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    Abstract - This paper introduces a new method of intelligent 
control for closed quantum computation time-independent 
systems. The new method uses recurrent supervised neural 
network to identify certain parameters of the transformed 
system matrix [ A

~ ]. Linear matrix inequality is then used to 
determine the permutation matrix [P] so that a complete system 
transformation {[ B~ ], [ C

~ ], [ D~ ]} is achieved. The transformed 
model is then reduced using the method of singular perturbation 
and state feedback control is applied to enhance system 
performance. In quantum computing and mechanics, a closed 
system is an isolated system that can’t exchange energy or 
matter with its surroundings and doesn’t interact with other 
quantum systems. In contrast to open quantum systems, closed 
quantum systems obey the unitary evolution and thus are 
information lossless (i.e., reversible). The experimental 
simulation results show that the new hierarchical control 
methodology simplifies the model of the quantum computing 
system and thus uses a simpler controller that produces the 
desired system response for performance enhancement.  
 
      Index Terms - Linear Matrix Inequality, Model Order 
Reduction, Quantum Computing, Recurrent Supervised Neural 
Networks, State Feedback Control. 
 

1. INTRODUCTION 
 
Due to the forecasted approaching failure of Moore’s law, 
quantum computing will occupy an increasingly important 
role in building more compact and less power consuming 
systems [1-5,7,8,11,13-15,17,18,24-27]. Other motivations for 
pursuing the possibility of implementing circuits and systems 
using quantum computing would include items such as: (1) 
power: the fact that the internal computations in quantum 
computing systems consume no power and only power is 
consumed when reading and writing operations are performed 
[13-15]; (2) size: the current trends which are related to more 
dense hardware implementations are heading towards 1 
Angstrom threshold (i.e., atomic size) at which quantum 
mechanical effects have to be accounted for; and (3) speed 
(performance): if the properties of superposition and 
entanglement of quantum mechanics can be usefully 
employed in the design of circuits and systems, significant 
computational speed enhancements can be expected [1,15,27]. 
Therefore, while in the classical systems the frequency-to-
power ratio (p / f) doesn’t improve much after certain 
threshold since the increase in frequency (i.e., speed) leads to 
the increase in power consumption, this doesn’t exist in the 
quantum domain; speed of processing is very high due to the 
quantum superposition and entanglement, and power 
consumption is very low that leads to (p / f) → 0. 
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       In system modeling, sometimes it is required to identify 
some of the system parameters. This objective can be 
achieved by the use of artificial neural networks (ANN), 
which are considered as the new generation of information 
processing networks. A neural network is an interconnected 
group of nodes akin to the vast network of neurons in the 
human brain. Artificial neural systems can be defined as 
physical cellular systems which have the capability of 
acquiring, storing and utilizing experiential knowledge 
[5,9,19,21,31,32]. The ANN consists of an interconnected 
group of artificial neurons and processes information using a 
connectionist approach in performing computation. In most 
cases, an ANN is an adaptive system that changes its structure 
based on external or internal information that flows through 
the network during the learning phase. The basic processing 
elements of neural networks are called neurons which perform 
summing operations and nonlinear function computations. 
Neurons are usually organized in layers and forward 
connections where computations are performed in a parallel 
fashion at all nodes and connections. Each connection is 
expressed by a numerical value which is called a weight. The 
learning process of a neuron corresponds to a way of 
changing its weights.  
       When dealing with system modeling and control analysis, 
there exist equations and inequalities that require optimized 
solutions. An important expression which is used in robust 
control is called linear matrix inequality (LMI) which is used 
to express specific convex optimization problems for which 
there exist powerful numerical solvers [10]. The important 
LMI optimization technique started by the Lyapunov theory 
showing that the differential equation  is stable if 
and only if there exists a positive definite matrix [P] such that 

. The requirement of { , } 
is what is known as the Lyapunov inequality on [P] which is a 
special case of an LMI. By picking any  and then 

solving the linear equation for the matrix [P], 
it is guaranteed to be positive-definite if the given system is 
stable. The LMI that arises in system and control theory can 
be formulated as convex optimization problems that are 
amenable to computer solution and then can be solved using 
algorithms such as the ellipsoid algorithm [10].  
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       In practical control problems, the first step is to obtain a 
mathematical model in order to examine the behavior of the 
system for the purpose of designing a proper controller 
[5,16,29]. Sometimes, this mathematical description involves 
a certain small parameter (i.e., perturbation). Neglecting this 
small parameter results in simplifying the order of the 
designed controller by reducing the order of the system 
[5,6,9,21,23,29,30]. A reduced order model can be obtained 
by neglecting the fast dynamics (i.e., non-dominant 
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eigenvalues) of the system and focusing on the slow dynamics 
(i.e., dominant eigenvalues). This simplification and reduction 
of system modeling leads to controller cost minimization. In a 
control system, due to the fact that feedback controllers do not 
usually consider all the dynamics of the system, model 
reduction is a very important issue where model reduction 
leads to reducing the order of the controller which is directly 
proportional to the cost. One of the methods which are used 
for the model order reduction is known as the singular 
perturbation method in which systems that are strongly 
coupled through their slow parts and that are weakly coupled 
through their fast parts are considered. 
       Figure 1 illustrates the layout of the closed-system 
quantum computing control methodology which is used in 
this paper.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. The introduced control methodology which is utilized for 
closed quantum computing systems. 
 
       In Figure 1, Layer 1 is the closed-system quantum 
computing model using the time-independent Schrödinger 
equation (TISE). Layer 2 is the neural network identification 
of the transformed system matrix [ A~ ]. Layer 3 is the LMI 
technique used in determining the permutation matrix which 
is required for system transformation {[ B~ ], [ C~ ], [ D~ ]}. 
Layer 4 is the system transformation. Layer 5 presents the 
model order reduction. Finally, layer 6 presents the state 
feedback control.   
       Section 2 presents background on quantum computing, 
recurrent supervised neural networks, linear matrix inequality, 
model transformation, and model order reduction. Section 3 
presents a detailed illustration of the recurrent neural network 
identification with the LMI optimization technique for model 
order reduction of the quantum computing system. An 
implementation of the neural network identification with the 
LMI optimization to the model order reduction of the time-
independent quantum computing system is presented in 
Section 4. Section 5 presents the application of state feedback 
controller on the reduced order model of the quantum 
computing system. Conclusion is presented in Section 6.    
 
2. BACKGROUND  
 
This section presents important background on quantum 
computing systems, supervised neural networks, LMI and 
model order reduction that will be used in Sections 3, 4 and 5.  
 
 
 

2.1
     

.  Quantum Computing  

Quantum computing is a method of computation that uses the 
dynamic process which is governed by the Schrödinger 
equation [1,12,13,27,28]. The one-dimensional time-
dependent Schrödinger equation (TDSE) is as follows: 
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where h is Planck constant (6.626⋅10-34 J⋅s = 4.136⋅10-15 eV⋅s), 
V(x, t) is the applied potential, m is the particle mass, i is the 
imaginary number, ),( txψ  is the quantum state, H is the 
Hamiltonian operator where H = - [(h/2π)2/2m]∇2 + V, and ∇2 
is the Laplacian operator. State Feedback Control 
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       A general solution to TDSE is the expansion of a 
stationary (time-independent or spatial) basis functions (i.e., 
eigen states) )(rUe

r  using time-dependent (i.e., temporal) 
expansion coefficients ce(t) as follows: 
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The expansion coefficients ce(t) are a scaled complex 
exponentials as follows:   
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where Ee are the energy levels.  
       While the above holds for all physical systems, in 
quantum computing, the time-independent Schrödinger 
equation (TISE) is normally used [1,27]:  
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where the solution ψ  is an expansion over orthogonal basis 

states iφ  defined in a linear complex vector space called 
Hilbert space Η as: 
       ∑=

i
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where the coefficients ci are called probability amplitudes and 
|ci|2 is the probability that the quantum state ψ  will collapse 

into the (eigen) state iφ . The probability is equal to the inner 

product 
2

|ψφi , with the unitary condition ∑|ci|2 = 1. In 

quantum computing, a linear and unitary operator ℑ is used to 
transform an input vector of quantum bits (qubits) into an 
output vector of qubits. In two-valued quantum computing, 
the qubit is a vector of bits which is defined as follows:               
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       A two-valued quantum state ψ  is a superposition of 

quantum basis states iφ . Thus, for the orthonormal 



 

   

computational basis states { }1,0 , one has the following 
quantum state: 
       10 βαψ +=                                                            (6) 

where αα* = |α|2 = p0 ≡ the probability of having state ψ  in 

state 0 , ββ* = |β|2 = p1 ≡ the probability of having state ψ  

in state 1 , and |α|2 + |β|2 = 1. The calculation in quantum 
computing for multiple systems (e.g., the equivalent of a 
register) follow the tensor product (⊗). For example, given 
states 1ψ  and 2ψ , one has:             
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     A physical system (e.g., the hydrogen atom) that is 
described by the following Equation: 
       SpindownSpinup 21 cc +=ψ                                   (8) 
can be used to physically implement a two-valued quantum 
computing. Another common alternative form of Equation (8) 
is as follows: 
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       Many-valued (m-valued) quantum computing can also be 
performed. For the three-valued quantum computing, the 
qubit becomes a 3-dimensional vector quantum discrete digit 
(qudit), and in general, for m-valued quantum computing the 
qudit is of dimension “many” [1,27]. For example, one has for 
the 3-state quantum computing (in the Hilbert space H) the 
following qudits:  
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       A three-valued quantum state is a superposition of three 
quantum orthonormal basis states (vectors). Thus, for the 
orthonormal computational basis states { }2,1,0 , one has 
the following quantum state: 

210 γβαψ ++=  

where αα* = |α|2 = p0 ≡ the probability of having state ψ  in 

state 0 , ββ* = |β|2 = p1 ≡ the probability of having state ψ  

in state 1 , γγ* = |γ|2 = p2 ≡ the probability of having state 

ψ  in state 2 , and |α|2 + |β|2 + |γ|2 = 1.  
       The calculation in quantum computing for m-valued 
multiple systems follow the tensor product in a manner 
similar to the one demonstrated for the higher-dimensional 
qubit in the two-valued quantum computing. 
       Several quantum computing systems were used to 
implement quantum gates from which complete quantum 
circuits and systems were constructed [1,7,11,15,26,27], 
where several of the two-valued and m-valued quantum 
circuit implementations use the two-valued and m-valued 
quantum Swap-based and Not-based gates [1,27]. This can be 

important, since the Swap and Not gates are basic primitives 
in quantum computing from which many other gates are built, 
such as [1,7,11,15,26,27]: (1) two-valued and m-valued Not 
gate, (2) two-valued and m-valued Controlled-Not gate (i.e., 
Feynman gate), (3) two-valued and m-valued Controlled-
Controlled-Not gate (i.e., Toffoli gate), (4) two-valued and m-
valued Swap gate, and (5) two-valued and m-valued 
Controlled-Swap gate (i.e., Fredkin gate).    
       For example, it has been shown that a physical system 
comprising trapped ions under multiple-laser excitations can 
be used to reliably implement m-valued quantum computing 
[11,26]. A physical system in which an atom (or in general a 
particle) is exposed to a specific potential field (i.e., potential 
function) can also be used to implement m-valued quantum 
computing from which the two-valued being a special case 
[1,27] where the distinct energy states are used as the 

normal basis states.         ortho
     Figure 2 shows several various physical realization 
methodologies for the implementation of two-valued and m-
valued quantum computing [1,7,11,13-15,17,26,27] where 
Figure 2a shows the particle spin (i.e., the angular 
momentum) for two-valued quantum computing, Figure 2b 
shows energy states of quantum systems such as the simple 
harmonic oscillator potential or the particle in finite-walled 
box potential for two-valued and m-valued quantum 
computing in which the resulting distinct energy states are 
used as the orthonormal basis states, Figure 2c shows light 
polarization for two-valued quantum computing, and Figure 
2d shows cold trapped ions for two-valued and m-valued 
quantum computing.  
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Figure 2.  Various technologies that are used to perform quantum 
computing. 
 
       In general, for an m-valued logic, a quantum state is a 
superposition of m quantum orthonormal basis states (i.e., 
vectors). Thus, for the orthonormal computational basis states 
{ }1,...,1,0 −m , one has the following quantum state: 
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computing for m-valued multiple systems follow the tensor 
product in a manner similar to the one used for the case of 
two-valued quantum computing.  
       Example 1 shows the implementation of m-valued 
quantum computing by exposing a particle to a potential field 
U0 where the distinct energy states are utilized as the 
orthonormal basis states. 
Example 1. We assume the following constraints [12,28]: (1) 
finite-walled box potential of specific width (L) and height 
(U0) (i.e., the applied potential value), (2) particle mass m, and 
(3) boundary conditions for the wavefunction continuity. For 
the finite potential well, the solution to the Schrödinger 
equation gives a wavefunction with an exponentially decaying 
penetration into the classicallly forbidden region where 
confining a particle to a smaller space requires a larger 
confinement energy. Since the wavefunction penetration 
effectively “enlarges the box”, the finite well energy levels 
are lower than those for the case of infinite well. For a 
potential which is zero over a length L and has a finite value 
for other values of x, the solution to the Schrödinger equation 
has the form of the free-particle wavefunction for (-L/2 < x < 
L/2) and elsewhere must satisfy the equation:  
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the TISE may be written in the form:  
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and the general solution is in the form: 
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       Given a potential well as shown in Figure 3 and a particle 
of energy less than the height of the well, the solutions may 
be of either odd or even parity with respect to the center of the 
well [12,28]. The Schrödinger equation gives trancendental 
forms for both so that numerical solution methods must be 
used. For the even case, one obtains the solution in the form 

22

2
tan kkLk −== βα . Since both sides of the equation are 

dependent on the energy E for which one is solving, the 
equation is trancendental and must be solved numerically. 
The standard constraints on the wavefunction require that 
both the wavefunction and its derivative be continuous at any 
boundary. Applying such constraints is often the way that the 
solution is forced to fit the physical situation. The ground 
state solution for a finite potential well is the lowest even 
parity state and can be expressed in the form: 
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where . On the other hand, for the odd case, 

one obtains the solution in the form 
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       In the one-dimensional case, parity refers to the 
“evenness” or “oddness” of a function with respect to the 
reflection about x = 0, where even parity requires 

)()( xx −Ψ=Ψ  and odd parity requires )()( xx −Ψ−=Ψ . The 
stated particle in a box problem can give some insight into the 
importance of parity in quantum mechanics; the box has a line 
of symmetry down the center of the box (x = 0) where the 
basic considerations of symmetry demand that the probability 
for finding the particle at -x be the same as that at x. Thus, the 
condition on the probability is given by: 

)()()()( xxxx −Ψ−Ψ=ΨΨ ∗∗  
This condition is satisfied if the parity is even or odd, but not 
if the wavefuntion is a linear combination of even and odd 
functions. This can be generalized to the statement that 
wavefunctions must have a definite parity with respect to 
symmetry operations in the physical problem [12,28]. An 
example for the distribution of energy states for the particle in 
finite-walled box is shown in Figure 3. 
 

 
 

(a)                                  (b) 
 
Figure 3. Energy levels and wavefunctions of the one-dimensional 
particle in finite-walled box with potential U(x) and the associated 
energy levels En in electron Volts where, as an example, the energy 
levels for an electron in a potential well of depth U0 = 64 eV and 
width L = 0.39 nm are shown in comparison with the energy levels 
of an infinite well of the same size. 
 
       In quantum mechanical systems, a closed system is an 
isolated system that doesn’t exchange energy or matter with 
its surroundings (i.e., doesn’t dissipate power) and doesn’t 
interact with other quantum systems. While an open quantum 
system interacts with its environment (i.e., its surroundings or 
“bath”) and thus dissipates power which results in a non-
unitary evolution, a closed quantum system doesn’t exchange 
energy or matter with its surroundings and therefore doesn’t 
dissipate power which results in a unitary evolution (i.e., 
unitary matrix) and hence it is information lossless.  
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An artificial neural network is an emulation of a biological 
neural system. The basic model of the neuron is based on the 
functionality of the biological neuron which is the basic 
signaling unit in the nervous system. The process of a neuron 
can be formally modeled as shown in Figure 4 [19,32]. 
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Figure 4. A mathematical model of an artificial neuron. Figure 4. A mathematical model of an artificial neuron. 
  
       As seen in Figure 4, the internal activity of the neuron 
can be shown to be: 
       As seen in Figure 4, the internal activity of the neuron 
can be shown to be: 
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       In supervised learning, it is assumed that at each instant 
of time when the input is applied, the desired response of the 
system is available. The difference between the actual and the 
desired response represents an error measure and is used to 
correct the network parameters externally. Since the 
adjustable weights are initially assumed, the error measure 
may be used to adapt the network's weight matrix [W]. A set 
of input and output patterns which is called a training set is 
required for this learning mode. The training algorithm 
estimates directions of the negative error gradient and then 
reduces the error. 
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required for this learning mode. The training algorithm 
estimates directions of the negative error gradient and then 
reduces the error. 
       For artificial neural networks, there are several learning 
rules used to train the neural network. For example, in the 
Perceptron learning rule, the learning signal is the difference 
between the desired and the actual neuron's response (i.e., 
supervised learning). Another learning rule is the Widrow-
Hoff learning rule which minimizes the squared error between 
the desired output and the neuron's activation value. 
Backpropagation is also one of the important learning 
algorithms in neural networks [19,32].  
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       The supervised recurrent neural network which is used 
for the identification in this paper is based on an 
approximation of the method of steepest descent [19,32]. The 
network tries to match the output of certain neurons to the 
desired values of the system output at specific instant of time. 
Figure 5 shows a network consisting of a total of N neurons 
with M external input connections for a 2nd order system with 
two neurons and one external input, where the variable g(k) 
denotes the (M x 1) external input vector applied to the 

network at discrete time k and the variable y(k + 1) denotes 
the corresponding (N x 1) vector of individual neuron outputs 
produced one step later at time (k + 1). 
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Figure 5. The utilized second order recurrent neural network 
architecture, where the estimated matrices are given by  
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       The input vector g(k) and one-step delayed output vector 
y(k) are concatenated to form the ((M + N) x 1) vector u(k), 
whose ith element is denoted by ui(k). If Λ denotes the set of 
indices i for which gi(k) is an external input, and denotes 
the set of indices i for which u

ß
i(k) is the output of a neuron 

(which is yi(k)), the following is true:  
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The (N x (M + N)) recurrent weight matrix of the network is 
represented by the variable [W]. The net internal activity of 
neuron j at time k is given by: 
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where Λ is the union of sets Λ and . At the next time 
step (k + 1), the output of the neuron j is computed by passing 
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       The derivation of the recurrent algorithm can be started 
by using dj(k) to denote the desired (i.e., target) response of 
neuron j  at time k, and  to denote the set of neurons that 
are chosen to provide externally reachable outputs. A time-
varying (N x 1) error vector e(k) is defined whose j
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The objective is to minimize the cost function Etotal which is 
obtained by: 
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       To accomplish this objective, the learning method of 
steepest descent, which requires knowledge of the gradient 
matrix, is used:  
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where  is the gradient of E(k) with respect to the 
weight matrix [W]. In order to train the recurrent network in 
real time, the instantaneous estimate of the gradient is used 

. For the case of a particular weight (k), the 
incremental change (k) made at time k is defined as: 
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To determine the partial derivative , the 
network dynamics are derived. The derivation is obtained by 
using the chain rule which provides the following equation: 
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       Differentiating the net internal activity of neuron j with 
respect to (k) yields: lmw
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where  is a Kronecker delta equal to "1" when j = m and 
"0" otherwise, and: 
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Having those equations produces: 
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The initial state of the network at time k = 0 is assumed to be 
zero as follows: 
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The dynamical system is described by the following triply 
indexed set of variables ( ):  j
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For every time step k and all appropriate j, m and , system 
dynamics are controlled by: 
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       The values of and the error signal e )(kj
mlπ j(k) are used 

to compute the corresponding weight changes: 
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Using the weight changes, the updated weight (k + 1) is 
calculated as follows: 

lmw

       )( + )( = 1)+( kwkwkw mmm lll ∆          (14) 
Repeating this computation procedure provides the 
minimization of the cost function and the objective is 
therefore achieved. 
       With the many advantages that the ANN has, it is used 
for parameter identification in model transformation for the 
purpose of model order reduction as will be shown in the 
following section. 
 
2.3.  LMI and Model Transformation 
 
In this sub-section, the detailed illustration of system 
transformation using LMI optimization will be presented. 
Consider the system:  
       )()()( tButAxtx +=&                                       (15) 
       )()()( tDutCxty +=               (16) 
In order to determine the transformed [A] matrix, which is 
[ A~ ], the discrete zero input response is obtained. This is 
achieved by providing the system with some initial state 
values and setting the system input to zero (i.e., u(k) = 0). 
Hence, the discrete system of Equations (15) - (16), with the 
initial condition 0)0( xx = , becomes:  
       )()1( kxAkx d=+                      (17) 
       )()( kxky =                            (18) 
We need x(k) as a neural network target to train the network 
to obtain the needed parameters in [ dA~ ] such that the system 

output will be the same for [Ad] and [ dA~ ]. Hence, simulating 
this system provides the state response corresponding to their 
initial values with only the [Ad] matrix is being used. Once 
the input-output data is obtained, transforming the [Ad] matrix 
is achieved using the NN training, as will be explained in 
Section 3. The estimated transformed [Ad] matrix is then 
converted back into the continuous form which yields: 
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Having the [A] and [ A~ ] matrices, the permutation [P] matrix 
is determined using the LMI optimization technique as will be 
illustrated in later sections. The complete system 
transformation can be achieved as follows: assuming 

xPx 1~ −= , the system of Equations (15) - (16) can be re-
written as: 

)()(~)(~ tButxAPtxP +=&  
)()(~)(~ tDutxCPty +=  

where ( )()(~ tyty = ). Pre-multiplying the first equation above 
by [P-1], one obtains: 

)()(~)(~ 111 tBuPtxAPPtxPP −−− +=&  
)()(~)(~ tDutxCPty +=  

which yields the following transformed model: 
       )(~)(~~)(~ tuBtxAtx +=&                           (20) 

       )(~)(~~)(~ tuDtxCty +=                                                    (21)       y                                (31) 
where the transformed system matrices are given by: 
       APPA 1~ −=                                       (22) 
       BPB 1~ −=                          (23) 
       CPC =

~             (24) 
       DD =

~             (25) 
Transforming the system matrix [A] into the form shown in 
Equation (19) can be achieved based on the following 
definition [22]. 
Definition. Matrix is reducible if either: nMA∈
(a)   n = 1 and A = 0; or 
(b)   n ≥ 2, there is a permutation matrix , and there is   nMP∈
        some integer r with  such that:  11 −≤≤ nr
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where , , , and 0rrMX ,∈ rnrnMZ −−∈ , rnrMY −∈ , rrnM ,−∈  
is a zero matrix. 
       The attractive features of the permutation matrix [P] such 
as being orthogonal and invertible have made this 
transformation easy to carry out.  However, the permutation 
matrix structure narrows the applicability of this method to a 
very limited category of applications. Some form of a 
similarity transformation can be used to correct this 
problem; , where  is a linear operator 

defined by  [22]. Therefore, based on [A] and 

[

nnnn RRf ×× →: f
APPAf 1)( −=

A~ ], linear matrix inequalities are used to obtain the 
transformation matrix [P]. Thus, the optimization problem is 
casted as follows: 
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which maybe written in an LMI equivalent form as:             
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where S is a symmetric slack matrix [22]. 
 
2.4.  Model Order Reduction 
 
Linear time-invariant models of many physical systems have 
fast and slow dynamics which can be referred to as singularly 
perturbed systems. Neglecting the fast dynamics of a 
singularly perturbed system provides a reduced slow model. 
This gives the advantage of designing simpler lower-
dimensionality reduced order controllers based on the reduced 
model information. To show the formulation of a reduced 
order system model, consider the singularly perturbed system:         
       011211 0     , )( )()( )( x)x(tuBtAtxAtx =++= ξ&              (29) 

                   (30) 022221 0(    , )()()()( ξξξξε =++= )tuBtAtxAt&

)()(  )( 21 tCtxCt ξ+=

where and  are the slow and fast state 

variables, respectively, and are the input 
and output vectors, respectively, { , [ ], [ ]} are 
constant matrices of appropriate dimensions with 

 1mx ℜ∈ 2mℜ∈ξ

 1nu ℜ∈ 2ny ℜ∈
][ iiA iB iC

}2,1{∈i , 
and ε  is a small positive constant. The singularly perturbed 
system in Equations (29) - (31) is simplified by setting 0=ε . 
In doing so, we are neglecting the fast dynamics of the system 
and assuming that the state variables ξ  have reached the 
quasi-steady state. Hence, setting 0=ε  in Equation (30), and 
assuming [ ] is nonsingular, produces:  22A
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where the index r denotes remained (or reduced) model. 
Substituting Equation (32) in Equations (29) - (31) yields the 
reduced order model:  
            )()(  )( tuBtxAtx rrrr +=&                        (33) 
       )()()( tuDtxCty rrr +=           (34) 
where:  
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Example 2. Consider the 3rd order system: 
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Since this is a 3rd order system, there exists three eigenvalues 
which are {-19.886 + 6.519i, -19.886 - 6.519i, -44.228}. 
Using the singular perturbation technique, the system model 
is reduced to the following 2nd order model: 
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       In order to obtain a state space model for the above 
system, let the dynamics of the system be designated as 
system states ( ). This means that there will be a 5ix th order 
system since there are five dynamical elements in the system. 
The model can be obtained by assigning the following set of 
states { is the current of the inductor L  1x 1, is the voltage 
of the capacitor C

  2x

1, is the current of the inductor L  3x 2, 
is the voltage of the capacitor C  4x 2, and is the current 

of the inductor L
  5x

3}. Applying KCL at nodes (a) and (b) and 
KVL for the three loops starting from left to right in Figure 7 
yields the following state space matrices: 

     [ ] [ ] )(0.015     )(1.1271.5)( tutxty rr +=
System output response plots of the original system and the 
reduced model, for a step input, are shown in Figure 6. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Output step response of the original and reduced order 
models ( ___ original, -.-.-. reduced). 
 
       It is seen from the results obtained in Figure 6 that the 
reduced order model is performing well as compared with the 
original system response.  
       Dynamic systems with much higher dimensions can also 
be processed by following the previously used method and the 
following example illustrates a 5th order RLC system. 
Example 3. Consider the following 5th order RLC filter 
shown in Figure 7 [20].  
 
 
 
 
 
 
 

Figure 7. An example of a 5th order RLC network. 
 
       It is well known that the capacitor and the inductor are 
dynamical passive elements, which means that they have the 
ability to store energy. The dynamical equations may be 
derived using the Kirchhoff's current law (KCL) and 
Kirchhoff's voltage law (KVL) [20]. The current for the 
capacitor is proportional to the change of its voltage, that is: 
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and that the voltage across the inductor is proportional to the 
change of its current, that is:   
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Given the following set of values { nF, 221 == CC  
H11 31 µ== LL , H33 2 µ=L , Ω== 9321 RR }, the 

corresponding 5th order model is obtained. The eigenvalues of 
the system are found to be 1⋅106 x {-2.0158 + 7.3391i, -
2.0158 - 7.3391i, -4.4229, -4.2273 + 5.2521i, -4.2273 - 
5.2521i}. Performing model reduction, the system is reduced 
from its 5th order to a 4th order by taking the first four rows of 
[A] as the first category represented by Equation (29) and 
taking the fifth row of [A] as the second category represented 
by Equation (30). Simulations of both, the original and the 
reduced models, are shown in Figure 8.  
       As can be observed from the results shown in Figure 8, 
the reduced order model using the singular perturbation 
method has provided an acceptable response when compared 
with the original system response. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. System output step response of the original and reduced 
models ( ___ original, -.-.-reduced). 



 

   

        
 
3. NEURAL IDENTIFICATION WITH LMI 

OPTIMIZATION FOR THE CLOSED-
SYSTEM QUANTUM COMPUTING MODEL 
REDUCTION  

 
In this work, it is our objective to search for a similarity 
transformation that can be utilized within the context of 
closed time-independent quantum computing systems to 
decouple a pre-selected eigenvalue set from the system matrix 
[A]. To achieve this objective, training the neural network to 
estimate the transformed discrete system matrix [ dA~ ] is 
performed [5]. For the system of Equations (29) - (31), the 
discrete model of the quantum computing system is obtained 
as follows: 
                              (39) )()()1( kuBkxAkx dd +=+
                 (40) )()()( kuDkxCky dd +=
The estimated discrete model of Equations (39) - (40) can be 
written in a detailed form as: 
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where k is the time index, and the matrix elements of 
Equations (41) - (42) were shown in Figure 5.  
       The recurrent neural network presented in Section 2.2 can 
be summarized by defining Λ as the set of indices i for which 

is an external input, which in the quantum computing 
system is one external input and by defining ß as the set of 
indices i for which is an internal input or a neuron 
output, which in the quantum computing system is two 
internal inputs (i.e., two system states). Also, by defining 

as the combination of the internal and external inputs 
for which Λ. Using this setting, training the network 
depends on the internal activity of each neuron which is given 
by the following equation:  
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where wji is the weight representing an element in the system 
matrix or input matrix for  and Λ such that ßj∈ ∪∈ ßi

[ ]]~[]~[ dd BA=W . At the next time step (k +1), the output 
(i.e., internal input) of the neuron j is computed by passing the 
activity through the nonlinearity φ(.) as follows: 
       ))(()1( kvkx jj ϕ=+                                                      (44) 
With these equations, based on an approximation of the 
method of steepest descent, the network estimates the system 
matrix [Ad] as illustrated in Equation (17) for zero input 
response. That is, an error can be obtained by matching a true 
state output with a neuron output as follows: 

)(~)()( kxkxke jjj −=  
The objective is to minimize the cost function: 
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1  and ς  denotes the set of indices j 

for the output of the neuron structure. This cost function is 
minimized by estimating the instantaneous gradient of E(k) 
with respect to the weight matrix [W] and then updating [W] 
in the negative direction of this  gradient. In steps, this may be 
proceeded as follows: 

-       Initialize the weights, [W], by a set of uniformly 
distributed random numbers. Starting at the instant k = 0, 
use Equations (43) - (44) to compute the output values of 
the N neurons (where ßN = ).  

- For every time step k and all  ,ßj∈ ,ßm∈  and 
∪∈ ßl Λ, compute the dynamics of the system which 

are governed by the triply indexed set of variables:  
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with initial conditions  and 0)0( =j
mlπ lmδ  is given by 

( ))()( kwkw mji l∂∂ , which is  equal to "1" only when j = 
m and l=i  otherwise it is "0". Notice that for the special 
case of a sigmoidal nonlinearity in the form of a logistic 
function, the derivative )(⋅ϕ&  is given by 

)]1(1)[1())(( +−+= kykykv jjjϕ& .    
- Compute the weight changes corresponding to the error 

signal and system dynamics:  
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- Update the weights in accordance with: 
        )()()1( kwkwkw mmm lll ∆+=+                          (46) 

- Repeat the computation until the desired identification is 
achieved. 

As was illustrated in Equations (17) - (18), for the purpose of 
estimating only the transformed system matrix [ A~ ], the 
training is based on the zero input response. Once the training 
is complete, the obtained weight matrix [W] is the discrete 
estimated transformed system matrix. Transforming the 
estimated system back to the continuous form yields the 
desired continuous transformed system matrix [ A~ ]. Using the 
LMI optimization technique illustrated in Section 2.3, the 
permutation matrix [P] is determined. Hence, a complete 
system transformation, as was shown in Equations (20) - (21), 
is achieved. To perform the order reduction, the system in 
Equations (20) - (21) are written as: 

                             (47) )(
)(~
)(~

0)(~
)(~

tu
B
B

tx
tx

A
AA

tx
tx

o

r

o

r

o

cr

o

r
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
&

&

       [ ] )(
)(~
)(~

)(~
)(~

tu
D
D

tx
tx

CC
ty
ty

o

r

o

r
or

o

r
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
                         (48) 



 

   

0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Time[s]

S
ys

te
m

 O
ut

pu
t

where the system transformation enables us to decouple the 
original system into retained (r) and omitted (o) eigenvalues. 
The retained eigenvalues are the dominant eigenvalues that 
produce the slow dynamics and the omitted eigenvalues are 
the non-dominant eigenvalues that produce the fast dynamics. 
Equation (47) maybe written as: 

)()(~)(~)(~ tuBtxAtxAtx rocrrr ++=&  

)()(~)(~ tuBtxAtx oooo +=&  
The coupling term )(~ txA oc  maybe compensated for by solving 

for )(~ txo  in the second equation above by setting )(~ txo
&  to 

zero using the singular perturbation method (by setting 0=ε ). 
Doing so, the following is obtained: 
       )()(~ 1 tuBAtx ooo

−−=                                    (49) 
Using )(~ txo , we get the reduced model given by:  

                              (50) )(][)(~)(~ 1 tuBBAAtxAtx roocrrr +−+= −&

       )(][)(~)( 1 tuDBACtxCty ooorr +−+= −                       (51) 
Hence, the overall reduced order model is: 
            )()(~  )(~ tuBtxAtx orrorr +=&                        (52) 
       )()(~)( tuDtxCty orror +=           (53) 
where the detail of the {[ ], [ ], [ ], [ ]} overall 
reduced matrices are shown in Equations (50) - (51). 
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Example 4. Consider the 3rd order system: 
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Since the system is a 3rd order, there are three eigenvalues 
which are {-25.2822, -22, -42.717}. After performing the 
proper transformation and training, the following desired 
diagonal transformed model is obtained: 

[ ] [

 

This transformed model was simulated with an input signal 
that has different functions to capture most of the system 
dynamics as seen in the state response of Figure 9 which 
presents the system states while training and converging.  
 
 
 
 
 
  
 
 
             (a)                       (b)                             (c) 
 
Figure 9. System state response for the three states for a sequence of 
inputs (1) step, (2) sinusoidal, and (3) step ( ___original state. -.-.-.-.- 
state while convergence). 

       It is important to notice that the eigenvalues of the 
original system are preserved in the transformed model as 
seen in the above diagonal system matrix. Reducing the 3rd 
order transformed model to a 2nd order model yields: 
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with the dominant eigenvalues (slow dynamics) preserved as 
desired. However, by comparing this transformation-based 
reduction to the model reduction result of the singular 
perturbation without transformation (reduced 2nd order model) 
which is: 
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the two eigenvalues {-18.79, -31.60} of the non-transformed 
reduced model are totally different from the original system 
eigenvalues. The three different models, the original and the 
two reduced models (with and without transformation), were 
tested for a step input signal and the results were obtained as 
shown in Figure 10. 
       As observed from Example 4, the transformed reduced 
order model has achieved the two goals of (1) preserving the 
original system dominant eigenvalues and (2) performing well 
as compared with the original system response.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Reduced 2nd order models (.… transformed, -.-.-.- non-
transformed) output responses to a step input along with the non-
reduced model ( ____ original) 3rd order system output response. 
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4. MODEL REDUCTION OF THE QUANTUM 
COMPUTING SYSTEM USING NEURAL 
IDENTIFICATION AND LMI OPTIMIZATION 

 
Let us implement the time-independent quantum computing 
closed-system using the particle in finite-walled box potential 
V for the general case of m-valued quantum computing in 
which the resulting distinct energy states are used as the 
orthonormal basis states as was illustrated in Example 1 and 
Figures 2b and 3.  



 

   

       The dynamical TISE of the one-dimensional particle in 
finite-walled box potential V is expressed as follows: 
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 Ψ−=
∂
Ψ∂ )(2

22

2
EVm

x h
 

where m is the particle mass, and )2/( πh=h  is the reduced 
Planck constant (which is also called the Dirac constant) ≅ 
1.055⋅10-34 J⋅s = 6.582⋅10-16 eV⋅s. Thus, for 
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, the state space 

model of the time-independent closed quantum computing 
system is given as: 
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       For simulation reasons, Equations (54) – (55) can also be 
re-written equivalently as follows:   
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       Also, for conducting the simulations, one may often need 
to scale system Equation (56) without changing the system 
dynamics. Thus, by scaling both sides of Equation (56) by a 
scaling factor a, the following set of equations is obtained: 
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       Therefore, one obtains the following set of time-
independent quantum system matrices: 
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       C = [                                                                  (62) ]1       0
       D =                 (63) [ ]0
The specifications of the system matrix in Equation (60) for 
the particle in finite-walled box are determined by (1) 
potential box width L (in nano meter), (2) particle mass m, 
and (3) the potential value V (i.e., potential height in electron 
Volt). As an example, consider the particle in finite-walled 

potential with specifications of (E – V) = 88 MeV and a very 
light particle with mass of N = 10-33 of the electron mass 
(where the electron mass me ≅ 9.109⋅10-27 g = 5.684⋅10-12 
eV/(m/s)2). This system was discretized using the sampling 
rate Ts = 0.005 second and simulated for a zero input. Hence, 
based on the obtained simulated output data and using NN to 
estimate the subsystem matrix [Ac] of Equation (19) with 
learning rate η = 0.015, the following transformed system 
matrix [ A~ ] was obtained: 
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AA

0
where [Ar] is set to provide the dominant eigenvalues (slow 
dynamics) and [Ao] is set to provide the non-dominant 
eigenvalues (fast dynamics) of the original system. Thus, 
when training the system, the second state )(~ txo  of the 
transformed model in Equation (47) is unchanged due to the 
restriction of [0  Ao] seen in [ A~ ]. This may lead to an 
undesired starting of the system response, but fast system 
overall convergence.     
       Using [ A~ ] along with [A], the LMI is then implemented 
in order to obtain {[ B~ ], [ C~ ], [ D~ ]} which makes a complete 
model transformation. Finally, by using the singular 
perturbation technique for model order reduction, the reduced 
order model is obtained.  
       Thus, by the implementation of the previously stated 
system specifications and using the squared reduced Planck 
constant of  = 43.324 ⋅ 102h -32 (eV⋅s)2, one obtains the 
following scaled system matrix from Equation (60): 
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for which the system simulations were performed for 

. Accordingly, the eigenvalues were 

found to be {-5.0399, -10.9601}.  
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       The investigation of the proposed method of system 
modeling for the closed quantum computing system using 
neural network with LMI and model order reduction was 
tested on a PC platform with hardware specifications of Intel 
Pentium 4 CPU 2.40 GHz, and 504 MB of RAM, and 
software specifications of MS Windows XP 2002 OS and 
Matlab 6.5 simulator.  
       For a step input, simulating the original and transformed 
reduced order models along with the non-transformed reduced 
order model produced the results shown in Figure 11. As seen 
in the results shown in Figure 11, the response of the 
transformed reduced order quantum computing model is 
starting a little off from the original system response. 
However, it has a faster convergence than the non-
transformed reduced order model response.  



 

   

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Input-to-output quantum computing system step 
responses: full order system model (solid blue line), transformed 
reduced order model (dashed black line), and non-transformed 
reduced order model (dashed red line). 
 

5. THE IMPLEMENTATION OF STATE 
FEEDBACK CONTROLLER ON THE 
REDUCED QUANTUM COMPUTING MODEL  

 

Th
cl

We can apply several types of control techniques such as the 
 control, robust control, stochastic control, fuzzy control 

and intelligent control, upon the reduced order quantum 
model to meet given specifications. Yet, in this paper, since 
the closed quantum computing system is a 2

∞H

nd order system 
reduced to a 1st order, we will investigate the system stability 
and enhancing performance by implementing the method of 
the s-domain pole replacement. 
       For the reduced order model in the system of Equations 
(52) - (53), a state feedback controller can be designed. For 
example, assuming that a controller is needed to provide the 
system with faster dynamical response, this can be achieved 
by replacing the system eigenvalues with new faster 
eigenvalues. Hence, let the control input be: 
       )()(~)( trtxKtu r +−=                                                    (64) 
where K is to be designed based on the desired system 
eigenvalues. Replacing the control input  in Equations 
(52) - (53) by the above new control input in Equation (64) 
yields the following reduced system: 

)(tu

       )]()(~[)(~)(~ trtxKBtxAtx rorrorr +−+=&                           (65)        
       )]()(~[)(~)( trtxKDtxCty rorror +−+=                       (66) 
which can be re-written as:  

)()(~)(~)(~ trBtxKBtxAtx orrorrorr +−=&  

)()(~][)(~ trBtxKBAtx orrororr +−=→ &  
)()(~)(~)( trDtxKDtxCty orrorror +−=  
)()(~][)( trDtxKDCty orroror +−=→  

The overall closed-loop model is then written as:  
       )()(~)(~ trBtxAtx clrcl +=&           (67) 
       )()(~)( trDtxCty clrcl +=           (68) 

such that the closed loop system matrix [Acl] will provide the 
new desired system eigenvalues.  
Example 5. For the following non-scaled system: 
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Using the new transformation-based reduction technique, one 
obtains a reduced model given by: 
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with the eigenvalue of -3.901. Now, suppose that a new 
eigenvalue λ = -12 that will produce faster system dynamics 
is desired for this reduced order model. This objective is 
achieved by first setting the desired characteristic equation as: 

012 =+λ  
To determine the feedback control gain K, the characteristic 
equation of the closed-loop system is utilized by using 
Equations (65) - (68) which yields:  

→=− 0)( clAIλ 0][ =−− KBA ororIλ  
en, the feedback gain K is found to be -1.5413. Hence, the 

osed-loop system now has the eigenvalue of -12. As stated 
previously, the objective of replacing eigenvalues is to 
enhance system performance. Simulating the reduced order 
model using sampling rate Ts = 0.005 second and learning rate 
η = 0.015 with the new eigenvalue for the same original 
system input (the step input) has generated the response 
shown in Figure 12. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Enhanced system step responses based on pole 
placement; full order system model (solid blue line), transformed 
reduced model (dashed black line), non-transformed reduced model 
(dashed red line), and the controlled transformed reduced order 

hed pink line). (das
     
       As can be observed from Figure 12, the new normalized 
system response is faster than the system response obtained 
without pole placement. This shows that even simple state 
feedback control using the transformation-based reduced 
quantum model can achieve the equivalent system 
performance that is obtained using more complex and 
expensive control on the original full order quantum system. 



 

   

6. CONCLUSION 
 
A new method of intelligent control for the time-independent 
closed quantum computing systems is introduced in this 
paper. While an open quantum system interacts with its 
environment (i.e., its surroundings or “bath”) and thus 
dissipates power which results in a non-unitary evolution, a 
closed quantum system doesn’t exchange energy or matter 
with its surroundings and therefore doesn’t dissipate power 
which results in a unitary evolution and hence it is 
information lossless (i.e., reversible). In order to achieve an 
intelligent control, the 2nd order quantum system was 
simplified by reducing it to a 1st order system. This reduction 
was achieved by the implementation of a recurrent supervised 
neural network to estimate certain elements [Ac] of the 
transformed system matrix [ A~ ], while the other elements 
[Ar] and [Ao] are set based on the system eigenvalues such 
that [Ar] contains the dominant eigenvalues (slow dynamics) 
and [Ao] contains the non-dominant eigenvalues (fast 
dynamics). To obtain the transformed matrix [ A~ ], the zero 
input response was used in order to obtain output data related 
to the state dynamics, based only on the system matrix [A]. 
After the transformed system matrix was obtained, the robust 
control algorithm of linear matrix inequality was used to 
determine the permutation matrix [P], which is required to 
complete system transformation matrices {[ B~ ], [ C~ ], [ D~ ]}. 
The reduction process was then performed using the singular 
perturbation method which operates on neglecting the faster-
dynamics eigenvalues and leaving the dominant slow-
dynamics eigenvalues to control the quantum system. Simple 
state feedback control using pole placement was then applied 
on the reduced quantum computing model to obtain the 
desired system response.  
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