# Developing Rule-Case-Based Shell Expert System

Hussein H. Owaied, Monzer Moh'd Qasem

Abstract— this paper presents framework for developing shell expert system as new environment development for expert systems. The framework is based on the integration of two different knowledge representation formats. The integration consists of the Rule-base and the Case-based formats using the Blackboard. This scheme uses both procedural and declarative knowledge representation formalisms through the application of relational data base. So the rule base and case base formats have been converted into tables. In this paper all the algorithms, for creating, indexing, and checking the availability of a rule and a case, are present. The scheme facilitates combination of forward and backward chaining reasoning, using many problem solving methodologies, and different searching techniques. This view is based on the philosophy of human memory organization and utilization. Also individual uses the common sense, deduction and analogical reasoning activities in order to be more efficient for solving problems. Therefore, the proposed scheme facilitates the common sense, deduction and analogical reasoning activities in the inference engine, because rule base provides the deduction, case base provides the analogical reasoning, and the blackboard provides the common sense. The scheme makes the proposed Rule-Casebased shell expert system more flexible, efficient, and more powerful for the development of the expert systems in future. Index Terms — Computer Science, Artificial Intelligence,

Expert Systems, Knowledge Engineering, and Information Technology.

#### I.INTRODUCTION

Expert systems are computer-based software applications which embody some non-algorithmic expertise for solving certain types of problems. Also the expert system can be defined as specific type of knowledge based system with the facilities of correctly deduct and making decision, in other words the knowledge based system that can answer the two questions How and Why. For example, expert systems are used in diagnostic applications servicing both people and machinery. They also play chess, make financial planning decisions, configure computers, monitor real time systems, underwrite insurance policies, and perform many other services which previously required human expertise [1].

Monzer Moh'd Qasem is a PhD. Student at The Arab Academy for Banking and Financial Sciences College of Information Technology e-mail: <u>qmonzer2000@yahoo.com</u> There are many implementations of expert systems using various tools and various hardware platforms, from powerful LISP machine workstations to smaller personal computers. Many expert systems are built with products called shell expert systems [2]. The shell is a piece of software which contains the user interface, a format for representation of the knowledge base in narrow and specifics domains, and an inference engine. The knowledge engineer uses the shell to build an expert system for a particular problem domain. There continues to be a debate as to whether it is best to explore the technology and experiment for write expert systems or using shell expert systems [3]. One of the major bottlenecks in building expert systems is the knowledge engineering process. The coding of the expertise into the previously chosen format, such as rule base, frame, semantics nets, case-base, or others, can be a difficult and tedious task. The integration of (two or more) different knowledge representation methods is a very active research area in Artificial Intelligence. The aim is creates hybrid formalisms benefiting from each of their components. It is generally believed that complex problems can be easier solved with hybrid systems. The effectiveness of the various hybrid approaches has been demonstrated in a number of application areas [4]. In most of the hybrid approaches, two knowledge representation methods are being integrated. This is due to the fact that the integration of three or more knowledge representation methods is more complicated. One of the most popular types of integration involves the combination of rule-based with case-based reasoning approaches [5]-[6]. The efforts to combine symbolic rules and cases have yielded advanced knowledge representation formalisms. The effectiveness of those approaches stems from the fact that rules and cases are alternatives in representing application domains and solving problems [7]-[9]. Rules represent general knowledge of the domain, whereas cases specific knowledge. Rule-based systems solve problems from scratch, while case-based systems use previously stored situations to deal with similar new instances, therefore, the integration of both approaches turns out to be natural and useful [10].

#### II.STRUCTURE OF SHELL EXPERT SYSTEM

The shell expert system is a complete development environment for building and maintaining knowledge-Based Applications and Expert Systems. It provides a step-by-step methodology for a knowledge engineer that allows the domain experts themselves to be directly involved in structuring and encoding the knowledge [11].

Hussein H. Owaied is Associate Professor in the department of Computer Science, College of Information Technology. Middle East University for graduate studies P.O.Box 42, Amman 11610, Jordan Phone: +9626 4790222 Fax: +9626 4129613 e-mail: howaied@meu.edu.jo

Most expert systems are developed via specialized software tools called shell expert systems. These shells come equipped with an inference mechanism (backward chaining, forward chaining, or both), and require knowledge to be entered according to a specified format, user interface, explanation facilities and editing facilities as seen in Fig. 1.

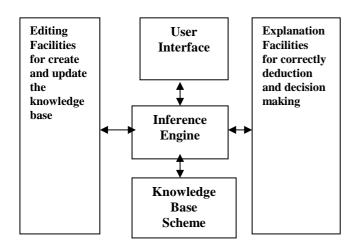



Fig. 1 Architecture of Rule-Case-Based Shell Expert System

## A. The Proposed Knowledge Base Scheme (Format)

The knowledge base represents the repository of knowledge for specific and narrow domain for the knowledge based system. So, the most important part of knowledge based system is the knowledge base and the power of any knowledge based system and Expert System inherently in the adequate and integration of knowledge representation forms used for the particular domain. In this sense, the most important phase, in building knowledge based system and the expert systems, is the building of the knowledge base; this process is part of knowledge engineering which is an important field at present century. Usually, expert systems are designed and implemented for dedicated narrow and specific domain, while sell expert system can be used for developing expert system in any domain, but shell expert system are also governed by the format used for representation of the knowledge base. The proposed scheme consists of the Rule-base and the Case-based formats using the Blackboard. The scheme facilitates combination of forward and backward chaining reasoning, using many problem solving methodologies, and different searching techniques. The scheme makes the proposed Rule-Casebased shell expert system more flexible, efficient, and more powerful for the development of the expert systems in future. This view is based on the philosophy of human memory organization and utilizing for solving problems. Usually human uses more than one form for knowledge representation in his long term memory in order to be more efficient for solving problems, also the knowledge of any

ISBN: 978-988-17012-8-2 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

domain can't be in one format. In the literature survey, found that many publications have covered the development of knowledge-based systems into expert system, using casebased reasoning in the areas of conceptual design, aircraft conflict resolution, military decision support systems, helpdesk operations, customer service management, legal systems, diagnosis, design, and planning [12]-[14]. It is seen that the applications of Case-Based Reasoning in developing knowledge-based systems and the expert systems have been widely adopted in various industries and other application areas [15]. Furthermore some applications have been incorporate other knowledge representation methods besides rule-based and case-based reasoning, such as neural networks and fuzzy logic [16]. Combination of forward chaining reasoning and backward chaining reasoning makes expert systems more flexible and efficient and also the use of more than one knowledge representation forms makes the expert system more powerful. Therefore, the mixing of rulebase and the Case-based forms using Blackboard has not been used before for the shell expert systems. The proposed scheme facilitates the common sense, deduction and analogical reasoning activities in the inference engine, because rule base provides the deduction, case base provides the analogical reasoning, and the blackboard provides the common sense, as seen in Fig. 2 [17].

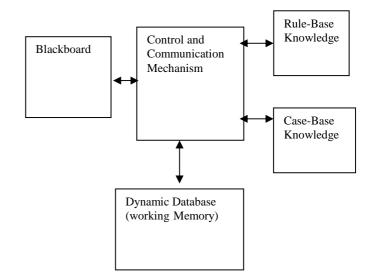



Fig. 2 the Architecture of Hybrid Knowledge Scheme

## B. User Interface

The user interface simulates the communications facilities available to be used for interaction with the Rule-Case-Based shell expert system. This means an information processing system of one of (vision, speech, hearing, touching, tasting) or specified protocol many be used to connect the shell expert system to another computerized system.

Usually the chosen method or methods to interact with the shell expert system will be based on format used for the representation of knowledge in the knowledge base. Since, the formats used in the proposed system will be a scheme of the integration of two formats, which are rule-base and casebase, so the user interface will be the appropriate communication facilities between the proposed Rule-Case-Based shell expert system and the domain expert peoples. These facilities allow the user (the domain expert peoples) to create and update the knowledge-base during the development of the expert system. But if the proposed Rule-Case-Based shell expert system connected to a computerized knowledge acquisition system then the interaction between two computer-based systems will be through the special protocols between them and should be appropriate with the proposed scheme for representation of the knowledge base.

## C.The Inference Engine

The inference engine was playing the most important role in the construction of functional model of human system as mentioned in [18]. But its implementation depends on the representation of knowledge in the knowledge base of the shell expert system. Therefore, the implementation of the inference engine will be regarded as a combination of problem solving method, reasoning agent and search technique. Unfortunately, it is difficult to implement general problem solving method for any field, or a general search technique for any field also. The reasoning agent is responsible to accept sophisticated queries concerning general knowledge to deduct specific knowledge in order to use by the problem solving method and the searching technique. The power of the solver reasoning agent can be increased by implementing a larger number of solvers and by enhancing their capabilities to solve complex tasks. The use of case base format will be facilitates the analogical reasoning and the use of rule base format will facilitates the deduction during the process of solving a problem. The use of blackboard and dynamic memory together with analogical reasoning will a simulation of the common sense of human beings. Therefore the inference engine is a simulation of human behavior for solving a problem using the activities of deduction, analogical reasoning and common sense.

#### **III.IMPLEMENTATION OF THE PROPOSED SCHEME**

In reality, usually human have two types of knowledge which are Procedural and Declarative, so the proposed scheme will use both types of knowledge, which are the Rule base presents as Procedural and Case based presents as declarative. The following subsections present the detail description for the implementation of the proposed scheme. The description present the methodologies used for creating, retrieving, and updating of both Rule-base and Case-base.

#### A. The Rule Base

In this project the relational database will be used to represent the rule as table. The rules will be stored in a table format with the maximum of number of column are k, for example if k=6, then (Col-1, Col-2 ... Col-6), as shown in table 1. The first column represents the left-hand-side of the rule, which is the conclusion of a rule usually called action (A) and from column-2 to column-6 are used to represent the conditions of the rule (C1, C2... C5), so this rule will be as Horn clause presented as follows:

Table-1 presents layout of a rule in the table

| Col-1 | Col-2 | Col-3 | Col-4 | Col-5 | Col-6 |
|-------|-------|-------|-------|-------|-------|
| А     | C1    | C2    | C3    | C4    | C5    |

In this view assume that any rule has maximum conditions are 5, but if a rule has more conditions, then the sixth column will be sub-action which has the reset of the conditions and so on. In this case the representation of knowledge is procedural representation not declarative representation. Some examples will show how the conditions are going to be stored in the table depend on the number of conditions.

# B.Creating Table

The following Fig. 3, Fig. 4.a and, Fig. 4.b present the flowchart and pseudo code respectively used to create table with 6 columns and to check the availability of a rule in the table or not before saving it, which means checking the Action of a rule and its Conditions.

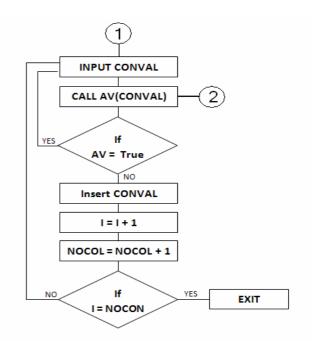



Fig. 3 presents the flowchart for creating table

| 10 CREATE MATRIX (NUMBER OF ROWS, 6)                 | C.Checking Availability of a Rule                              |
|------------------------------------------------------|----------------------------------------------------------------|
| 20 INITILIZE I TO ZERO                               | e.enceking Avalability of a Kale                               |
| 30 INITILIZE NUMBER OF COLOUMN TO                    | The following Fig. 5 and Fig. 6 present the pseudo code        |
| ZERO                                                 |                                                                |
| 40 INPUT THE ACTION NAME GO                          | and flowchart respectively used to check the availability of a |
| TO AVALIABILITY ALGORITHM                            | rule in the table or not before saving it, which means         |
| 60 IF THE AVALIABILITY IS EQUAL TO TRUE              | checking the Action of a rule and its Conditions.              |
| 70 GO TO 40                                          |                                                                |
| 80 ELSE                                              |                                                                |
| 90 SAVE ACTION NAME TO TABLE                         | 10 INITILIZE NUMBER OF COLOUMN TO ZERO                         |
| 100 SET NUMBER OF COLUMN IS                          | 20 INITILIZE NUMBER OF ROWS TO ZERO                            |
|                                                      | 30 SET STATUS IS EQUAL TO "FALSE"                              |
| EQUAL TO NUMBER OF COLUMN                            | 40 IF VALUE IS NULL                                            |
| PLUS ONE                                             | 50 SET NUMBER OF ROWS IS EQUAL TO                              |
| 110 INPUT THE NUMBER OF CONDITION                    | NUMBER OF ROWS PLUS ONE                                        |
| 120 IF NUMBER OF CONDITIONS IS LESS                  | 60 IF COLUMN1 IS EQUAL TO ACTION NAME                          |
| THAN OR EQUAL TO FIVE                                | 70 SET STATUS TO TRUE                                          |
| 130 GO TO CONDITION ALGORITHM                        | 80 ELSE GO TO 50                                               |
| 140 ELSE GO TO FURMULA ALGORITHM SET                 | 100 ELSE SET NUMBER OF ROWS IS EQUAL                           |
| VALUE TO J IS EQUAL TO NUMBER OF                     | TO NUMBER OF ROWS PLUS ONE                                     |
| ROWS                                                 | 120 SET NUMBER OF COLOUMN IS EQUAL TO                          |
| 170 INITILIZE I TO ZERO                              | NUMBER OF COLOUMN PLUS ONE                                     |
| 180 INITILIZE NUMBER OF COLUMN TO ONE                | 130 GET COLUMN CONCATONATE WITH                                |
| 190 GO TO CONDITION ALGORITHM                        | NUMBER OF COLUMNS                                              |
| 200 IF NUMBER OF COLUMN IS EQUAL TO                  | 140 IF COLUMN CONCATONATE WITH                                 |
| FIVE                                                 | NUMBER                                                         |
| 210 SAVE ACTION NAME CONCATONATE                     | OF COLUMNS IS EQUAL TO VALUE                                   |
| WITH NUMBER OF ROWS                                  | 150 STATUS IS EQUAL TO TRUE                                    |
| 220 SET NUMBER OF COLUMN IS EQUAL TO                 | 160 EXIT                                                       |
| ZERO                                                 | 170 ELSE                                                       |
| 230 SAVE ACTION NAME CONCATONATE                     | 180 IF COLUMN CONCATONATE WITH                                 |
| WITH NUMBER OF ROWS                                  | NUMBER OF COLUMNS IS EQUAL TO NULL                             |
| 240 SET NUMBER OF COLUMN IS EQUAL TO                 | 190 STATUS IS EQUAL TO FALSE                                   |
| ONE                                                  | 200 EXIT                                                       |
| 250 NUMBER OF ROWS IS EQUAL TO                       | 210 ELSE                                                       |
| NUMBER OF ROWS MINUS ONE GO TO                       | 220 IF NUMBER OF COLUMNS IS EQUAL TO                           |
| CONDITION ALGORITHM                                  | SIX                                                            |
| 270 ELSE GO TO CONDITIN ALGORITHM                    | 230 EXIT                                                       |
| Fig. 4.a presents the pseudo code for creating table | 240 ELSE                                                       |
|                                                      | 250 IF STATUS IS EQUAL TO TRUE                                 |
| 10 INPUT THE CONDITION VALUE                         | 260 EXIT                                                       |
| 20 GO TO CHECK AVALIABILITY                          | 270 ELSE                                                       |
| ALGORITHM                                            | 280 SET STATUS TO TRUE                                         |
| 30 IF AVALIABILITY IS EQUAL TO TRUE                  |                                                                |
| 40 GO TO 10                                          |                                                                |
| 50 ELSE SAVE CONDITION VALUE IN                      |                                                                |
| TABLE                                                | Fig. 5 present the pseudo code used to check the               |
| 70 SET I IS EQUAL TO I PLUS ONE                      | availability of a rule in the table                            |
| 80 SET NUMBER OF COLUMN IS EQUAL TO                  |                                                                |
| NUMBER OF COLUMN PLUS ONE                            |                                                                |
|                                                      |                                                                |

100 EXIT

110 ELSE GO TO 10

90 IF I IS EQUAL TO NUMBER OF COLUMN

Fig. 4.b presents the pseudo code for creating table

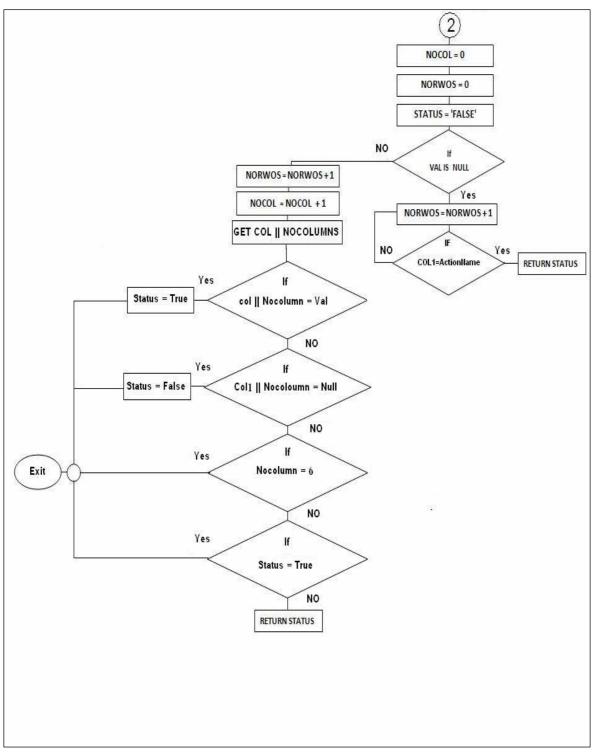
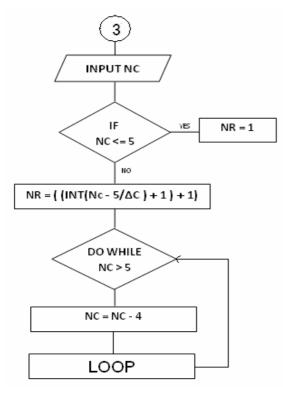



Fig. 6 presents the flowchart to check the availability of a rule in the table

## D.Algorithm of Calculating Number of Rows


The following formula is used to determine the number of rows required for a particular rule according to the number of conditions in the rule.

Number of Rows = 
$$\begin{cases} \left\lceil \frac{Nc-5}{\Delta C} + 1 \right\rceil + 1 & \text{: Nc} > 5 \\ 1 & \text{: Nc} <= 5 \end{cases}$$

Where: Nc is Number of conditions

 $\Delta c$ : the difference between the conditions to be stored in each row, its value 4 because the table contains 6 columns and the maximum conditions to be stored is 5.

Fig. 7 and Fig. 8 below present the flowchart and pseudo code respectively. They are used to calculate the number of rows, for store a particular rule in the table, according to the number of conditions.



Fig, 7: presents the flowchart used to calculate the number of rows

|   | 10    |                                      |
|---|-------|--------------------------------------|
|   | 20    | IF NUMBER OF CONDITIONS IS LESS THAN |
|   |       | OR EQUAL TO 5                        |
|   | 30    | SET NUMBER OF ROWS IS EQUAL TO ONE   |
|   | 40    | ELSE                                 |
|   | 50    | SET NUMBER OF ROWS IS EQUAL TO       |
|   |       | INITIAL (NUMBER OF                   |
|   |       | $COLUMNS-5/\Delta C)+1)+1)$          |
|   | 60    | WHILE NUMBER OF COLUMNS IS           |
|   |       | GREATER THAN FIVE                    |
|   | 70    | SET NUMBER OF COLUMNS IS EQUAL TO    |
|   |       | NUMBER OF COLUMNSMINUS FOUR          |
| • | 0 701 |                                      |

INPUT THE NUMBER OF CONDITIONS

10

n.

Fig. 8: The pseudo code for calculate the number of rows

#### E. The Representation of General Form of a Rule

The following is the procedure for representing a rule in a table using the algorithm for calculating the number of rows required according to the number of conditions of the rule.

1) Applying the algorithm for calculate number of rows,

2) If  $n \le 5$ , then the representation as shown in table 2.

Table-2: The layout of the rule with conditions  $\leq 5$ 

| Col-1 | Col-2 | Col-3 | Col-4 | Col-5 | Col-6 |
|-------|-------|-------|-------|-------|-------|
| А     | C1    | C2    | C3    | C4    | C5    |
|       |       |       |       |       |       |
|       |       |       |       |       |       |

3) If n>5, then the representation as shown in table 3.

Table-3: The layout of the general form of a rule

| Col-1              | Col-2 | Col-3 | Col-4 | Col-5 | Col-6              |
|--------------------|-------|-------|-------|-------|--------------------|
| А                  | C1    | C2    | C3    | C4    | A $_{number \ of}$ |
|                    |       |       |       |       | rows-1             |
| A number of rows-1 | C5    | C6    | C7    | C8    | A $_{numberof}$    |
|                    |       |       |       |       | rows-2             |
| A number of rows-2 | C9    | C10   | C11   | C12   | A $_{numberof}$    |
|                    |       |       |       |       | rows-3             |
| A number of rows-3 | C13   | C14   | C15   | C16   | A $_{number of}$   |
|                    |       |       |       |       | rows-4             |

#### F.Illustration Examples for Rule Base

The following are three examples, which are demonstrating the layout of the rules.

Example (1): Pregnancy 
Missed one male, Nausea, Generalized weakness, Pregnancy test positive

Table-4: The layout of the rule in example (1)

| Cl-1              | Cl-2                  | Cl-3   | Cl-4                    | Cl-5                       |
|-------------------|-----------------------|--------|-------------------------|----------------------------|
| Preg<br>nanc<br>y | Missed<br>one<br>male | Nausea | Generalized<br>weakness | pregnancy<br>test positive |
|                   |                       |        |                         |                            |
|                   |                       |        |                         |                            |

The example in table 4, shows that the numbers of conditions are four which are stored in columns from Col-2 to Col-5 and the Col-6 not used, the action will be stored in Col-1. Example (2):

Table-5: The layout of the rule in example (2)

| Col-1     | Col-2    | Col-3              | Col-     | Col-                | Col-                                          |
|-----------|----------|--------------------|----------|---------------------|-----------------------------------------------|
|           |          |                    | 4        | 5                   | 6                                             |
| Sinusitis | Headache | Itching<br>in nose | Sneezing | watering<br>of eyes | x-ray<br>show<br>dizziness<br>in the<br>sinus |

The example in table 5, shows that the numbers of conditions are five which are stored in columns from Col-2 to Col-6 means that all the columns in the table being engaged. The action will be stored in Col-1. Example (3):

Tonsillitis -

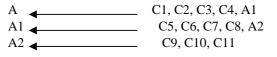
redness,

Fever, Generalized fetid, Pain in throat, On examination

Follicular, Some time pus

Table-6: The layout of the rule in example (3)

| Col-1           | Col-2     | Col-3                 | Col-                 | Col-5                    | Col-6       |
|-----------------|-----------|-----------------------|----------------------|--------------------------|-------------|
|                 |           |                       | 4                    |                          |             |
| Tonsillit<br>is | Fever     | generaliz<br>ed fetid | pain<br>in<br>throat | On<br>examine<br>redness | Tonsilitis1 |
| Tonsiliti       | Follicula | some                  |                      |                          |             |
| s1              | r         | time pus              |                      |                          |             |


The example in table 6 shows that the numbers to conditions are six, which are exceeding the numbers of columns, are allocated to store the conditions.

So the four conditions of the rule stored in Col-2, Col-3, Col-4, Col-5 and the head of the rule is stored in Col-1 and pretend that sub-action as a condition and store the sixth condition of the rule in Col-6 which has the same name of the head together with the index, in this example the index is 1. After that store the pretended condition in a new row as a new action and continue store the remaining conditions that have numbers five and six.



Note that:

If we have a number of eleven conditions, the solution is



## G.Case Base

Usually, the human experiences for solving problems in a certain domain present the collections of cases; each case presents a problem and its solution. Organizing the storage of the cases and retrieval of cases is central for effective case-based reasoning method. Cases can be organized by the goal and retrieved when the case has the same goal as the current situation. Another organizing method is to use cases with most important features matched or the most number of features matched. The matching may first look for exactly matched case before looking for a more general case. Using the cases most frequently matched or most recently matched is also used when retrieving cases to match a new situation. Another method is to use the case that matches without much adjusting. Using these heuristics a similar case is retrieved.

The proposed method to organize the cases will be in three tables, each table consists of two columns. The first table: column one presents the case number and column two presents the case name. The second table: column one presents condition number and column two presents condition name while the first column of the third table presents case number and the second column presents condition number. Fig. 9 and Fig. 10 present the relationships between tables and the pseudo code used to create and determine them respectively. Also all types of relationships are presented in table 7 and table 8.

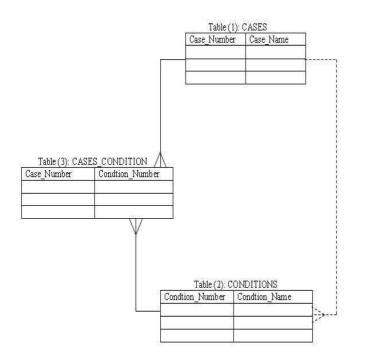



Fig. 9 presents the relationships between tables

Table-7: The relationships between tables

Table (1) To Table (3)One - To - ManyTable (2) To Table (3)One - To - ManyTable (1) To Table (2)One - To - Many

Table-8: The keys types used for tables

Table (1) The Column (Case\_Number) is Primary key Table (2) The Column (Condition\_Number) is Primary key

Table (3) The Columns (Case\_Number, Condition\_Number) is Primary key Table (3) The Column (Case\_Number) is foreign key

Table (3) The Columns (Condition\_Number) is foreign key

|                   | REATE TABLE NAME CASES WITH TWO FIELDS                                        |
|-------------------|-------------------------------------------------------------------------------|
|                   | IELD NAME: CASE_NO AND FIELD TYPE: NUMBER(4)                                  |
|                   | FIELD NAME: CASE_NAME AND FIELD TYPE:                                         |
|                   | VARCHAR2(100) NOT NULL                                                        |
|                   | CREATE UNIQUE INDEX CASES_BRW_P1                                              |
| (                 | ON CASES TABLE BY FIELD (CASE_NO)                                             |
| 10.4              | CREATE PRIMARY KEY ON TABLE CASES                                             |
|                   | USING FIELD CASE_NO ALTER TABLE                                               |
|                   | CASES ADD ( CONSTRAINTCASES_BRW_P1                                            |
|                   | PRIMARY KEY (CASE_NO));                                                       |
| 20                | CREATE TABLE NAME CONDITIONS WITH                                             |
|                   | TWO FIELDS                                                                    |
| 20.1              | FIELD NAME: CONDITION_NO AND FIELD                                            |
|                   | TYPE: NUMBER(4)                                                               |
| 20.2              | FIELD NAME: CONDITION_NAME AND                                                |
|                   | FIELD TYPE: VARCHAR2(100) NOT NULL                                            |
| 20.3              |                                                                               |
|                   | TABLE(2) USING FIELD NAME: CASE_NO                                            |
|                   | NUMBER(4)                                                                     |
| 20.4              | CREATE UNIQUE INDEX                                                           |
|                   | CONDITIONS_BRW_P1 ON CONDITIONS                                               |
|                   | TABLE BY FIELD (CONDITION_NO)                                                 |
| 20.5              | CREATE PRIMARY KEY ON TABLE                                                   |
|                   | CONDITIONS USING FIELD CONDITION_NO                                           |
|                   | LTER TABLE CONDITIONS ADD                                                     |
|                   | CONSTRAINT CONDITIONS_BRW_P1                                                  |
|                   | RIMARY KEY (CONDITION_NO));                                                   |
| 20.6              | CREATE FOREIGN KEY ON TABLE                                                   |
|                   | CONDITIONS USING FIELD CASE_NO                                                |
|                   | LTER TABLE CONDITIONS ADD                                                     |
|                   | CONSTRAINT CONDITIONS_BRW_F1                                                  |
|                   | OREIGN KEY (CASE_NO) REFERENCES                                               |
|                   | CASES (CASE_NO));                                                             |
| 30                | CREATE TABLE NAME CASES_CONDITIONS<br>WITH TWO FIELDS                         |
| 20.1              | FIELD NAME: CASE_NO AND FIELD TYPE:                                           |
| 30.1              | NUMBER(4) NOT NUL                                                             |
| 30.2              |                                                                               |
| 30.2              | TYPE: NUMBER(4) NOT NULL                                                      |
| 30.3              | CREATE UNIQUE INDEX                                                           |
| 50.5              | -                                                                             |
|                   | CASES_CONDITIONS_BRW_P1 ON<br>CASES_CONDITIONS TABLE BY FIELD                 |
|                   | (CASE_NO, CONDITIONS_NO)                                                      |
| 30.4              | CREATE PRIMARY KEY ON TABLE                                                   |
| 30.4              | CASES_CONDITIONS USING FIELDS                                                 |
|                   | CASE_CONDITIONS USING FIELDS<br>CASE_NO, CONDITIONS_NO ALTER TABLE            |
|                   | CASE_NO, CONDITIONS_NO ALTER TABLE<br>CASES_CONDITIONS ADD (CONSTRAINT        |
|                   | CASES_CONDITIONS ADD (CONSTRAINT<br>CASES_CONDITIONS_BRW_P1 PRIMARY           |
|                   |                                                                               |
| 30 5              | KEY (CASE_NO, CONDITIONS_NO));<br>CREATE FOREIGN KEY ON TABLE                 |
| 30.5              |                                                                               |
|                   | CASES_CONDITIONS USING FIELD                                                  |
|                   | CASE_NO ALTER TABLE                                                           |
|                   | CASES_CONDITIONS ADD (CONSTRAINT                                              |
|                   | CASES_CONDITIONS_BRW_F1 FOREIGN                                               |
|                   | KEY (CASE_NO) REFERENCES CASES                                                |
| 20 6              | (CASE_NO));<br>CREATE EOREICN KEY ON TABLE                                    |
| 30.6              | CREATE FOREIGN KEY ON TABLE                                                   |
|                   | CASES_CONDITIONS USING FIELD CONDITIONS_NO                                    |
|                   | ALTER TABLE CASES_CONDITIONS ADD                                              |
|                   | (CONSTRAINT CASES_CONDITIONS_BRW_F2<br>EOREIGN KEY (CONDITIONS_NO) REFERENCES |
|                   | FOREIGN KEY (CONDITIONS_NO) REFERENCES                                        |
| $\Gamma_{in} = 1$ | CONDITIONS (CONDITION_NO));                                                   |
| Fig. 1            | 0 presents pseudo code to create tables and the                               |

Fig. 10 presents pseudo code to create tables and the relations

# H.Illustration Examples for Case Base

In the following examples, there are ten cases which are stored in the column two of the table-9, while the first column stores the index numbers for the cases as shown below, each case contains a number of conditions depend on the case given which stored in the second column of the table-10 also the first column of the table-10 shows the index number for the conditions, so the total cases are ten and the total conditions are 54 given. By using the relation called One-To-Many between the tables; it will be produce a new table contains two columns: the first column called Case Number which is refers to the index number for the cases and the second column called Condition\_Number which is refers to the index number for the conditions as shows in table-11. From table-11, it's observed that the number of cases remains as it is while the number for conditions reduced to 43 instead of 54 without deleting any condition, i.e. 9 conditions are repeated in several cases which is not included in table-11. Thus the main advantages of this methodology is to avoid duplication in conditions, flexibility of marinating tables and easy for searching.

## Table-9: CASES

| Case_N<br>umber | Case_Name                           |
|-----------------|-------------------------------------|
| 1               | PREGNACY                            |
| 2               | SINUSITIS                           |
| 3               | OTITIS MEDIA                        |
| 4               | HEMERROID                           |
| 5               | ACUTE COJUCTIVITIS                  |
| 6               | EPIDIDEMOORCHITIS                   |
| 7               | INTESTINSL OBSTRUCTION              |
| 8               | UPER RESPIRATORY TRACT<br>INFECTION |
| 9               | TONSILITIS                          |
| 10              | ABSCESS                             |

Table-10: CONDITIONS

| Condition_Number | Condition_Name          |
|------------------|-------------------------|
| 1                | MISSED ONE MENS         |
| 2                | NEUSEA                  |
| 3                | GENRALIZED WEEKNESS     |
| 4                | PREG. TEST POSITIVE     |
| 5                | HEADECH                 |
| 6                | VOMITTING               |
| 7                | ITCHING IN NOSE         |
| 8                | SNEEZING                |
| 9                | WATERING OF EYES        |
| 10               | X-RAY SHOW HIZZINESS IN |
|                  | THE SINUS               |
| 11               | FEVER                   |
| 12               | PAIN IN EAR             |
| 13               | DISCHARGE FROM EAR      |
| 14               | REDNESS IN TEMPANIC     |

|    | MEMBRAN AND CANAL       |
|----|-------------------------|
| 15 |                         |
| 15 | PAIN IN ANAL AREA       |
| 16 | CONSTIPATION            |
| 17 | ITCHING                 |
| 18 | DISCHARGE               |
| 19 | BLEEDING                |
| 20 | REDNESS                 |
| 21 | TENDERNESS              |
| 22 | DISCHARGE FROM EYES     |
| 23 | PAIN IN TESTIS          |
| 24 | HOTNESS                 |
| 25 | SWELLING                |
| 26 | SOME TIME REDNESS       |
| 27 | ABDOMENAL PAIN          |
| 28 | EXAMINATION TENDERNESS  |
|    | ALL OVER ABDOMEN        |
| 29 | DECREASED OR ABSENT     |
|    | BOWAL SOUND             |
| 30 | X-RAY SHOW MULTIPLE     |
|    | FLOUD LEVEL             |
| 31 | BLOOD TEST ELECTROLIT   |
|    | ABNORMALATIES           |
| 32 | COGHT                   |
| 33 | DEFICULTY OF BREATH     |
| 34 | CHEST X-RAY SHOW        |
|    | ABNORMALATY             |
| 35 | PAIN                    |
| 36 | GENERALIZED FETIQ       |
| 37 | PAIN IN THROT           |
| 38 | ON EXAMINATION REDNESS  |
| 39 | FOLICULAR               |
| 40 | SOME TIME PUS           |
| 41 | COLLECTION OF PUS       |
| 42 | HARDNESS                |
| 43 | EXAMINATION OF THE AREA |
|    | THERE IS FLUCTUATION    |
| ,  | · ·                     |

# Table-11: CASES\_CONDITION

| Case_Number | Condition_Number |
|-------------|------------------|
| 1           | 1                |
| 1           | 2                |
| 1           | 3                |
| 1           | 4                |
| 1           | 5                |
| 1           | 6                |
| 2           | 5                |
| 2           | 7                |
| 2           | 8                |
| 2           | 9                |
| 2           | 10               |
| 3           | 11               |
| 3           | 12               |
| 3           | 13               |
| 3           | 14               |
| 4           | 15               |
| 4           | 16               |
| 4           | 17               |
| 4           | 18               |
| 4           | 19               |

| 5           | 20 |
|-------------|----|
| 5           | 17 |
| 5           | 21 |
| 5<br>5<br>5 | 9  |
| 5           | 22 |
| 5           | 5  |
| 6           | 23 |
| 6           | 24 |
| 6           | 25 |
| 6           | 26 |
| 7           | 6  |
| 7           | 27 |
| 7           | 28 |
| 7           | 29 |
| 7           | 30 |
| 7           | 31 |
| 8           | 32 |
| 8           | 33 |
| 8           | 11 |
| 8           | 34 |
| 8           | 35 |
| 9           | 11 |
| 9           | 36 |
| 9           | 37 |
| 9           | 38 |
| 9           | 39 |
| 9           | 40 |
| 10          | 35 |
| 10          | 41 |
| 10          | 20 |
| 10          | 43 |
| 10          | 21 |
| 10          | 24 |
|             |    |

## I.The Blackboard

The blackboard is a shared repository of problems, goals, partial solutions, suggestions and contributed information. The blackboard can be viewed as a dynamic library of requests and contributions that have been recently provided through the cooperation mechanism between the rule base knowledge and the case base knowledge. In a case-based, a problem is matched against cases in the case base, and one or more similar cases are retrieved. Case indexing involves assigning indices to cases to facilitate their retrieval. In order to decide whether or not there is a similar case to retrieve for further processes, witch means check the availability of case to retrieve as a condition or checking the Rule-base. In order to retrieve cases efficiently, it is crucial to decide what the key attributes of a case are and on which attributes the cases should be indexed, see table-8. All these processes will be done in the Blackboard.

A solution suggested by the matching cases is then reused. Unless the retrieved case is a close match, the solution will probably have to be revised, producing a new case that can be retained. The following Fig. 11 and fig. 12 present the flowchart and pseudo code respectively used for processing user query.

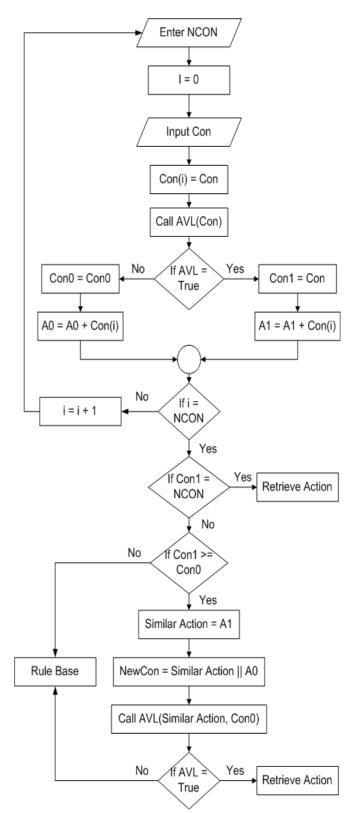



Figure-11 presents the flowchart processes using user query

| 10    | INPUT NUMBER OF CONDITIONS                |
|-------|-------------------------------------------|
| 20    | INITILIZE I TO ZERO                       |
| 30    | INPUT THE CONDITION                       |
| 40    | SET CONDITION OF I IS EQUAL TO CONDITION  |
| 50    | GO TO CHECK AVALIABILITY ALGORITHM        |
| 60    | IF THE AVALIABILITY IS EQUAL TO TRUE      |
| 70    | SET CONDITION1 IS EQUAL TO CONDITION      |
| 80    | SET A1 IS EQUAL TO A1 PLUS CONDITION OF I |
| 90    | ELSE                                      |
| 100   | SET CONDITION0 IS EQUAL TO CONDITION      |
| 110   | SET A0 IS EQUAL TO A0 PLUS CONDITION OF I |
| 120   | IF I IS EQUAL TO NUMBER OF CONDITIONS     |
| 130   | IF CONDITION1 IS EQUAL TO NUMBER OF       |
|       | CONDITIONS RETRIEVE ACTION                |
| 150   | ELSE IF CONDITION1 IS GREATER THAN OR     |
|       | EQUAL TO CONDITION                        |
| 170   | SET SIMILAR ACTION IS EQUAL TO A1         |
| 180   | SET NEW CONDITION IS EQUAL TO SIMILAR     |
|       | ACTION CONCATONATE WITH A0 GO TO          |
| CHECK |                                           |
|       | AVALIABILITY ALGORITHM FOR NEW            |
|       | CONDITION                                 |
| 200   | IF AVALIABILITY IS TRUE PRINT ACTION      |
| 220   | ELSE GO TO RULE BASE ALGORITHM            |
| 240   | ELSE GO TO RULE BASE ALGORITHM            |
| 260   | ELSE SET I IS EQUAL TO I PLUS ONE         |
| 280   | GO TO 30                                  |
|       |                                           |

Fig.12 The pseudo code for processes using user query

## J.Control and Cooperation Mechanisms

The control mechanism is to control and reorganize the knowledge bases and used them in the most effective and coherent fashion. The cooperation mechanism is the activities of passing the appropriate part of knowledge from one knowledge base to another and converting from one representation form into another. Control and cooperation mechanisms make use of the dynamic data base, the knowledge bases (Rule base and Case base) and the blackboard in order to decide whether there is a similar case to retrieve for further processes or not. This means check the availability of case to retrieve as a condition in a particular rule or checking the rule base to find a particular rule to apply. All these processes have been done in the Blackboard.

#### REFERENCES

- [1] George F Luger. Artificial Intelligence Structures and Strategies for Complex Problem Solving. Addision Wesley, fifth edition, 2005.
- [2] Carol E. Brown "Introduction to Artificial Intelligence and Expert Systems", Oregon State University 1993, 1994, 1995.
- [3] MD Salim, Alvaro Villavicencio, & Marc A. "A Method for Evaluating Expert System Shells for Classroom Instruction" Timmerman, Journal of Industrial Technology, Volume 19, Number 1 November 2002 to January 2003.

- [5] D. Aha and J.J. Daniels (eds.), "Case-Based Reasoning Integrations: Papers from the 1998 AAAI Workshop". Technical Report WS-98-15, AAAI Press, 1998.
- [6] G. Vossos, J. Zeleznikow, Th. Dillon, and V. Vossos, "An Example of Integrating Legal Case- Based Reasoning with Object-Oriented Rule Based Systems: IKBALS II", in Proc. 1991 International Conference on Artificial Intelligence and Law, pp. 31-41.
- [7] Jim Prentzas, Ioannis Hatzilygeroudis."Integrations of Rule-Based and Case-Based Reasoning", Dept. of Computer Engine. & Informatics, University of Patras, 26500 Patras, Hellas (Greece) & Research Academic Computer Technology Institute, Patras, Hellas (Greece), S. Craw and A. Preece (Eds.): ECCBR 2002, LNAI 2416, pp. 336–349,

Springer-Verlag Berlin Heidelberg 2002

- [8] Aamodt, A. & Plaza, "Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches". AI Communications, 7(i): pp 39-59 E. (1994).
- [9] J. Sabater, J.L. Arcos, and R. Lopez de Mantaras, "Using Rules to Support Case-Based Reasoning for Harmonizing Melodies", in [12], pp. 147-151
- [10] Robert Chi and Melody Kiang. "An integrated approach of rule-based and case-based reasoning for decision support." ACM Annual Computer Science Conference Proceedings of the 19th annual conference on Computer Science, pages 255–267, 1991.
- [11] Chan C.W., Chen L.L., Geng L., 'Knowledge Engineering of an intelligent case-based system for helpdesk Operations", Expert Systems with Applications, Vol. 18, No.2, PP 125-132, 2000.
- [12] R. Bellazzi, S. Montani, L. Portinale and A. Riva, "Integrating Rule Based and Case-Based Decision Making in Diabetic Patient Management" in Proc. 1999 International Conference on Case-Based Reasoning, pp. 386-400.
- [13] A.K.Sharma, Chander Kumar, Khurram Mustafa, Ashok Kumar, "A Fuzzy Frame Based Expert Shell", Proceedings: National Workshop on IT Services and Applications (WITSA2003) Feb 27-28, 2003
- [14] Aref, MM; AlMuhtaseb, HA, Khabeer: "An Object-Oriented Arabic Expert System Shell", Arabian Journal for Science and Engineering; pp: 275-293; Vol: 22, 1997 King Fahd University of Petroleum & Minerals
- [15] P. Smith, O. Taylor, J. MacIntyre and J.I. Tait, "Expert System Applications: Power Industry" in the Handbook of Expert Systems" Ed. J Lebowitz, CRC Press. 1998.
- [16] Lawrence O. Hall Rule Chaining in Fuzzy Expert Systems This paper appears in: <u>Fuzzy Systems</u>, <u>IEEE Transactions on</u> Publication Date: Dec 2001 Volume: 9, <u>Issue: 6</u>, pp 822-828
- [17] Hussein H. Owaied, Monzer Moh'd Qasem Hybrid Knowledge representation scheme for expert system, International Conference on Artificial Intelligence (ICAI 2008) Volume II, July 14-17, 2008. Las Vegas Nevada, USA.
- [18] Hussein H. Owaied, Abu-Arr'a M. Mahmoud: "Functional Model of Human System as knowledge Base System", The 2007 International Conference on Information & Knowledge, Engineering, June 25-28 2007, pp158-161.