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Abstract— In a virtualized server environment, ma-
chine resources such as CPU and memory are shared
by multiple services. In such an environment, as
the number of sessions for each service increases, the
amount of resources that are utilized by the services
increases. If thrashing occurs due to a lack of re-
sources, the performance of the server is degraded. It
is effective to estimate the amount of used resources;
however, it is hard to estimate the amount of re-
sources that are used dynamically by multiple ser-
vices. In this paper, we propose a dynamic session
management based on reinforcement learning in or-
der to utilize the resources effectively and avoid the
thrashing. In the proposed method, a learning agent
estimates the amount of used resources from the re-
sponse time for a service request. Then, the agent
decides the acceptance or rejection of an arriving ses-
sion request with Q-learning. Because this method
can be implemented easily in a physical machine, it is
expected that our proposed method is used in a real
environment. We evaluate the performance of our
proposed method with a simulation. From the sim-
ulation results, we show that the proposed method
can allocate the resources to multiple services effec-
tively while avoiding the thrashing and can perform
the priority control for multiple services.
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1 Introduction

These days, it has become possible to build a large-scale
server at a reasonably low cost. On the other hand, al-
most all of the machine resources such as CPU and mem-
ory tend to be utilized when the server is idle. In order to
utilize such machine resources effectively, [1] has proposed
a method that can create a virtual server environment.
In the virtual server environment, multiple virtualized
servers are built on one physical server and a service can
be provided by each virtualized server. Therefore, mul-
tiple services can be provided by a physical server in the
virtual server environment.
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Techniques for creating a virtualized server environment
are classified into two groups; application-level virtual-
ization and operating system (OS)-level virtualization.
In the application-level virtualization, a web server ap-
plication such as Apache [2] and Tomcat [3] is utilized
to manage multiple virtualized servers on one physical
server. The web server application supports the virtual
host, and the virtual host provides dedicated ports and
domains for every virtualized server. Hence, multiple
services can be provided independently on the physical
server.

On the other hand, the OS-level virtualization is also clas-
sified into two groups, hosted virtualization and hyper-
visor virtualizations. In the hosted virtualization, multi-
ple virtualized servers are built on an OS of the physical
server [4, 5]. Here, an OS of each virtualized server is em-
ulated on the OS of the physical server, and hence some
functions such as system call for each virtualized server
are performed via the OS of the physical server. This in-
creases overhead for executing operations on virtualized
servers, resulting in processing delay. In the hypervi-
sor virtualization, on the other hand, multiple virtual-
ized servers are built on BIOS of the physical server [6].
Because the OS of the physical server is never used for
executing operations on virtualized servers, the overhead
is smaller than that for the hosted virtualization. As a
result, hypervisor virtualization is mainly utilized for a
large-scale server.

Here, in order for virtualized servers to provide services
without problems, a physical server should allocate its
own resources to each virtualized server effectively [7, 8,
9]. If resources are allocated to each virtualized server at
random, the servers could compete for getting resources
in order to provide their own services. This competition
results in thrashing and the performance of the physical
server is degraded [10]. Therefore, in order to manage
multiple virtualized servers effectively, it is indispensable
to estimate the amount of resources that are used in each
virtualized server [11].

In this paper, we propose a dynamic session management
based on reinforcement learning in order to allocate re-
sources to virtualized servers effectively and avoid the



thrashing. In our proposed method, a learning agent of
reinforcement learning estimates the state of each virtual-
ized server by measuring response time of the correspond-
ing virtualized server for a new arriving session. Based
on this estimation, the agent decides whether the arriv-
ing session is accepted or not. Here, the acceptance or
rejection of a session is defined as action in reinforcement
learning, and our proposed method derives the optimal
action for each state according to the reward function.
Because the agent can obtain a large reward when a large
amount of resources are utilized but obtain a small re-
ward when the thrashing occurs, our proposed method
can allocate resources to multiple virtualized servers so
as to avoid the thrashing. In addition, the method can
provide service differentiation for virtualized servers by
considering the priority of each service.

We also consider how to implement our proposed method
into a physical server. We evaluate the performance of
this method with simulation, and then we compare its
performance with the conventional method without rein-
forcement learning.

The rest of the paper is organized as follows. Section 2
introduces the existing methods of dynamic session man-
agement as related works. In Section 3, we present our
proposed dynamic session management based on rein-
forcement learning. Section 4 explains how to implement
this method in Apache and Xen. We show some numeri-
cal examples in Section 5 and present conclusions in Sec-
tion 6.

2 Related Work

In general, a Web server has to manage sessions inde-
pendently of both the number of established sessions and
service time for each session [12, 13]. On the other hand,
it is important for the server to manage sessions so that
processes for sessions do not exceed its own processing ca-
pacity. Here, the processing capacity is calculated from
the server’s information such as response time for each
session, throughput, which is the number of established
sessions per unit of time, and CPU utilization. Several
methods of dynamic session management have been pro-
posed to manage sessions by using this information.

[14] has proposed a dynamic session management in
which the server’s information about response time is
utilized. This method does not accept arriving session
requests when the response time is over a certain thresh-
old. Here, the threshold is determined dynamically from
the weighted sum of response times that are measured for
a period of time. When the weight of the latest response
time is large, sessions can be managed by considering the
instantaneous change of CPU load. If the weights of past
response times are large, sessions can be managed more
stably. Once a session is established, the server keeps
establishing the session until the process of this session

is completed. Thus, the performance of this method is
affected by the threshold.

Moreover, [15] has proposed a dynamic session manage-
ment where both CPU utilization and service utilization
are utilized. In this method, CPU utilization and the
number of sessions are measured for a period of time.
From the measurement information, this method calcu-
lates the average CPU utilization when a new session is
established during the period. Then, based on the aver-
age CPU utilization, the server manages sessions during
the next period. Here, as the measurement period de-
creases (increases), the number of sessions that are estab-
lished during the period becomes small (large). There-
fore, when the period is small, the average CPU utiliza-
tion is close to the actual CPU utilization that is mea-
sured when a session is established. For example, if only
a session is established during the period, the average
CPU utilization is the same as the actual CPU utilization.
However, the average CPU utilization may be changed
drastically by some factors other than the establishment
of session. In this case, the impact of the session es-
tablishment cannot be estimated. On the other hand,
when the period is large, the impact of the factors be-
comes small. However, a larger number of sessions are
established for the period, and hence the difference be-
tween the average CPU utilization and the actual CPU
utilization may become large. Hence, it is indispensable
to determine the measurement period so as to estimate
the impact of session establishment on the CPU utiliza-
tion.

The above methods are utilized only when a physical
server provides only one service. Therefore, in a virtual
server environment, these methods cannot manage ses-
sions for allocating machine resources to multiple virtu-
alized servers [7, 15].

3 Dynamic Session Management-Based
on Reinforcement Learning

In this paper, we propose a dynamic session management
based on reinforcement learning in order to manage ses-
sions in a virtualized server environment. In the follow-
ing, at first, we explain Q-learning, which is used in our
proposed method. Then we describe the proposed session
management in detail.

3.1 Q-learning

In reinforcement learning, a learning agent moves from
state to state by performing action a. The learning agent
receives a reward or a punishment at each state, and it
tries to perform an action so as to maximize the total re-
ward. From these experiences, the agent can learn which
action is the optimal for each state.

Q-learning is one of the reinforcement learning tech-



niques, and in Q-learning, an action-value function Q is
used to determine the optimal action for each state. Now,
let st denote a state and at denote an action at time t,
respectively. In addition, Rat

st,st+1
denotes a reward that

the agent can obtain when it moves from st to st+1 with
at. When the agent moves from state to state st+1 by
performing action at, Q(st, at) is updated as follows:

Q(st, at)←Q(st, at)+

α
[
Rat

st,st+1
+γ max

a
Q(st+1, a)−Q(st, at)

]
, (1)

where α (0 < α ≤ 1) is the learning rate and γ (0 < γ ≤
1) is the discount factor. The learning rate determines to
what extent the latest information will override the old
information. The agent does not learn anything when α
is 0, while the agent considers only the newest informa-
tion when α is 1. The discount factor γ determines the
influence of future rewards. The agent considers only the
current reward when γ is 0, while the agent tries to find
a long-term high reward when γ is 1.

From the learned Q-function, the learning agent can de-
termine the optimal action a∗

t by using ϵ-greedy policy.
That is, the agent selects an action that can maximize
Q(st, at) with probability 1 − ϵ (0 ≤ ϵ ≤ 1) and selects
one of the other actions with probability ϵ.

3.2 Server model

In this paper, we focus on a virtualized server environ-
ment that satisfies the following assumptions.

• The number of virtualized servers on a physical
server is M and virtualized server i provides web
service i (1 ≤ i ≤M).

• Service i (1 ≤ i < j ≤ M) has higher priority over
class j if i < j.

• A higher-priority class requires a smaller session
blocking probability than a lower-priority session.

• The maximum number of sessions for service i is Ni.

• The number of established sessions for service i at
time t is Li(t) (Li(t) ≤ Ni).

Note that we do not make any assumptions about the
arrival process of the session and the distribution of the
session holding time.

3.3 Definition of state and action for our
proposed method

To utilize reinforcement learning, state st and action at

must be defined. In our method, let state st ∈ S denote
the number of sessions for each service and we define st

as follows.

st = (L1(t), L2(t), · · · , LM (t), U(t)). (2)

�

���

�����

� ����� ����� ����� ����� 	
���

Response time

T h e nu mb er  of  sessions

Figure 1: Experimental result of resource utilization.

In (2), U(t) is a variable that indicates the resource uti-
lization for the physical server at time t. Here, U(t) is
set to busy = 3, normal = 2, or idle = 1 depending on
the resource utilization. We explain how to set U(t) in
the next subsection.

We also define action at ∈ A of the learning agent at time
t as follows.

• Only a session of service i (1 ≤ i1 ≤ M) can be
accepted.

• A session of classes i or j (1 ≤ i ̸= j ≤ M) can be
accepted.

• A session among m (2 < m < M) classes can be
accepted.

• A session among all M class can be accepted.

The total number of actions is given by 2M−1.

3.4 Estimation of resource utilization

In terms of (2), the learning agent can observe the number
Li(t) of sessions for service i at time t but cannot observe
resource utilization U(t). Therefore, the agent estimates
the resource utilization by measuring response time of
each virtualized server.

It is well known that response time for a service increases
exponentially when the number of established sessions
increases and thrashing occurs[16]. Figure 1 shows our
experimental result in a web server with Apache. Note
that the vertical axis is logarithmic. This figure shows
the response time of the server against the number of
established sessions. From this figure, we find that the
response time is almost constant when the number of
sessions is smaller than about 120. However, once the
number of sessions becomes larger than about 120, the
response time increases exponentially. This result also
proves that the server’s response time increases exponen-
tially when the thrashing occurs. From these results, we



measure the response time of each virtualized server in
order to avoid the thrashing.

Here, in our proposed method, U(t) is set by estimat-
ing the resource utilization. Now, we define Ni(t), STi,
RTi(t), and C(t) as follows.

Ti(t) : This denotes response time of server i (1 ≤ i ≤
M) when a new session is established for server i at
time t. If a new session is not established, this is
equal to zero.

STi: This denotes the smallest response time of server i
(1 ≤ i ≤M) from time 0 to t.

RTi(t): This denotes the ratio between the measured re-
sponse time Ti(t) of server i (1 ≤ i ≤ M) and the
smallest response time STi.

C(t): This denotes the rate of change of RTi(t) from time
t− n to t.

Here, Ti(t) is measured by virtualized server i or the phys-
ical server. STi is also given by STi = mint Ti(t). Be-
cause Ti(t) is equal to zero when a new session is not
established for server i at time t, RTi(t) is given by
RTi(t) =

∑M
i=1 Ti(t)/STi. Therefore, with least-square

approach, C(t) is given by

C(t) =

n
t∑

i=t−n

i log(RTi(t))−
t∑

i=t−n

i
t∑

i=t−n

log(RTi(t))

n
t∑

i=t−n

i2 −

(
t∑

i=t−n

i

)2 . (3)

From (3), the resource utilization increases as C(t) be-
comes large. Therefore, based on C(t), we set U(t) as
follows:

U(t) =

 busy = 3, if busy ≤ C(t),
normal = 2, if normal ≤ C(t) < busy,
idle = 1, if idle ≤ C(t) < normal.

3.5 Reward function

When virtualized server i establishes a new session for
service i, the learning agent obtains reward ri (0 ≤ ri).
In our proposed method, in order to provide service dif-
ferentiation for M services, ri satisfies the following in-
equalities.

0 ≤ rM ≤ · · · ≤ r1. (4)

According to (4), the learning agent can obtain a high
reward when the agent accepts a high priority session.
Let Rat

st,st+1
denote a reward function when the learning

agent transits from st to st+1 by performing action at.
Rat

st,st+1
is given by

Rat
st,st+1

=
M∑
i=1

(
STiLi(t)ri

Ti(t)
− Li(t)U(t)

)
. (5)
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Figure 2: An implementation of our proposed method
with Apache module.
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Figure 3: An implementation of our proposed method
with Xen.

In the first term of (5), Rat
stst+1

becomes large when a
session of high-priority service is established, given that
response time increases against the number of sessions
at the same rate regardless of services. Moreover, in the
second term of (5), Rat

stst+1
becomes large when response

time is large due to some reason such as thrashing, that
is, when U(t) is large.

Finally, the learning agent derives the optimal action a∗
t

for each state with (1) and (5). As the learning time of
the agent becomes large, the performance of the proposed
method can be improved.

4 Implementation of Our Proposed
Method

Currently, Apache and Xen are widely used to build mul-
tiple virtualized servers on a physical server. Apache
[2] creates a virtualized server environment according to
application-level virtualization. On the other hand, Xen



creates a virtualized server environment according to hy-
pervisor virtualization. We explain how our proposed
method can be implemented into Apache and Xen.

Figure 2 shows the implementation of our proposed
method into a physical server with Apache. In the server,
some functions that are utilized for establishing sessions
can be changed by utilizing the Apache module, man-
aging sessions flexibly. Therefore, we implement the Q-
learning component into a session management compo-
nent of the server. When the server receives a request
for a new session, it changes a function of session accep-
tance according to the optimal action that is derived with
Q-learning.

In Xen, on the other hand, machine resources such as
CPU and memory can be controlled by executing some
commands. For example, tc command can be utilized to
determine the priority of each virtualized server. There-
fore, we implement the Q-learning component into Do-
main 0, which is for session management (see Fig. 3).
When a session request arrives at the physical server, it
executes a command according to the optimal action that
is derived with Q-learning. Thus, our proposed method
can be implemented into a virtualized server environment
easily.

5 Numerical Examples

In this section, we evaluate the performance of our pro-
posed method with simulation. Here, we assume that our
proposed method is implemented into a physical server
with Apache as shown in Fig. 2.

For the physical server, the number of virtualized servers
is M = 3 and virtualized server i (i = 1, 2, 3) provides
only service i. We assume that session requests of ser-
vice i arrive at virtualized server i according to a Pois-
son process with λi = 1.0. The holding time of the es-
tablished session is exponentially distributed with mean
1/µi = 0.05 regardless of service i. Here, we calculate re-
source utilization of the physical server by

∑M
i=1 Ti(t).

Thrashing occurs when
∑M

i=1 Ti(t) is larger than 100.
Once the thrashing occurs, response time increases ex-
ponentially.

For our proposed method, we set α and γ to 0.9, and ϵ is
equal to 0.9. In addition, rewards of session establishment
are r1 = 20, r2 = 10, and r3 = 5. The maximum number
of sessions for service i is Ni = 100. For simplicity, we
set ST1 = 2, ST2 = 3, and ST3 = 4 regardless of time t.

5.1 Impact of session management on ser-
vice differentiation and resource utiliza-
tion

In this section, we investigate the impact of our proposed
method on the effectiveness of service differentiation and
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Figure 4: Blocking probability of each service vs. number
of arriving session requests.
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Figure 5: Total amount of CPU load vs. number of es-
tablished sessions.

resource utilization. Figure 4 shows the session block-
ing probability for each service against the learning time.
Here, the session blocking probability for each service is
calculated per 10,000 arriving sessions. From this figure,
we can find that the differences among blocking probabil-
ities are small when the learning time is small. However,
as the learning time becomes large, the differences be-
come large so that service differentiation can be provided
for M services.

In this figure, the proposed method is effective for ser-
vice differentiation when the number of arriving sessions
is larger than 1.5 million. This means that it takes a long
time for the agent to learn the optimal action. There-
fore, it is important to find the optimal action as soon as
possible.

5.2 Impact of Q-learning on avoidance of
thrashing

Moreover, we investigate how our proposed method af-
fects the load on each virtualized server. Figure 5 shows



the load against the total number of sessions for the phys-
ical server. In this figure, a result of our proposed method
is denoted as “With learning” but the result of the exist-
ing method is denoted as “Without learning.”

From this figure, we can see that thrashing never occurs
when the existing method is utilized. However, the re-
source utilization is much smaller (about 50%) in this
method.

On the other hand, the proposed method can utilize a
larger amount of resources (almost 100%) effectively. Al-
though thrashing sometimes occurs in our method, the
interval between two successive episodes of thrashing be-
comes large as the agent learns the optimal action.

6 Conclusions

In this paper, we proposed a dynamic session manage-
ment based on reinforcement learning for utilizing ma-
chine resources effectively and avoiding thrashing. In
addition, we showed an implementation method for two
types of virtualized servers. We evaluated the perfor-
mance of the proposed method with a simulation, and
we found that our proposed method can provide service
differentiation for each class. We also observed that our
proposed method can be effective for reducing the num-
ber of thrashing episodes and for assigning the resources
of each virtualized server. On the other hand, our pro-
posed method requires a lot of learning time. In order
to use our proposed method in a real environment, we
will extend the method so that the agent can learn the
optimal action as soon as possible.
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