

Recurrent Supervised Neural Computation and LMI Model Transformation for Order
Reduction-Based Control of Linear Time-Independent

Closed Quantum Computing Systems

Anas N. Al-Rabadi

 Abstract - This paper introduces a new method of intelligent
control for closed quantum computation time-independent
systems. The new method uses recurrent supervised neural
network to identify certain parameters of the transformed
system matrix [A

~]. Linear matrix inequality is then used to
determine the permutation matrix [P] so that a complete system
transformation {[B~], [C

~], [D~]} is achieved. The transformed
model is then reduced using the method of singular perturbation
and state feedback control is applied to enhance system
performance. In quantum computing and mechanics, a closed
system is an isolated system that can’t exchange energy or
matter with its surroundings and doesn’t interact with other
quantum systems. In contrast to open quantum systems, closed
quantum systems obey the unitary evolution and thus are
information lossless (i.e., reversible). The experimental
simulation results show that the new hierarchical control
methodology simplifies the model of the quantum computing
system and thus uses a simpler controller that produces the
desired system response for performance enhancement.

 Index Terms - Linear Matrix Inequality, Model Order
Reduction, Quantum Computing, Recurrent Supervised Neural
Networks, State Feedback Control.

1. INTRODUCTION

Due to the forecasted approaching failure of Moore’s law,
quantum computing will occupy an increasingly important
role in building more compact and less power consuming
systems [1-5,7,8,11,13-15,17,18,24-27]. Other motivations for
pursuing the possibility of implementing circuits and systems
using quantum computing would include items such as: (1)
power: the fact that the internal computations in quantum
computing systems consume no power and only power is
consumed when reading and writing operations are performed
[13-15]; (2) size: the current trends which are related to more
dense hardware implementations are heading towards 1
Angstrom threshold (i.e., atomic size) at which quantum
mechanical effects have to be accounted for; and (3) speed
(performance): if the properties of superposition and
entanglement of quantum mechanics can be usefully
employed in the design of circuits and systems, significant
computational speed enhancements can be expected [1,15,27].
Therefore, while in the classical systems the frequency-to-
power ratio (p / f) doesn’t improve much after certain
threshold since the increase in frequency (i.e., speed) leads to
the increase in power consumption, this doesn’t exist in the
quantum domain; speed of processing is very high due to the
quantum superposition and entanglement, and power
consumption is very low that leads to (p / f) → 0.

 A. N. Al-Rabadi is with the Computer Engineering Department, The
University of Jordan, Amman, Jordan (Phone: + 962-79-644-5364; E-mail:
alrabadi@yahoo.com; URL: http://web.pdx.edu/~psu21829/)

 In system modeling, sometimes it is required to identify
some of the system parameters. This objective can be
achieved by the use of artificial neural networks (ANN),
which are considered as the new generation of information
processing networks. A neural network is an interconnected
group of nodes akin to the vast network of neurons in the
human brain. Artificial neural systems can be defined as
physical cellular systems which have the capability of
acquiring, storing and utilizing experiential knowledge
[5,9,19,21,31,32]. The ANN consists of an interconnected
group of artificial neurons and processes information using a
connectionist approach in performing computation. In most
cases, an ANN is an adaptive system that changes its structure
based on external or internal information that flows through
the network during the learning phase. The basic processing
elements of neural networks are called neurons which perform
summing operations and nonlinear function computations.
Neurons are usually organized in layers and forward
connections where computations are performed in a parallel
fashion at all nodes and connections. Each connection is
expressed by a numerical value which is called a weight. The
learning process of a neuron corresponds to a way of
changing its weights.
 When dealing with system modeling and control analysis,
there exist equations and inequalities that require optimized
solutions. An important expression which is used in robust
control is called linear matrix inequality (LMI) which is used
to express specific convex optimization problems for which
there exist powerful numerical solvers [10]. The important
LMI optimization technique started by the Lyapunov theory
showing that the differential equation is stable if
and only if there exists a positive definite matrix [P] such that

. The requirement of { , }
is what is known as the Lyapunov inequality on [P] which is a
special case of an LMI. By picking any and then

solving the linear equation for the matrix [P],
it is guaranteed to be positive-definite if the given system is
stable. The LMI that arises in system and control theory can
be formulated as convex optimization problems that are
amenable to computer solution and then can be solved using
algorithms such as the ellipsoid algorithm [10].

)()(tAxtx =&

0<+ PAPAT 0>P 0<+ PAPAT

0>= TQQ

QPAPAT −=+

 In practical control problems, the first step is to obtain a
mathematical model in order to examine the behavior of the
system for the purpose of designing a proper controller
[5,16,29]. Sometimes, this mathematical description involves
a certain small parameter (i.e., perturbation). Neglecting this
small parameter results in simplifying the order of the
designed controller by reducing the order of the system
[5,6,9,21,23,29,30]. A reduced order model can be obtained
by neglecting the fast dynamics (i.e., non-dominant

http://en.wikipedia.org/wiki/Connectionism

eigenvalues) of the system and focusing on the slow dynamics
(i.e., dominant eigenvalues). This simplification and reduction
of system modeling leads to controller cost minimization. In a
control system, due to the fact that feedback controllers do not
usually consider all the dynamics of the system, model
reduction is a very important issue where model reduction
leads to reducing the order of the controller which is directly
proportional to the cost. One of the methods which are used
for the model order reduction is known as the singular
perturbation method in which systems that are strongly
coupled through their slow parts and that are weakly coupled
through their fast parts are considered.
 Figure 1 illustrates the layout of the closed-system
quantum computing control methodology which is used in
this paper.

Figure 1. The introduced control methodology which is utilized for
closed quantum computing systems.

 In Figure 1, Layer 1 is the closed-system quantum
computing model using the time-independent Schrödinger
equation (TISE). Layer 2 is the neural network identification
of the transformed system matrix [A~]. Layer 3 is the LMI
technique used in determining the permutation matrix which
is required for system transformation {[B~], [C~], [D~]}.
Layer 4 is the system transformation. Layer 5 presents the
model order reduction. Finally, layer 6 presents the state
feedback control.
 Section 2 presents background on quantum computing,
recurrent supervised neural networks, linear matrix inequality,
model transformation, and model order reduction. Section 3
presents a detailed illustration of the recurrent neural network
identification with the LMI optimization technique for model
order reduction of the quantum computing system. An
implementation of the neural network identification with the
LMI optimization to the model order reduction of the time-
independent quantum computing system is presented in
Section 4. Section 5 presents the application of state feedback
controller on the reduced order model of the quantum
computing system. Conclusion is presented in Section 6.

2. BACKGROUND

This section presents important background on quantum
computing systems, supervised neural networks, LMI and
model order reduction that will be used in Sections 3, 4 and 5.

2.1

. Quantum Computing

Quantum computing is a method of computation that uses the
dynamic process which is governed by the Schrödinger
equation [1,12,13,27,28]. The one-dimensional time-
dependent Schrödinger equation (TDSE) is as follows:

t

hiV
xm

h
∂
∂

=+
∂

∂
−

ψ
πψ

ψπ)2/(
2

)2/(
2

22
 (1)

t

hiH
∂

∂
=

ψ
πψ)2/(or (2)

where h is Planck constant (6.626⋅10-34 J⋅s = 4.136⋅10-15 eV⋅s),
V(x, t) is the applied potential, m is the particle mass, i is the
imaginary number,),(txψ is the quantum state, H is the
Hamiltonian operator where H = - [(h/2π)2/2m]∇2 + V, and ∇2
is the Laplacian operator. State Feedback Control

Model Order Reduction

System Transformation: {[], [C], []} B~
~

D~

LMI-Based Permutation Matrix: [P]

Neural-Based State Transformation: [] A
~

Time-Independent Quantum Computing
System: {[A], [B], [C], [D]}

 A general solution to TDSE is the expansion of a
stationary (time-independent or spatial) basis functions (i.e.,
eigen states))(rUe

r using time-dependent (i.e., temporal)
expansion coefficients ce(t) as follows:

∑
=

=Ψ
n

e
reutectr

0
)()(),(rr

The expansion coefficients ce(t) are a scaled complex
exponentials as follows:

t
h

E
i

ee

e

ektc)2/()(π
−

=
where Ee are the energy levels.
 While the above holds for all physical systems, in
quantum computing, the time-independent Schrödinger
equation (TISE) is normally used [1,27]:

 ψ
π

ψ)(
)2/(

2
2

2 EV
h

m
−=∇ (3)

where the solution ψ is an expansion over orthogonal basis

states iφ defined in a linear complex vector space called
Hilbert space Η as:
 ∑=

i
iic φψ (4)

where the coefficients ci are called probability amplitudes and
|ci|2 is the probability that the quantum state ψ will collapse

into the (eigen) state iφ . The probability is equal to the inner

product
2

|ψφi , with the unitary condition ∑|ci|2 = 1. In

quantum computing, a linear and unitary operator ℑ is used to
transform an input vector of quantum bits (qubits) into an
output vector of qubits. In two-valued quantum computing,
the qubit is a vector of bits which is defined as follows:

 ⎥
⎦

⎤
⎢
⎣

⎡
=≡⎥

⎦

⎤
⎢
⎣

⎡
=≡

1
0

1qubit,
0
1

0qubit 10 (5)

 A two-valued quantum state ψ is a superposition of

quantum basis states iφ . Thus, for the orthonormal

computational basis states { }1,0 , one has the following
quantum state:
 10 βαψ += (6)

where αα* = |α|2 = p0 ≡ the probability of having state ψ in

state 0 , ββ* = |β|2 = p1 ≡ the probability of having state ψ

in state 1 , and |α|2 + |β|2 = 1. The calculation in quantum
computing for multiple systems (e.g., the equivalent of a
register) follow the tensor product (⊗). For example, given
states 1ψ and 2ψ , one has:

 () ()
11100100

1010

21212121

2211

2121

ββαββααα

βαβα

ψψψψ

+++=

+⊗+=

⊗=

 (7)

 A physical system (e.g., the hydrogen atom) that is
described by the following Equation:
 SpindownSpinup 21 cc +=ψ (8)
can be used to physically implement a two-valued quantum
computing. Another common alternative form of Equation (8)
is as follows:

2
1

2
1

21 −++= ccψ (9)

 Many-valued (m-valued) quantum computing can also be
performed. For the three-valued quantum computing, the
qubit becomes a 3-dimensional vector quantum discrete digit
(qudit), and in general, for m-valued quantum computing the
qudit is of dimension “many” [1,27]. For example, one has for
the 3-state quantum computing (in the Hilbert space H) the
following qudits:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=≡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=≡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=≡

1
0
0

2qudit,
0
1
0

1qudit,
0
0
1

0qudit 210 (10)

 A three-valued quantum state is a superposition of three
quantum orthonormal basis states (vectors). Thus, for the
orthonormal computational basis states { }2,1,0 , one has
the following quantum state:

210 γβαψ ++=

where αα* = |α|2 = p0 ≡ the probability of having state ψ in

state 0 , ββ* = |β|2 = p1 ≡ the probability of having state ψ

in state 1 , γγ* = |γ|2 = p2 ≡ the probability of having state

ψ in state 2 , and |α|2 + |β|2 + |γ|2 = 1.
 The calculation in quantum computing for m-valued
multiple systems follow the tensor product in a manner
similar to the one demonstrated for the higher-dimensional
qubit in the two-valued quantum computing.
 Several quantum computing systems were used to
implement quantum gates from which complete quantum
circuits and systems were constructed [1,7,11,15,26,27],
where several of the two-valued and m-valued quantum
circuit implementations use the two-valued and m-valued
quantum Swap-based and Not-based gates [1,27]. This can be

important, since the Swap and Not gates are basic primitives
in quantum computing from which many other gates are built,
such as [1,7,11,15,26,27]: (1) two-valued and m-valued Not
gate, (2) two-valued and m-valued Controlled-Not gate (i.e.,
Feynman gate), (3) two-valued and m-valued Controlled-
Controlled-Not gate (i.e., Toffoli gate), (4) two-valued and m-
valued Swap gate, and (5) two-valued and m-valued
Controlled-Swap gate (i.e., Fredkin gate).
 For example, it has been shown that a physical system
comprising trapped ions under multiple-laser excitations can
be used to reliably implement m-valued quantum computing
[11,26]. A physical system in which an atom (or in general a
particle) is exposed to a specific potential field (i.e., potential
function) can also be used to implement m-valued quantum
computing from which the two-valued being a special case
[1,27] where the distinct energy states are used as the

normal basis states. ortho
 Figure 2 shows several various physical realization
methodologies for the implementation of two-valued and m-
valued quantum computing [1,7,11,13-15,17,26,27] where
Figure 2a shows the particle spin (i.e., the angular
momentum) for two-valued quantum computing, Figure 2b
shows energy states of quantum systems such as the simple
harmonic oscillator potential or the particle in finite-walled
box potential for two-valued and m-valued quantum
computing in which the resulting distinct energy states are
used as the orthonormal basis states, Figure 2c shows light
polarization for two-valued quantum computing, and Figure
2d shows cold trapped ions for two-valued and m-valued
quantum computing.

 E3,U3
 E2,U2

 E1,U1
 E0,U0

 (a) (b)

 (c) (d)

Figure 2. Various technologies that are used to perform quantum
computing.

 In general, for an m-valued logic, a quantum state is a
superposition of m quantum orthonormal basis states (i.e.,
vectors). Thus, for the orthonormal computational basis states
{ }1,...,1,0 −m , one has the following quantum state:

 ∑
−

=

=
1

0

m

k
kk qcψ (11)

 k

E

H …

… …
…

Laser
Sources

q

1

2

where 1
1

0

2
1

0

* ==∑∑
−

=

−

=

m

k
k

m

k
kk ccc . The calculation in quantum

computing for m-valued multiple systems follow the tensor
product in a manner similar to the one used for the case of
two-valued quantum computing.
 Example 1 shows the implementation of m-valued
quantum computing by exposing a particle to a potential field
U0 where the distinct energy states are utilized as the
orthonormal basis states.
Example 1. We assume the following constraints [12,28]: (1)
finite-walled box potential of specific width (L) and height
(U0) (i.e., the applied potential value), (2) particle mass m, and
(3) boundary conditions for the wavefunction continuity. For
the finite potential well, the solution to the Schrödinger
equation gives a wavefunction with an exponentially decaying
penetration into the classicallly forbidden region where
confining a particle to a smaller space requires a larger
confinement energy. Since the wavefunction penetration
effectively “enlarges the box”, the finite well energy levels
are lower than those for the case of infinite well. For a
potential which is zero over a length L and has a finite value
for other values of x, the solution to the Schrödinger equation
has the form of the free-particle wavefunction for (-L/2 < x <
L/2) and elsewhere must satisfy the equation:

)()()(
2 02

22
xUE

x
x

m
Ψ−=

∂
Ψ∂− h

where ()π2/h=h is the reduced Planck constant. With the
following substitution:

22
2
0)(2 kEUm

−=
−

= βα
h

the TISE may be written in the form:

)()(2
2

2
x

x
x

Ψ=
∂
Ψ∂ α

and the general solution is in the form:
xx DeCex αα −+=Ψ)(

 Given a potential well as shown in Figure 3 and a particle
of energy less than the height of the well, the solutions may
be of either odd or even parity with respect to the center of the
well [12,28]. The Schrödinger equation gives trancendental
forms for both so that numerical solution methods must be
used. For the even case, one obtains the solution in the form

22

2
tan kkLk −== βα . Since both sides of the equation are

dependent on the energy E for which one is solving, the
equation is trancendental and must be solved numerically.
The standard constraints on the wavefunction require that
both the wavefunction and its derivative be continuous at any
boundary. Applying such constraints is often the way that the
solution is forced to fit the physical situation. The ground
state solution for a finite potential well is the lowest even
parity state and can be expressed in the form:

)2/tan(kLk=α

where . On the other hand, for the odd case,

one obtains the solution in the form

)2/(22 mkE h=

22

2
tan

kkL
k

−=
−

= βα .

 In the one-dimensional case, parity refers to the
“evenness” or “oddness” of a function with respect to the
reflection about x = 0, where even parity requires

)()(xx −Ψ=Ψ and odd parity requires)()(xx −Ψ−=Ψ . The
stated particle in a box problem can give some insight into the
importance of parity in quantum mechanics; the box has a line
of symmetry down the center of the box (x = 0) where the
basic considerations of symmetry demand that the probability
for finding the particle at -x be the same as that at x. Thus, the
condition on the probability is given by:

)()()()(xxxx −Ψ−Ψ=ΨΨ ∗∗
This condition is satisfied if the parity is even or odd, but not
if the wavefuntion is a linear combination of even and odd
functions. This can be generalized to the statement that
wavefunctions must have a definite parity with respect to
symmetry operations in the physical problem [12,28]. An
example for the distribution of energy states for the particle in
finite-walled box is shown in Figure 3.

(a) (b)

Figure 3. Energy levels and wavefunctions of the one-dimensional
particle in finite-walled box with potential U(x) and the associated
energy levels En in electron Volts where, as an example, the energy
levels for an electron in a potential well of depth U0 = 64 eV and
width L = 0.39 nm are shown in comparison with the energy levels
of an infinite well of the same size.

 In quantum mechanical systems, a closed system is an
isolated system that doesn’t exchange energy or matter with
its surroundings (i.e., doesn’t dissipate power) and doesn’t
interact with other quantum systems. While an open quantum
system interacts with its environment (i.e., its surroundings or
“bath”) and thus dissipates power which results in a non-
unitary evolution, a closed quantum system doesn’t exchange
energy or matter with its surroundings and therefore doesn’t
dissipate power which results in a unitary evolution (i.e.,
unitary matrix) and hence it is information lossless.

0kw

1kw

2kw

∑

)(•ϕ ky
1x

2x

px

Output

Activation
Function

Summing
Junction

Synaptic
Weights

Input
Signals

kv

Threshold
kθ

kpw

0x

Z-1

g1:

A11 A12
A21

A22

B11
B21

)1(~
1 +kx

System
external
input

System
Dynamics

Neuron

 Delay
Z-1

Outputs
)(~ ky

)1(

 7

)(~
1 kx

System state:
internal input input

2.2. Recurrent Supervised Neural Networks 2.2. Recurrent Supervised Neural Networks

~
2 +kx

)(~
2 kx

44 8446

∑
=

=
p

j
jkjk xwv

1

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211~
AA
AA

Ad ⎥
⎦

⎤
⎢
⎣

⎡
=

21

11~
B
B

Bd

An artificial neural network is an emulation of a biological
neural system. The basic model of the neuron is based on the
functionality of the biological neuron which is the basic
signaling unit in the nervous system. The process of a neuron
can be formally modeled as shown in Figure 4 [19,32].

An artificial neural network is an emulation of a biological
neural system. The basic model of the neuron is based on the
functionality of the biological neuron which is the basic
signaling unit in the nervous system. The process of a neuron
can be formally modeled as shown in Figure 4 [19,32].

Figure 4. A mathematical model of an artificial neuron. Figure 4. A mathematical model of an artificial neuron.

 As seen in Figure 4, the internal activity of the neuron
can be shown to be:
 As seen in Figure 4, the internal activity of the neuron
can be shown to be:

 (12) (12) ∑
=

=
p

j
jkjk xwv

1

 In supervised learning, it is assumed that at each instant
of time when the input is applied, the desired response of the
system is available. The difference between the actual and the
desired response represents an error measure and is used to
correct the network parameters externally. Since the
adjustable weights are initially assumed, the error measure
may be used to adapt the network's weight matrix [W]. A set
of input and output patterns which is called a training set is
required for this learning mode. The training algorithm
estimates directions of the negative error gradient and then
reduces the error.

 In supervised learning, it is assumed that at each instant
of time when the input is applied, the desired response of the
system is available. The difference between the actual and the
desired response represents an error measure and is used to
correct the network parameters externally. Since the
adjustable weights are initially assumed, the error measure
may be used to adapt the network's weight matrix [W]. A set
of input and output patterns which is called a training set is
required for this learning mode. The training algorithm
estimates directions of the negative error gradient and then
reduces the error.
 For artificial neural networks, there are several learning
rules used to train the neural network. For example, in the
Perceptron learning rule, the learning signal is the difference
between the desired and the actual neuron's response (i.e.,
supervised learning). Another learning rule is the Widrow-
Hoff learning rule which minimizes the squared error between
the desired output and the neuron's activation value.
Backpropagation is also one of the important learning
algorithms in neural networks [19,32].

 For artificial neural networks, there are several learning
rules used to train the neural network. For example, in the
Perceptron learning rule, the learning signal is the difference
between the desired and the actual neuron's response (i.e.,
supervised learning). Another learning rule is the Widrow-
Hoff learning rule which minimizes the squared error between
the desired output and the neuron's activation value.
Backpropagation is also one of the important learning
algorithms in neural networks [19,32].
 The supervised recurrent neural network which is used
for the identification in this paper is based on an
approximation of the method of steepest descent [19,32]. The
network tries to match the output of certain neurons to the
desired values of the system output at specific instant of time.
Figure 5 shows a network consisting of a total of N neurons
with M external input connections for a 2nd order system with
two neurons and one external input, where the variable g(k)
denotes the (M x 1) external input vector applied to the

network at discrete time k and the variable y(k + 1) denotes
the corresponding (N x 1) vector of individual neuron outputs
produced one step later at time (k + 1).

 The supervised recurrent neural network which is used
for the identification in this paper is based on an
approximation of the method of steepest descent [19,32]. The
network tries to match the output of certain neurons to the
desired values of the system output at specific instant of time.
Figure 5 shows a network consisting of a total of N neurons
with M external input connections for a 2nd order system with
two neurons and one external input, where the variable g(k)
denotes the (M x 1) external input vector applied to the

network at discrete time k and the variable y(k + 1) denotes
the corresponding (N x 1) vector of individual neuron outputs
produced one step later at time (k + 1).

Figure 5. The utilized second order recurrent neural network
architecture, where the estimated matrices are given by

{ , } and

Figure 5. The utilized second order recurrent neural network
architecture, where the estimated matrices are given by

{ , } and ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211~
AA
AA

Ad ⎥
⎦

⎤
⎢
⎣

⎡
=

21

11~
B
B

Bd []]~[]
~

[dd BA=W .

 The input vector g(k) and one-step delayed output vector
y(k) are concatenated to form the ((M + N) x 1) vector u(k),
whose ith element is denoted by ui(k). If Λ denotes the set of
indices i for which gi(k) is an external input, and denotes
the set of indices i for which u

ß
i(k) is the output of a neuron

(which is yi(k)), the following is true:

⎪⎩

⎪
⎨
⎧

∈

∈

β i ,ky

Λ i ,kg
 = ku

i

i
i

 if)(

 if)(
)(

The (N x (M + N)) recurrent weight matrix of the network is
represented by the variable [W]. The net internal activity of
neuron j at time k is given by:

)()(=)(

kukwkv iji
Λi

j ∑
∪∈ β

where Λ is the union of sets Λ and . At the next time
step (k + 1), the output of the neuron j is computed by passing
v

∪ ß ß

j(k) through the nonlinearity (.)ϕ obtaining:
))((=)1(kvky jj ϕ+

 The derivation of the recurrent algorithm can be started
by using dj(k) to denote the desired (i.e., target) response of
neuron j at time k, and to denote the set of neurons that
are chosen to provide externally reachable outputs. A time-
varying (N x 1) error vector e(k) is defined whose j

)(kς

th element
is given by the following relationship:

⎪⎩

⎪
⎨
⎧ ∈

otherwise 0,

)(if),(-)(
 =)(

kjkykd
ke

jj
j

ς

The objective is to minimize the cost function Etotal which is
obtained by:

)(=

total kEE
k
∑

where)(
2
1 =)(2

kekE j
j
∑
∈ς

.

 To accomplish this objective, the learning method of
steepest descent, which requires knowledge of the gradient
matrix, is used:

)(=)(= =

total
total kEkEEE

kk
WW WW

∇
∂
∂

∂
∂

∇ ∑∑

where is the gradient of E(k) with respect to the
weight matrix [W]. In order to train the recurrent network in
real time, the instantaneous estimate of the gradient is used

. For the case of a particular weight (k), the
incremental change (k) made at time k is defined as:

)(kEW∇

()(kEW∇) lmw

lmw∆

)(
)(- =)(
kw

kEkw
m

m
l

l ∂
∂

∆ η

where η is the learning-rate parameter. Hence:

)(
)()(-=

)(
)(

)(=
)(

)(

kw

kyke
kw

ke
ke

kw
kE

m

i
j

jm

j
j

jm lll ∂
∂

∂

∂

∂
∂ ∑∑

∈∈ ςς

To determine the partial derivative , the
network dynamics are derived. The derivation is obtained by
using the chain rule which provides the following equation:

)()/(kwky mj l∂∂

)(
)(

))((=
)(

)(
)(
1)+(

 =
)(
1)+(

kw
kv

kv
kw

kv
kv

ky
kw

ky

m

j
j

m

j

j

j

m

j

lll

&
∂

∂

∂

∂

∂

∂

∂

∂
ϕ

where
)(
))((

 =))((
kv
kv

kv
j

j
j ∂

∂ϕ
ϕ& .

 Differentiating the net internal activity of neuron j with
respect to (k) yields: lmw

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂

∂
∂

∂

∂

∂

∂

∑

∑

∪∈

∪∈

)(
)(
)(

 +
)(

)()(=

)(

))()((
 =

)(
)(

ku
kw
kw

kw
kukw

kw
kukw

kw
kv

i
m

ji

m

i
ji

Λi

m

iji

Λim

j

ll

ll

β

β

where ())()/(kwkw mji l∂∂ equals "1" only when j = m and i =
; otherwise, it is "0". Thus: l

(k)uδ
(k)w
(k)ukw

kw
kv

mj
m

i
ji

Λim

j
l

ll

+
∂
∂

∂

∂
∑
∪∈

)(=
)(

)(

β

where is a Kronecker delta equal to "1" when j = m and
"0" otherwise, and:

δ mj

⎪
⎩

⎪
⎨

⎧

∈
∂
∂

∈

∂
∂

βi
kw

ky
Λi

kw
ku

m

i
m

i
 if ,

)(
)(

 if 0,
 =

)(
)(

l
l

Having those equations produces:

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+

∂
∂

∂

∂
∑
∈

)(
)(

)(
)())((=

)(
1)+(

ku
kw

ky
kwkv

kw
ky

m
m

i
ji

i
j

m

j
ll

ll

& δϕ
β

The initial state of the network at time k = 0 is assumed to be
zero as follows:

0 =
)0(

(0)

lm

i

w
y

∂
∂

, for {j∈ ß , m∈ , ß l ∈ β∪Λ }

The dynamical system is described by the following triply
indexed set of variables (): j

mlπ

)(
)(

 =)(
kw
ky

k
m

jj
m

l
l ∂

∂
π

For every time step k and all appropriate j, m and , system
dynamics are controlled by:

l

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+∑

∈

)()()())((= 1)+(

kukkwkvk mj
i
mji

i
j

j
m lll

& δπϕπ
β

with . 0 = (0)j
mlπ

 The values of and the error signal e)(kj
mlπ j(k) are used

to compute the corresponding weight changes:

 (13))()(=)(

kkekw j
mj

j
m πη

ς
ll ∑

∈

∆

Using the weight changes, the updated weight (k + 1) is
calculated as follows:

lmw

)(+)(= 1)+(kwkwkw mmm lll ∆ (14)
Repeating this computation procedure provides the
minimization of the cost function and the objective is
therefore achieved.
 With the many advantages that the ANN has, it is used
for parameter identification in model transformation for the
purpose of model order reduction as will be shown in the
following section.

2.3. LMI and Model Transformation

In this sub-section, the detailed illustration of system
transformation using LMI optimization will be presented.
Consider the system:
)()()(tButAxtx +=& (15)
)()()(tDutCxty += (16)
In order to determine the transformed [A] matrix, which is
[A~], the discrete zero input response is obtained. This is
achieved by providing the system with some initial state
values and setting the system input to zero (i.e., u(k) = 0).
Hence, the discrete system of Equations (15) - (16), with the
initial condition 0)0(xx = , becomes:
)()1(kxAkx d=+ (17)
)()(kxky = (18)
We need x(k) as a neural network target to train the network
to obtain the needed parameters in [dA~] such that the system

output will be the same for [Ad] and [dA~]. Hence, simulating
this system provides the state response corresponding to their
initial values with only the [Ad] matrix is being used. Once
the input-output data is obtained, transforming the [Ad] matrix
is achieved using the NN training, as will be explained in
Section 3. The estimated transformed [Ad] matrix is then
converted back into the continuous form which yields:

 (19) ⎥
⎦

⎤
⎢
⎣

⎡
=

o

cr

A
AA

A
0

~

Having the [A] and [A~] matrices, the permutation [P] matrix
is determined using the LMI optimization technique as will be
illustrated in later sections. The complete system
transformation can be achieved as follows: assuming

xPx 1~ −= , the system of Equations (15) - (16) can be re-
written as:

)()(~)(~ tButxAPtxP +=&
)()(~)(~ tDutxCPty +=

where ()()(~ tyty =). Pre-multiplying the first equation above
by [P-1], one obtains:

)()(~)(~ 111 tBuPtxAPPtxPP −−− +=&
)()(~)(~ tDutxCPty +=

which yields the following transformed model:
)(~)(~~)(~ tuBtxAtx +=& (20)

)(~)(~~)(~ tuDtxCty += (21) y (31)
where the transformed system matrices are given by:
 APPA 1~ −= (22)
 BPB 1~ −= (23)
 CPC =

~ (24)
 DD =

~ (25)
Transforming the system matrix [A] into the form shown in
Equation (19) can be achieved based on the following
definition [22].
Definition. Matrix is reducible if either: nMA∈
(a) n = 1 and A = 0; or
(b) n ≥ 2, there is a permutation matrix , and there is nMP∈
 some integer r with such that: 11 −≤≤ nr

 (26) ⎥
⎦

⎤
⎢
⎣

⎡
=−

Z
YX

APP
0

1

where , , , and 0rrMX ,∈ rnrnMZ −−∈ , rnrMY −∈ , rrnM ,−∈
is a zero matrix.
 The attractive features of the permutation matrix [P] such
as being orthogonal and invertible have made this
transformation easy to carry out. However, the permutation
matrix structure narrows the applicability of this method to a
very limited category of applications. Some form of a
similarity transformation can be used to correct this
problem; , where is a linear operator

defined by [22]. Therefore, based on [A] and

[

nnnn RRf ×× →: f
APPAf 1)(−=

A~], linear matrix inequalities are used to obtain the
transformation matrix [P]. Thus, the optimization problem is
casted as follows:
 ε<−− − AAPPPP o

p

~toSubjectmin 1 (27)

which maybe written in an LMI equivalent form as:

 (28)

0
)~(

~

0
)(

toSubject)(trace min

1

12
1 >

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−

>⎥
⎦

⎤
⎢
⎣

⎡
−

−

−

−

IAAPP
AAPPI

IPP
PPS

S

T

T
o

o

S

ε

where S is a symmetric slack matrix [22].

2.4. Model Order Reduction

Linear time-invariant models of many physical systems have
fast and slow dynamics which can be referred to as singularly
perturbed systems. Neglecting the fast dynamics of a
singularly perturbed system provides a reduced slow model.
This gives the advantage of designing simpler lower-
dimensionality reduced order controllers based on the reduced
model information. To show the formulation of a reduced
order system model, consider the singularly perturbed system:
 011211 0 ,)()()()(x)x(tuBtAtxAtx =++= ξ& (29)

 (30) 022221 0(,)()()()(ξξξξε =++=)tuBtAtxAt&

)()()(21 tCtxCt ξ+=

where and are the slow and fast state

variables, respectively, and are the input
and output vectors, respectively, { , [], []} are
constant matrices of appropriate dimensions with

 1mx ℜ∈ 2mℜ∈ξ

 1nu ℜ∈ 2ny ℜ∈
][iiA iB iC

}2,1{∈i ,
and ε is a small positive constant. The singularly perturbed
system in Equations (29) - (31) is simplified by setting 0=ε .
In doing so, we are neglecting the fast dynamics of the system
and assuming that the state variables ξ have reached the
quasi-steady state. Hence, setting 0=ε in Equation (30), and
assuming [] is nonsingular, produces: 22A

 (32))()()(1
1

2221
1

22 tuBAtxAAt r
−− −−=ξ

where the index r denotes remained (or reduced) model.
Substituting Equation (32) in Equations (29) - (31) yields the
reduced order model:
)()()(tuBtxAtx rrrr +=& (33)
)()()(tuDtxCty rrr += (34)
where:
 (35) 21

1
221211 AAAAAr
−−=

 (36) 2
1

22121 BAABBr
−−=

 (37) 21
1

2221 AACCCr
−−=

 (38) 2
1

222 BACDr
−−=

Example 2. Consider the 3rd order system:

)(
4.0
5.1
3.1

)(
332011
92611
13925

)(tutxtx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=&

[])(2.14.01.1)(txty =

+

-

1L 1R

outv

a b

inv

2L 3L

1C 2C 2R
 +

-

+

-

1x 5x
2x

3x

4x

Since this is a 3rd order system, there exists three eigenvalues
which are {-19.886 + 6.519i, -19.886 - 6.519i, -44.228}.
Using the singular perturbation technique, the system model
is reduced to the following 2nd order model:

)(
1.609
1.142

)(
20.546-14
1.12129.333-

)(tutxtx rr ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=&

 In order to obtain a state space model for the above
system, let the dynamics of the system be designated as
system states (). This means that there will be a 5ix th order
system since there are five dynamical elements in the system.
The model can be obtained by assigning the following set of
states { is the current of the inductor L 1x 1, is the voltage
of the capacitor C

 2x

1, is the current of the inductor L 3x 2,
is the voltage of the capacitor C 4x 2, and is the current

of the inductor L
 5x

3}. Applying KCL at nodes (a) and (b) and
KVL for the three loops starting from left to right in Figure 7
yields the following state space matrices:

 [] [])(0.015)(1.1271.5)(tutxty rr +=
System output response plots of the original system and the
reduced model, for a step input, are shown in Figure 6.

Figure 6. Output step response of the original and reduced order
models (___ original, -.-.-. reduced).

 It is seen from the results obtained in Figure 6 that the
reduced order model is performing well as compared with the
original system response.
 Dynamic systems with much higher dimensions can also
be processed by following the previously used method and the
following example illustrates a 5th order RLC system.
Example 3. Consider the following 5th order RLC filter
shown in Figure 7 [20].

Figure 7. An example of a 5th order RLC network.

 It is well known that the capacitor and the inductor are
dynamical passive elements, which means that they have the
ability to store energy. The dynamical equations may be
derived using the Kirchhoff's current law (KCL) and
Kirchhoff's voltage law (KVL) [20]. The current for the
capacitor is proportional to the change of its voltage, that is:

dt
tdv

Cti i
i

c
ic

)(
)(=

and that the voltage across the inductor is proportional to the
change of its current, that is:

dt

tdi
Ltv i

i

L
iL

)(
)(=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−−

=

3
2

3

1000
2

10
2

100

0
2

10
2

10

00
1

10
1

1

000
1

1

1
1

L
R

L

CC

LL

CC

LL
R

A ,

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
0
1

1
L

B ,

[]20000 RC = , []0=D

Given the following set of values { nF, 221 == CC
H11 31 µ== LL , H33 2 µ=L , Ω== 9321 RR }, the

corresponding 5th order model is obtained. The eigenvalues of
the system are found to be 1⋅106 x {-2.0158 + 7.3391i, -
2.0158 - 7.3391i, -4.4229, -4.2273 + 5.2521i, -4.2273 -
5.2521i}. Performing model reduction, the system is reduced
from its 5th order to a 4th order by taking the first four rows of
[A] as the first category represented by Equation (29) and
taking the fifth row of [A] as the second category represented
by Equation (30). Simulations of both, the original and the
reduced models, are shown in Figure 8.
 As can be observed from the results shown in Figure 8,
the reduced order model using the singular perturbation
method has provided an acceptable response when compared
with the original system response.

Figure 8. System output step response of the original and reduced
models (___ original, -.-.-reduced).

3. NEURAL IDENTIFICATION WITH LMI

OPTIMIZATION FOR THE CLOSED-
SYSTEM QUANTUM COMPUTING MODEL
REDUCTION

In this work, it is our objective to search for a similarity
transformation that can be utilized within the context of
closed time-independent quantum computing systems to
decouple a pre-selected eigenvalue set from the system matrix
[A]. To achieve this objective, training the neural network to
estimate the transformed discrete system matrix [dA~] is
performed [5]. For the system of Equations (29) - (31), the
discrete model of the quantum computing system is obtained
as follows:
 (39))()()1(kuBkxAkx dd +=+
 (40))()()(kuDkxCky dd +=
The estimated discrete model of Equations (39) - (40) can be
written in a detailed form as:

)(
)(~
)(~

)1(~
)1(~

21

11

2

1

2221

1211

2

1 ku
B
B

kx
kx

AA
AA

kx
kx

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+
+ (41)

 ⎥
⎦

⎤
⎢
⎣

⎡
=

)(~
)(~

)(~
2

1

kx
kx

ky (42)

where k is the time index, and the matrix elements of
Equations (41) - (42) were shown in Figure 5.
 The recurrent neural network presented in Section 2.2 can
be summarized by defining Λ as the set of indices i for which

is an external input, which in the quantum computing
system is one external input and by defining ß as the set of
indices i for which is an internal input or a neuron
output, which in the quantum computing system is two
internal inputs (i.e., two system states). Also, by defining

as the combination of the internal and external inputs
for which Λ. Using this setting, training the network
depends on the internal activity of each neuron which is given
by the following equation:

)(kgi

)(kyi

)(kui

∪∈ ßi

 (43) ∑
∪∈

=
βΛi

ijij kukwkv)()()(

where wji is the weight representing an element in the system
matrix or input matrix for and Λ such that ßj∈ ∪∈ ßi

[]]~[]~[dd BA=W . At the next time step (k +1), the output
(i.e., internal input) of the neuron j is computed by passing the
activity through the nonlinearity φ(.) as follows:
))(()1(kvkx jj ϕ=+ (44)
With these equations, based on an approximation of the
method of steepest descent, the network estimates the system
matrix [Ad] as illustrated in Equation (17) for zero input
response. That is, an error can be obtained by matching a true
state output with a neuron output as follows:

)(~)()(kxkxke jjj −=
The objective is to minimize the cost function:

∑=
k

kEE)(total

where ∑
∈

=
ςj

j kekE)()(2
2
1 and ς denotes the set of indices j

for the output of the neuron structure. This cost function is
minimized by estimating the instantaneous gradient of E(k)
with respect to the weight matrix [W] and then updating [W]
in the negative direction of this gradient. In steps, this may be
proceeded as follows:

- Initialize the weights, [W], by a set of uniformly
distributed random numbers. Starting at the instant k = 0,
use Equations (43) - (44) to compute the output values of
the N neurons (where ßN =).

- For every time step k and all ,ßj∈ ,ßm∈ and
∪∈ ßl Λ, compute the dynamics of the system which

are governed by the triply indexed set of variables:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+=+ ∑

∈ ßi
mj

i
mjij

j
m kukkwkvk)()()())(()1(lll

& δπϕπ

with initial conditions and 0)0(=j
mlπ lmδ is given by

())()(kwkw mji l∂∂ , which is equal to "1" only when j =
m and l=i otherwise it is "0". Notice that for the special
case of a sigmoidal nonlinearity in the form of a logistic
function, the derivative)(⋅ϕ& is given by

)]1(1)[1())((+−+= kykykv jjjϕ& .
- Compute the weight changes corresponding to the error

signal and system dynamics:
 ∑

∈

=∆
ς

πη
j

j
mjm kkekw)()()(ll (45)

- Update the weights in accordance with:
)()()1(kwkwkw mmm lll ∆+=+ (46)

- Repeat the computation until the desired identification is
achieved.

As was illustrated in Equations (17) - (18), for the purpose of
estimating only the transformed system matrix [A~], the
training is based on the zero input response. Once the training
is complete, the obtained weight matrix [W] is the discrete
estimated transformed system matrix. Transforming the
estimated system back to the continuous form yields the
desired continuous transformed system matrix [A~]. Using the
LMI optimization technique illustrated in Section 2.3, the
permutation matrix [P] is determined. Hence, a complete
system transformation, as was shown in Equations (20) - (21),
is achieved. To perform the order reduction, the system in
Equations (20) - (21) are written as:

 (47))(
)(~
)(~

0)(~
)(~

tu
B
B

tx
tx

A
AA

tx
tx

o

r

o

r

o

cr

o

r
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
&

&

 [])(
)(~
)(~

)(~
)(~

tu
D
D

tx
tx

CC
ty
ty

o

r

o

r
or

o

r
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
 (48)

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time[s]

S
ys

te
m

 O
ut

pu
t

where the system transformation enables us to decouple the
original system into retained (r) and omitted (o) eigenvalues.
The retained eigenvalues are the dominant eigenvalues that
produce the slow dynamics and the omitted eigenvalues are
the non-dominant eigenvalues that produce the fast dynamics.
Equation (47) maybe written as:

)()(~)(~)(~ tuBtxAtxAtx rocrrr ++=&

)()(~)(~ tuBtxAtx oooo +=&
The coupling term)(~ txA oc maybe compensated for by solving

for)(~ txo in the second equation above by setting)(~ txo
& to

zero using the singular perturbation method (by setting 0=ε).
Doing so, the following is obtained:
)()(~ 1 tuBAtx ooo

−−= (49)
Using)(~ txo , we get the reduced model given by:

 (50))(][)(~)(~ 1 tuBBAAtxAtx roocrrr +−+= −&

)(][)(~)(1 tuDBACtxCty ooorr +−+= − (51)
Hence, the overall reduced order model is:
)()(~)(~ tuBtxAtx orrorr +=& (52)
)()(~)(tuDtxCty orror += (53)
where the detail of the {[], [], [], []} overall
reduced matrices are shown in Equations (50) - (51).

orA orB orC orD

Example 4. Consider the 3rd order system:

[]xy

uxx

12.01
5.0

1
1

4052
4308
18520

=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−−
=&

Since the system is a 3rd order, there are three eigenvalues
which are {-25.2822, -22, -42.717}. After performing the
proper transformation and training, the following desired
diagonal transformed model is obtained:

[] [

This transformed model was simulated with an input signal
that has different functions to capture most of the system
dynamics as seen in the state response of Figure 9 which
presents the system states while training and converging.

 (a) (b) (c)

Figure 9. System state response for the three states for a sequence of
inputs (1) step, (2) sinusoidal, and (3) step (___original state. -.-.-.-.-
state while convergence).

 It is important to notice that the eigenvalues of the
original system are preserved in the transformed model as
seen in the above diagonal system matrix. Reducing the 3rd
order transformed model to a 2nd order model yields:

[] [uxy

uxx

rr

rr

0.0195 0.18561.0405
1.0482
0.5979

220
10.453425.2822-

+=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
−

=&

]

]

with the dominant eigenvalues (slow dynamics) preserved as
desired. However, by comparing this transformation-based
reduction to the model reduction result of the singular
perturbation without transformation (reduced 2nd order model)
which is:

[] [uxy

uxx

rr

rr

0.0125 0.3251.05
1.05
0.775

29.5-8.2
2.7520.9-

+=

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=&

the two eigenvalues {-18.79, -31.60} of the non-transformed
reduced model are totally different from the original system
eigenvalues. The three different models, the original and the
two reduced models (with and without transformation), were
tested for a step input signal and the results were obtained as
shown in Figure 10.
 As observed from Example 4, the transformed reduced
order model has achieved the two goals of (1) preserving the
original system dominant eigenvalues and (2) performing well
as compared with the original system response.

Figure 10. Reduced 2nd order models (.… transformed, -.-.-.- non-
transformed) output responses to a step input along with the non-
reduced model (____ original) 3rd order system output response.

]uxy

uxx

0019.08581.01856.00405.1
8777.0
7721.0
3343.0

7178.4200
4343.13220
8339.124534.028221.25

+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=&

4. MODEL REDUCTION OF THE QUANTUM
COMPUTING SYSTEM USING NEURAL
IDENTIFICATION AND LMI OPTIMIZATION

Let us implement the time-independent quantum computing
closed-system using the particle in finite-walled box potential
V for the general case of m-valued quantum computing in
which the resulting distinct energy states are used as the
orthonormal basis states as was illustrated in Example 1 and
Figures 2b and 3.

 The dynamical TISE of the one-dimensional particle in
finite-walled box potential V is expressed as follows:

0)(
)2/(

2
22

2
=Ψ−+

∂
Ψ∂ VE

h
m

x π

which also can be written as:

 Ψ−=
∂
Ψ∂)(2

22

2
EVm

x h

where m is the particle mass, and)2/(πh=h is the reduced
Planck constant (which is also called the Dirac constant) ≅
1.055⋅10-34 J⋅s = 6.582⋅10-16 eV⋅s. Thus, for

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
Ψ∂

=′=′
∂
Ψ∂

=Ψ= 2

2

22121 x,xx,x,x
xx

, the state space

model of the time-independent closed quantum computing
system is given as:

 u
0
0

x
x

0)(2
10

x
x

2

1

22

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′

′

h

EVm (54)

 (55) () ()u0
x
x

01y
2

1 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 For simulation reasons, Equations (54) – (55) can also be
re-written equivalently as follows:

 u
0
0

x
x-

01

)(20
x
x-

1

22

1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′

′
h

VEm
 (56)

 (57) () ()u0
x
x-

10y
1

2 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 Also, for conducting the simulations, one may often need
to scale system Equation (56) without changing the system
dynamics. Thus, by scaling both sides of Equation (56) by a
scaling factor a, the following set of equations is obtained:

 u
0
0

x
x-

01

)(20
x
x-

1

22

1

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′

′
h

VEm
aa (58)

 (59) () ()u0
x
x-

10y
1

2 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

 Therefore, one obtains the following set of time-
independent quantum system matrices:

 A =
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−

01

)(20 2h

VEm
a (60)

 B = (61) ⎥
⎦

⎤
⎢
⎣

⎡
0
0

 C = [(62)]1 0
 D = (63) []0
The specifications of the system matrix in Equation (60) for
the particle in finite-walled box are determined by (1)
potential box width L (in nano meter), (2) particle mass m,
and (3) the potential value V (i.e., potential height in electron
Volt). As an example, consider the particle in finite-walled

potential with specifications of (E – V) = 88 MeV and a very
light particle with mass of N = 10-33 of the electron mass
(where the electron mass me ≅ 9.109⋅10-27 g = 5.684⋅10-12
eV/(m/s)2). This system was discretized using the sampling
rate Ts = 0.005 second and simulated for a zero input. Hence,
based on the obtained simulated output data and using NN to
estimate the subsystem matrix [Ac] of Equation (19) with
learning rate η = 0.015, the following transformed system
matrix [A~] was obtained:

A~ = ⎥
⎦

⎤
⎢
⎣

⎡

o

cr

A
AA

0
where [Ar] is set to provide the dominant eigenvalues (slow
dynamics) and [Ao] is set to provide the non-dominant
eigenvalues (fast dynamics) of the original system. Thus,
when training the system, the second state)(~ txo of the
transformed model in Equation (47) is unchanged due to the
restriction of [0 Ao] seen in [A~]. This may lead to an
undesired starting of the system response, but fast system
overall convergence.
 Using [A~] along with [A], the LMI is then implemented
in order to obtain {[B~], [C~], [D~]} which makes a complete
model transformation. Finally, by using the singular
perturbation technique for model order reduction, the reduced
order model is obtained.
 Thus, by the implementation of the previously stated
system specifications and using the squared reduced Planck
constant of = 43.324 ⋅ 102h -32 (eV⋅s)2, one obtains the
following scaled system matrix from Equation (60):

⎥
⎦

⎤
⎢
⎣

⎡
−

−
⎟
⎠
⎞

⎜
⎝
⎛ −

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
⋅≅

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

−

−
=

−
−

169.4761
0116.00

5000
1

003.095.0
1032.20

01

)(20 6
21
h

VEm
Aa

for which the system simulations were performed for

. Accordingly, the eigenvalues were

found to be {-5.0399, -10.9601}.

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

169.4761
0116.00

A

 The investigation of the proposed method of system
modeling for the closed quantum computing system using
neural network with LMI and model order reduction was
tested on a PC platform with hardware specifications of Intel
Pentium 4 CPU 2.40 GHz, and 504 MB of RAM, and
software specifications of MS Windows XP 2002 OS and
Matlab 6.5 simulator.
 For a step input, simulating the original and transformed
reduced order models along with the non-transformed reduced
order model produced the results shown in Figure 11. As seen
in the results shown in Figure 11, the response of the
transformed reduced order quantum computing model is
starting a little off from the original system response.
However, it has a faster convergence than the non-
transformed reduced order model response.

Figure 11. Input-to-output quantum computing system step
responses: full order system model (solid blue line), transformed
reduced order model (dashed black line), and non-transformed
reduced order model (dashed red line).

5. THE IMPLEMENTATION OF STATE
FEEDBACK CONTROLLER ON THE
REDUCED QUANTUM COMPUTING MODEL

Th
cl

We can apply several types of control techniques such as the
 control, robust control, stochastic control, fuzzy control

and intelligent control, upon the reduced order quantum
model to meet given specifications. Yet, in this paper, since
the closed quantum computing system is a 2

∞H

nd order system
reduced to a 1st order, we will investigate the system stability
and enhancing performance by implementing the method of
the s-domain pole replacement.
 For the reduced order model in the system of Equations
(52) - (53), a state feedback controller can be designed. For
example, assuming that a controller is needed to provide the
system with faster dynamical response, this can be achieved
by replacing the system eigenvalues with new faster
eigenvalues. Hence, let the control input be:
)()(~)(trtxKtu r +−= (64)
where K is to be designed based on the desired system
eigenvalues. Replacing the control input in Equations
(52) - (53) by the above new control input in Equation (64)
yields the following reduced system:

)(tu

)]()(~[)(~)(~ trtxKBtxAtx rorrorr +−+=& (65)
)]()(~[)(~)(trtxKDtxCty rorror +−+= (66)
which can be re-written as:

)()(~)(~)(~ trBtxKBtxAtx orrorrorr +−=&

)()(~][)(~ trBtxKBAtx orrororr +−=→ &
)()(~)(~)(trDtxKDtxCty orrorror +−=
)()(~][)(trDtxKDCty orroror +−=→

The overall closed-loop model is then written as:
)()(~)(~ trBtxAtx clrcl +=& (67)
)()(~)(trDtxCty clrcl += (68)

such that the closed loop system matrix [Acl] will provide the
new desired system eigenvalues.
Example 5. For the following non-scaled system:

A = , B = , ⎥
⎦

⎤
⎢
⎣

⎡
−

−
18857.142
385.00

⎥
⎦

⎤
⎢
⎣

⎡
0

0.077

C = []1 0 , D = []0
Using the new transformation-based reduction technique, one
obtains a reduced model given by:

)(]066.0[)(~]197.0[)(
)(]255.5[)(~]901.3[)(~

tutxty
tutxtx

rr

rr

−+−=
−+−=&

with the eigenvalue of -3.901. Now, suppose that a new
eigenvalue λ = -12 that will produce faster system dynamics
is desired for this reduced order model. This objective is
achieved by first setting the desired characteristic equation as:

012 =+λ
To determine the feedback control gain K, the characteristic
equation of the closed-loop system is utilized by using
Equations (65) - (68) which yields:

→=− 0)(clAIλ 0][=−− KBA ororIλ
en, the feedback gain K is found to be -1.5413. Hence, the

osed-loop system now has the eigenvalue of -12. As stated
previously, the objective of replacing eigenvalues is to
enhance system performance. Simulating the reduced order
model using sampling rate Ts = 0.005 second and learning rate
η = 0.015 with the new eigenvalue for the same original
system input (the step input) has generated the response
shown in Figure 12.

Figure 12. Enhanced system step responses based on pole
placement; full order system model (solid blue line), transformed
reduced model (dashed black line), non-transformed reduced model
(dashed red line), and the controlled transformed reduced order

hed pink line). (das

 As can be observed from Figure 12, the new normalized
system response is faster than the system response obtained
without pole placement. This shows that even simple state
feedback control using the transformation-based reduced
quantum model can achieve the equivalent system
performance that is obtained using more complex and
expensive control on the original full order quantum system.

6. CONCLUSION

A new method of intelligent control for the time-independent
closed quantum computing systems is introduced in this
paper. While an open quantum system interacts with its
environment (i.e., its surroundings or “bath”) and thus
dissipates power which results in a non-unitary evolution, a
closed quantum system doesn’t exchange energy or matter
with its surroundings and therefore doesn’t dissipate power
which results in a unitary evolution and hence it is
information lossless (i.e., reversible). In order to achieve an
intelligent control, the 2nd order quantum system was
simplified by reducing it to a 1st order system. This reduction
was achieved by the implementation of a recurrent supervised
neural network to estimate certain elements [Ac] of the
transformed system matrix [A~], while the other elements
[Ar] and [Ao] are set based on the system eigenvalues such
that [Ar] contains the dominant eigenvalues (slow dynamics)
and [Ao] contains the non-dominant eigenvalues (fast
dynamics). To obtain the transformed matrix [A~], the zero
input response was used in order to obtain output data related
to the state dynamics, based only on the system matrix [A].
After the transformed system matrix was obtained, the robust
control algorithm of linear matrix inequality was used to
determine the permutation matrix [P], which is required to
complete system transformation matrices {[B~], [C~], [D~]}.
The reduction process was then performed using the singular
perturbation method which operates on neglecting the faster-
dynamics eigenvalues and leaving the dominant slow-
dynamics eigenvalues to control the quantum system. Simple
state feedback control using pole placement was then applied
on the reduced quantum computing model to obtain the
desired system response.

REFERENCES

[1] Anas N. Al-Rabadi, Reversible Logic Synthesis: From
 Fundamentals to Quantum Computing, Springer-Verlag, 2004.
[2] A. N. Al-Rabadi, “Qudits Representations and Computations of
 N-Player Many-Valued Quantum Games,” Applied Mathematics and
 Computation, Vol. 175, No. 1, pp. 691 - 714, 2006.
[3] A. N. Al-Rabadi, “Representations, Operations, and Applications of
 Switching Circuits in the Reversible and Quantum Spaces,” Facta
 Universitatis, Vol. 20, No. 3, pp. 507 – 539, 2007.
[4] A. N. Al-Rabadi, “Reversible Systolic Arrays: m-ary Bijective
 Single-Instruction Multiple-Data (SIMD) Architectures and their
 Quantum Circuits,” Journal of Circuits, Systems, and Computers,
 Vol. 17, No. 4, pp. 729 - 771, 2008.
[5] Anas N. Al-Rabadi, “Artificial Neural Identification and LMI
 Transformation for Model Reduction-Based Control of the Buck
 Switch-Mode Regulator,” American Institute of Physics, In: IAENG
 Transactions on Engineering Technologies, AIP Conference
 Proceedings 1174, Editors: Sio-Iong Ao, Alan Hoi-Shou Chan,
 Hideki Katagiri and Li Xu, Vol. 3, pp. 202 – 216, 2009.
[6] P. Avitabile, J. C. O’Callahan, and J. Milani, “Comparison of System
 Characteristics Using Various Model Reduction Techniques,” 7th
 Int. Model Analysis Conference, Las Vegas, Nevada, February 1989.

[7] A. Barenco, C. Bennett, R. Cleve, D. DiVincenzo, N. Margolus,
 P. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary Gates
 for Quantum Computation,” Physical Review A, Vol. 52, 253,
 pp. 38 - 46, 1985.
[8] C. H. Bennett and R. Landauer, “The Fundamental Physical Limits of
 Computation,” Scientific American, pp. 3457 - 3467, 1995.
[9] A. Bilbao-Guillerna, M. De La Sen, S. Alonso-Quesada, and A.
 Ibeas, “Artificial Intelligence Tools for Discrete Multiestimation
 Adaptive Control Scheme with Model Reduction Issues,”
 Proc. of the Int. Association of Science and Technology, Artificial
 Intelligence and Application, Innsbruck, Austria, 2004.
[10] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear
 Matrix Inequalities in System and Control Theory, SIAM, 1994.
[11] J. I. Cirac and P. Zoller, “Quantum Computations with Cold
 Trapped Ions,” Phys. Rev. Lett., Vol. 74, No. 20,
 pp. 4091 - 4094, 1995.
[12] P. Dirac, The Principles of Quantum Mechanics, Oxford
 University Press, 1930.
[13] R. Feynman, “Quantum Mechanical Computers,” Optics
 News, 11, pp. 11-20, 1985.
[14] R. Feynman, “There is Plenty of Room at the Bottom: an Invitation
 to Enter a New Field of Physics,” Nanotechnology, edited by B.
 Crandal and J. Lewis, M.I.T. Press, pp. 347 - 363, 1992.
[15] R. Feynman, Feynman Lectures on Computation,
 Addison Wesley, 1996.
[16] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback
 Control of Dynamic Systems, 3rd Edition, Addison-Wesley, 1994.
[17] E. Fredkin and T. Toffoli, “Conservative Logic,” Int. J. of
 Theoretical Physics, 21, pp. 219 - 253, 1982.
[18] L. K. Grover, “A Fast Quantum-Mechanical Algorithm for Database
 Search,” Proc. Symp. on Theory of Computing (STOC),
 pp. 212 - 219, 1996.
[19] S. Haykin, Neural Networks: a Comprehensive Foundation,
 Macmillan College Publishing Company, New York, 1994.
[20] W. H. Hayt, J. E. Kemmerly, and S. M. Durbin, Engineering Circuit
 Analysis, McGraw Hill, 2007.
[21] G. Hinton and R. Salakhutdinov, “Reducing the Dimensionality of
 Data with Neural Networks,” Science, pp. 504 - 507, 2006.
[22] R. Horn and C. Johnson, Matrix Analysis, Cambridge, 1985.
[23] P. Kokotovic, R. O'Malley, and P. Sannuti, “Singular Perturbation
 and Order Reduction in Control Theory – An Overview,”
 Automatica, 12(2), pp. 123-132, 1976.
[24] R. Landauer, “Irreversibility and Heat Generation in the
 Computational Process,” IBM Journal of Research and
 Development, 5, pp. 183 - 191, 1961.
[25] R. Landauer, “Fundamental Physical Limitations of the
 Computational Process,” Ann. N.Y. Acad. Sci., 426, 161, 1985.
[26] A. Muthukrishnan and C. R. Stroud, “Multivalued Logic Gates for
 Quantum Computation,” Phy. Rev. A, Vol. 62, 052309, 2000.
[27] M. Nielsen and I. Chuang, Quantum Computation and Quantum
 Information, Cambridge University Press, 2000.
[28] L. Schiff, Quantum Mechanics, 3rd edition, 1968.
[29] R. Skelton, M. Oliveira, and J. Han, “Systems Modeling and Model
 Reduction,” Invited Chapter in the Handbook of Smart Systems and
 Materials, Institute of Physics, 2004.
[30] A. N. Tikhonov, “On the Dependence of the Solution of
 Differential Equation on a Small Parameter,” Mat Sbornik
 (Moscow), pp. 193 - 204, 1948.
[31] R. J. Williams and Zipser, “A Learning Algorithm for
 Continually Running Full Recurrent Neural Networks,”
 Neural Computation, 1(2), pp. 270 - 280, 1989.
[32] J. Zurada, Artificial Neural Systems, WPC, 1992.

http://prola.aps.org/search/field/author/Barenco_Adriano
http://prola.aps.org/search/field/author/Bennett_Charles_H
http://prola.aps.org/search/field/author/Cleve_Richard
http://prola.aps.org/search/field/author/DiVincenzo_David_P
http://prola.aps.org/search/field/author/Sleator_Tycho
http://prola.aps.org/search/field/author/Smolin_John_A

	Index Terms - Linear Matrix Inequality, Model Order Reductio

