched cancelling. In the figure, 
the performance of ZF detection under no ICI effect is also 
revealed for comparison. 
 
B. Complexity Comparison  
     Table 1 lists the computing complexity comparison with 
four different ICI cancellers, including the proposed 
group-based ICI, direct CSD, direct real-valued SD (RSD), 
and direct ZF algorithms. The table consists of two parts for 
complexity analysis, which represents the requirements of 
real-valued multiplications every OFDM block.  

First, the initialization part shows the complexity of the 
zero-forcing algorithm with/without QR decomposition for 
obtaining the initial data estimates. It is noted that the first 
three algorithms additionally need QR decomposition. The 
ZF requires matrix inversion, and its complexity is equal to 
QR decomposition. Assume both of them use Gauss- 
elimination method, thus having complexity Ο(N3) [5]. 
Besides, note that one complex multiplication requires four 
real-valued multiplications. This factor also reflects in rows 
one, two, and four of the initialization part. For direct RSD, it 
requires 2N-dimneison QR decomposition [4]. To see the 
complexity reduction of the proposed algorithm, we set 
N=256, and G=32, for example. In such a case, the 
complexity reduction of proposed algorithm achieves 1,024 
as compared to direct CSD (G=1). The reduction becomes 
2,048 as compared to direct RSD.  

Second, the recursion part searches the final data symbols 
by using SD algorithm. The real-valued sphere decoding 
complexity leads to O(2lavgN), where lavg means the average 



 
 

 

number of loops for executing SD algorithm, and factor two 
means that the SD algorithm requires one scalar 
multiplication and one scalar division for calculating one data 
symbol, as given in (24) or (25). For complex sphere 
decoding algorithm, an extra factor “two” is also represented 
for denoting that the algorithm is executed both in real and 
imaginary parts. We let lavg,1 and lavg,2 be the number of 
average loops for CSD, and RSD, respectively. According to 
simulation results, lavg is less than N. Table 2 lists the average 
number of loops lavg,1 for different signal-to-noise ratios 
(SNRs.) In the recursion part, although the complexity of 
CSD is slightly larger than that of the RSD, the complexity 
increase almost can be ignored as compared to the 
initialization part. 

Finally, we conclude that our proposed group-based ICI 
canceller achieves better performance but with lower 
complexity than others.   

 
 

 
Fig. 5. Performance comparisons between different ICI cancellers 
simulated under the normalized Doppler frequency of fdT=0.1. 
 

 
Fig. 6. Performance comparisons of the proposed  ICI canceller for 
G={8, 16, 32}. Simulation is performed under the normalized 
Doppler frequency of fdT=0.1. 
 

TABLE 1 REQUIREMENTS OF REAL-VALUED MULTIPLICATIONS FOR 

DIFFERENT ICI CANCELLERS, WHERE K=2N, and M=N/G. 

Algorithm Initialization:  
ZF w/wo QR 

Recursion: 
SD Search Algorithm 

GZF + CSD Ο(4×2GM3)=     
 Ο(8GM3) 

Ο(4×2×2lavg,1N)=     
Ο(16lavg,1N) 

Direct CSD  
(G=1) 

Ο( 4×2N3)=   
Ο( 8N3) 

Ο(4×2×2lavg,1N)=  
Ο(16lavg,1N) 

Direct RSD Ο( 2K3) or Ο( 16N3)  Ο(2lavg,2K) or    
Ο(4lavg,2N) 

Direct ZF Ο( 4N3) ⎯ 

 

TABLE 2 AVERAGE NUMBER OF LOOPS FOR EXECUTING COMPLEX 

SD ALGORITHM  FOR THE PROPOSED ICI CANCELLER, WHERE N=256, 
G=32, AND M=8. 

Average number of loops for executing SD algorithm 
SNR 
(dB)  

0 5  10 15 20 25 30 

lavg,1 
24.7 23.8 23.4 23.3 23.3 23.3 23.3 

 

V. CONCLUSIONS 
In this paper, we have proposed a reduced-complexity 

algorithm for ICI mitigation in the mobile OFDM system, 
which consists of two-stage canceller in a group version. The 
first-stage canceller aims to remove the out-of-group ICI 
effect, and the second-stage canceller refines the initial data 
by the sphere decoding algorithm. Simulation results 
demonstrate the proposed ICI canceller achieves better 
performance than those of direct ZF and of direct CSD. This 
is because the G-ZF has less noise enhancement than the 
other ones. Complexity analysis also indicates that the 
proposed algorithm has significant complexity reduction than 
both of direct ZF and of direct CSD. Finally, we conclude 
that the proposed receiver is a promising candidate for 
multipath fast-fading OFDM systems. 
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