
 
 

 

  
Abstract—Geometric dilution of precision (GDOP) 

represents the geometric effect on the relationship between 
measurement error and positioning determination error. If the 
measurement variances are equal in each other, GDOP could be 
the most appropriate selection criterion of location 
measurement units. The object of this paper is to obtain the 
optimal position estimates from the available measurement. 
The conventional matrix inversion method for GDOP 
calculation has a large amount of operation, which would be a 
burden for real time application. This paper employs an 
artificial neural network approach, namely, the resilient 
back-propagation (Rprop) method to implement GDOP. This 
paper also presents two novel architectures to implement the 
Rprop-based GDOP for the 2D location estimation. Simulation 
results show that the proposed architectures always yield 
superior estimation accuracy with much reduced 
computational complexity, compared to conventional 
implementation methods for GDOP. The proposed 
architectures are applicable to cellular communication systems 
regardless of the number of the measurement units. 
 

Index Terms—Geometric dilution of precision (GDOP), 
Back-propagation neural network (BPNN), Resilient 
back-propagation (Rprop), Time of arrival (TOA)  
 

I. INTRODUCTION 
The geometric dilution of precision (GDOP) concept was 

originally used as a criterion for selecting the optimal 3D 
geometric configuration of satellites in GPS. When enough 
measurements are available, the optimal measurements 
selected with the minimum GDOP can help reduce the 
adverse geometry effects, thereby improving the location 
accuracy. However, excessive or redundant measurements 
may increase the computational overhead and may not 
provided significantly improved location accuracy. It is very 
critical to select a subset with the most appropriate 
measurement units rapidly before positioning. 

The GDOP computation assumes that the pseudo-orange 
errors are independent and identically distributed [1]. Several 
methods based on GDOP have been proposed to improve the 
GPS positioning accuracy [2-5]. Most, if not all, of those 
methods need matrix inversion to calculate GDOP. Though 
they can guarantee to achieve the optimal subset, the 
computational complexity is usually too intensive to be 
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practical. Back-propagation neural network (BPNN), a 
supervised learning neural network, is the most popular 
technique for classification and prediction [6]. BPNN was 
initially proposed in [7-8] to calculate the GDOP function 
approximation. The BPNN was employed to “learn” the 
input-output relationship between the entries of a 
measurement matrix and the eigenvalues of its inverse. Three 
other input-output relationships were proposed and 
compared based on simulation results [9]. However, BPNN 
usually converges slowly and tends to get trapped in local 
minima easily.  

Resilient back-propagation (Rprop) is considered the best 
algorithm, measured in terms of convergence speed, accuracy 
and robustness with respect to training parameters [10]. Most 
location estimation methods of the cellular communication 
systems have been dedicated in the estimation of 2D 
environments. Considering both effectiveness and efficiency, 
this paper proposes two novel architectures and presents four 
original architectures based on an alternative artificial neural 
networks method, namely, the Rprop method, to approximate 
GDOP in the form of 2D formulations. Our simulation results 
have shown that Rprop-based architectures provide faster 
convergence speed and the number of training iterations is 
greatly reduced.  

To select the most appropriate set of BSs, which will give 
the minimum positioning error, GDOP effect must be 
considered in cellular communication systems. Simulation 
results show that the proposed architectures using Rprop for 
GDOP approximation always give the better accuracy 
comparing with the other architectures. These architectures 
for approximating GDOP can be applied regardless of the 
number of the location measurement units.  

The remainder of this paper is organized as follows. 
Section II presents the calculation of GDOP. BPNN and 
Rprop are described in Section III. The six types of mapping 
for GDOP approximation based on Rprop are proposed in 
Section IV. Simulation results are presented in Section V, 
followed by conclusion in Section VI. 
 

II. CALCULATION OF GDOP  
Originally, the concept of GDOP has been widely used to 

indicate the geometric effect of 3D satellite configurations in 
GPS. Using a 3D Cartesian coordinate system, the distances 
between satellite i and the user can be expressed as 
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where ),,( zyx  and  ),,( iii ZYX  are the locations of the 

user and satellite i , respectively.  C  is the speed of light, bt  
denotes the time offset and 

riv  is pseudorange measurements 
noise. Equation (1) is linearized by using Taylor’s series 
expansion around the approximate user position )ˆ,ˆ,ˆ( zyx  
and neglecting the higher order terms. Defining ir̂  as ir  at 

)ˆ,ˆ,ˆ( zyx , we can obtain 
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where 

zy  , , δδδ x
 are, respectively, coordinate offset of 
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) , ,( 321 iii eee , ni ....,2, ,1 = , denote the line-of-sight (LOS) 
vector from the user to the satellites. 
The linearized equations can be expressed in a vector form as 
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 is a geometry matrix. 

The vector variable δ  in Eq. (3) can be solved with the 
least-square (LS) algorithm, namely, 
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Now making the assumption that the pseudorange errors are 
uncorrelated and have equal variances 2σ , the error 
covariance matrix can be expressed as 
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The variances are functions of the diagonal elements of 

1)( −HH T . GDOP is a measure of accuracy for positioning 
systems and can be defined as 
 

1)( −= HHtrGDOP T . 
 

III. THE TRADITIONAL BPNN ALGORITHM AND THE RPROP 
ALGORITHM 

It has been known that BPNN is capable of learning and 
realizing both linear and nonlinear functions [6]. The 

learning process of BPNN can be considered as one of 
gradient descent methods that minimizes some measure, e.g., 
mean-square value of the difference between the actual 
output vector of network and the desired output vector. 
Define an error function F  
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where 

kT  is the output vector of the network while kO  is the 
desired output vector. Then, the gradient decent algorithm is 
employed to adapt the weights (namely, synapses) as follows 
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where ε  is a pre-determined learning rate, and ijw  denotes 

the weight connecting neuron i  to neuron j . The major 
drawbacks of traditional BPNN include slow learning 
process and the tendency to be trapped easily in local minima. 

Comparing to the traditional BPNN algorithm, the Rprop 
algorithm offers faster convergence and is usually more 
capable of escaping from local minima [10]. In a sense, 
Rprop is a first-order algorithm and its time and memory 
requirement scales linearly with the number of parameters. In 
practice, Rprop is easier to implement than BPNN. Besides, a 
hardware implementation for Rprop has been presented in 
[11].  

 

IV. THE PROPOSED NETWORK ARCHITECTURES FOR GDOP 
APPROXIMATION  

Without having to invert a matrix, the traditional BPNN 
learns the relationships between the entries of a measurement 
matrix and the eigenvalues of its inverse to estimate GDOP 
[7-8]. Three other relationships for training based on 
traditional BPNN are employed in [9]. In this paper, the 
original four different input-output mapping types based on 
BPNN for GDOP calculation will be extended to the 
employment of Rprop. In addition, we propose two new 
mapping architectures for 2D scenarios. 

If more measurements are available, the optimal 
measurements selected with the minimum GDOP can prevent 
the poor geometry effects and have the potential of obtaining 
greater location accuracy. Instead of using all visible 
satellites, four satellites are usually sufficient for GPS 
positioning. As such, we take only four BSs from among 
seven with better geometry to estimate the MS location in 
cellular communication networks.  

The geometry matrix composed of four location 
measurement units in 2D environments is 
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From equation (6), HH T is a 3x3 matrix and it has three 
eigenvalues, 3 2, ,1 , =iiλ . Therefore, the three eigenvalues  
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Fig. 1. The input-output relationships for six types of 
mapping using Rprop. 
 
 
of 1)( −HH T  is 3 2, ,1 ,1 =− iiλ . From the algebra theory, the 
trace of a matrix is equal to the sum of its eigenvalues. 
Consequently, GDOP also can be expressed as 
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We present the six types of Rprop mapping architectures 
for GDOP prediction in 2D scenarios and the mapping 
relationship with the three layer ‘input p  - hidden neuron 
number - output q ’ structures. These six types of  
architectures are described by a block diagram shown in Fig. 
1. 
Type 1:  Three inputs are mapped to three outputs. 
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The network has the input-output pairs: 
Input: Tfff ) , ,( 321  

Output: T) , ,( 1
3

1
2

1
1

−−− λλλ  
The mapping from f  to 1−λ is nonlinear and cannot be 
determined analytically. After the training period, this 
mapping relationship can be approximated perfectly by 
neural network. GDOP is calculated by taking the square root 
of the sum of the outputs. 
Type 2: Three inputs are mapped to one output. 
Input: Tfff ) , ,( 321  

Output:GDOP   
Type 3: Six inputs are mapped to three outputs. 
The type of mapping is used to approximate the eigenvalues 
inverse from the elements of matrix )( HH T . The matrix 

)( HH T  is a symmetric matrix and can be expressed as 
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Fig. 2. Seven-cell system layout. 

 
 
The network has the structure with the following 
input-output pair: 
Input: TBBBBBB ) , , , , ,( 332322131211  

Output: T) , ,( 1
3

1
2

1
1

−−− λλλ  
Type 4: Six inputs are mapped to one output. 
This is a type of mapping from the elements of the matrix 

)( HH T to approximate GDOP. The network has the 
following input-output relationship: 
Input: TBBBBBB ) , , , , ,( 332322131211  
Output: GDOP  
Type 5: Twelve inputs are mapped to three outputs. 
The elements of matrix H  and W  are utilized to 
approximate the inverse of the eigenvalues without having to 
calculate HH T . The network has the following mapping 
architecture: 
Input: Teeeeeeee ) , , , , , , ,( 4241323122211211  

Output: T) , ,( 1
3

1
2

1
1

−−− λλλ  
Type 6: Twelve inputs are mapped to one output. 
This architecture is proposed to train the mapping for 
approximating GDOP from the elements of matrix H  and 
W . 
The network has the following input-output relationship: 
Input: Teeeeeeee ) , , , , , , ,( 4241323122211211  
Output: GDOP  

Our simulation results have shown that our proposed Type 
5 and Type 6 need fewer hidden neurons and the number of 
training iterations. Thus they have much reduced 
computational load, and are more practical. It is note that all 
above architectures for obtaining GDOP are applicable 
regardless of the number of the location measurement units.   

 

V. SIMULATION RESULTS 
We consider a center hexagonal cell (where the home BS 

resides) with six adjacent hexagonal cells of the same size, as 
shown in Fig.2. Each cell has a radius of 5 km and the MS 
location is uniformly distributed in the center cell [12]. In our 
simulations, only a subset of the four BSs is selected for                   

(9) 

(10a) 
(10b) 
(10c) 

(11) 



 
 

 

 
 

Fig. 3. The GDOP residual of convergence versus the 
epochs. 

 
 

location process. Thus, the measurements could be divided 
into 35 ( 7

4C ) possible subsets. GDOP is computed for all 
possible subsets and the one with the smallest GDOP is 
selected. The minimum GDOP subset of the four BSs is used 
to estimate the MS location.  

The dominant error for wireless location systems is usually 
due to the NLOS propagation effect. The NLOS propagation 
model is based on the uniformly distributed noise model [13] 
and assumed to be uniformly distributed over )m 300,0( =iU , 
for 2,..7 1,=i ,where 

iU  is an upper bound. Single hidden 
layer are the most widely used method among various 
learning methods for neural networks. Therefore, the number 
of hidden layers is set at one. The GDOP residual is defined 
as difference between the actual GDOP and the estimated 
GDOP. The prediction accuracy of the GDOP is measured in 
terms of the GDOP residual.  

Figure 3 provides the average GDOP residual of 
convergence varies as the number of training iterations 
(epochs) increases. The average GDOP residual decreases as 
the number of epochs increase. It also can be found that the 
effect of the number of training iterations of 2000 epochs 
provides a better performance. Therefore, the number of 
epochs of Rprop is less than the traditional BPNN with 20000 
epochs [9] and Rprop requires much less convergence time.  

When there are too few hidden neurons, a bigger error may 
occur. Increasing the number of hidden neurons can alleviate 
this situation but will affect the speeds of convergence 
simultaneously. General rules for determining the number of 
hidden neurons are: (i) )(*5.0 qp + ; (ii) p ; (iii) 1*2 +p ; 
(iv) 1*3 +p . The average GDOP residual decrease as the 
number of hidden layer neurons increasing, as shown in Fig. 
4. The hidden layer neurons with )12( +p  give reasonably 
accurate results, where p  is the number of input neurons. 

Based on the good ability of estimating of the neural 
network structure stated above, the Rprop algorithm can be 
applied to predict GDOP value after the training period. 
Figure 5 shows cumulative distribution functions (CDFs) of 
the GDOP residual for the six types of mapping architectures 

 
 

Fig. 4. The GDOP residual with various neurons numbers of 
the hidden layer. 

 
 

 
 

Fig. 5. The CDFs curves of GDOP residual using the six 
types of mapping architectures. 
 
 
with )12( +p  hidden neurons after 2000 training iterations. 
GDOP is equal to the square root of the sum of  3 2, ,1,1 =− iiλ , 
which are the outputs of three-output architectures. The 
one-output architectures approximate GDOP with much 
better accuracy than those of the three-output architectures. 
The type 1 mapping architecture predicts the eigenvalues 
inverse and then obtains GDOP value with poor accuracy. 
The results show that the proposed Type 5 gives the best 
performance among the three-output architectures and the 
proposed Type 6 provides much better accuracy than all the 
other one-output architectures. 

Figure 6 shows how the average GDOP residual is affected 
by the upper bound on uniform NLOS error. By comparing 
the average GDOP residual, the proposed Type 5 and Type 6 
are shown to have better performance. It can also be observed 
that the sensitivity of these types with respect to the NLOS 
effect is not obvious. 

The second NLOS propagation model is based on the 
distance-dependent NLOS error model. The NLOS range 
error for the i th range was taken to be iii r⋅= χξ , for 



 
 

 

2,..7 1,=i where 2.0=iχ  is a proportionality constant 
[13]. It makes intuitive sense to view NLOS errors as being 
proportional to the distance traveled by the signal. It can also 
be seen in the CDF curves of the GDOP residual, as shown in 
Fig. 7. The Type 1 and Type 2 provided relatively poor 
GDOP estimation performance. It was observed that the 
proposed Type 5 and Type 6 always provide much better 
GDOP mapping accuracy as compared with the other types.  

No matter which NLOS propagation model is considered, 
our simulation results have shown that the proposed 
Rprop-based architecture provides faster convergence and 
the required number of training iterations is greatly reduced. 
The proposed Type 6 with p  hidden neurons and 1000 
epochs renders superior performance to other architectures, 
such as those with 12 +p  neurons and 2000 epochs. In order 
to minimize the computational load, the proposed Type 6 
with the aforementioned parameters was used in location 
estimation because it offers satisfactory prediction 
performance. 

 
 

VI. CONCLUSION 
The matrix inversion method for GDOP calculation is 

rather time consuming and presents a calculation burden. 
This paper presents novel Rprop-based architectures to 
approximate GDOP. In order to eliminate the poor geometry 
influence and improve the positioning accuracy, the 
minimum GDOP approximation can be used and optimal 
geometric configuration with four measurements is obtained. 
Our results show that the proposed architectures for 
predicting GDOP have high degree of accuracy and the 
number of training iterations is greatly reduced.  

 
 
 

 
 
Fig. 6. Average GDOP residual versus the upper bound on 
uniform NLOS error. 
 
 

 
 
Fig. 7. CDFs for GDOP residual of the six types of mapping 
architectures. 
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