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Electric Motor Fault Diagnosis Based on
Parameter Estimation Approach Using Genetic
Algorithm

Juggrapong Treetrong

Abstract— This paper proposes a new scheme of induction
motor parameter estimation using Genetic algorithm (GA)
for condition monitoring. The flux linkage model and torque
model of an induction motor is adapted to the estimation.
The scheme is developed to obtain all the motor parameters:
stator and rotor resistance, stator and rotor leaking
reactance and magnetizing reactance, which paves the way
to diagnose different types of the faults. The scheme
minimizes the difference between the measured and the
predicted state variables: three phase currents and rotor
speed. The scheme is evaluated firstly with different motor
sizes and different load levels by simulation tests and then
by the experimental data of the induction motors under
normal operating condition at different load levels and fault
conditions. The results from both tests show that the new
scheme can estimate the parameters and predict the motor
condition with sufficient accuracy for motor fault diagnosis.

Inedex terms— Induction Motor, Parameter Estimation,
Genetic Algorithm, Condition Monitoring, Fault Detection

1. INTRODUCTION

Induction motors are the most widely used motors
among different electric motors because of high level of
reliability, efficiency and safety. Condition monitoring of
induction motors can provide useful information so that
the motor fault, if any, can be fixed at the earliest
opportunity without affecting the plant requirement.
Among many condition monitor methods such as
vibration analysis, current signature processing, etc an
online estimation of the motor parameters (stator and rotor
resistance, stator and rotor reactance and magnetizing
reactance) at a regular interval are the most potential
approach to the diagnosis of the motor conditions with
real engineering sense and real-time implementation. In
addition, parameter estimation is the primary task for
develop an automatic motor diver system. This means that
the parameter estimation is important for both condition
monitoring and control.

Conventionally, the parameter estimation is conducted
by 3 classical tests: a locked-rotor test, a no-load test, and
a DC test. However, these tests need special equipments
and they are intrusive in nature and to be conducted under
off-line condition. Thus, these tests may not always be
feasible for the condition monitoring.
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Considering the above limitations, a reliable and non-
intrusive method is needed to estimate the motor
parameters. Many such methods have been investigated
over last several decades. Recursive Least-Square (RLS)
has been applied to estimate motor parameters [1]-[3].
Treetong et al. [1] have used to estimate the stator related
parameters using the RLS method. Horga et al. [2] have
used the RLS method for the squirrel-cage induction
motor related parameters. They used algorithm of the
continuous parametric model of the induction motor. The
model was based on a technique that used the Poisson
moment functional theory. The RLS was also applied to
determine the rotor resistance, self-inductance of the rotor
winding, and the stator leakage inductance of a three-
phase induction machine [3].

Extended Kalman Filter (EKF) is another optimisation
technique used earlier to determine the motor parameters
[4]-[5]. Velazquez et al. [4] have used the EKF method to
identify the speed of an induction motor and rotor flux
based on the measured quantities such as stator currents
and DC link voltage. The model is performed at a
synchronous rotating reference frame. In another study
[5], the EKF is used to estimate speed of induction motor
from speed-sensorless field-oriented control and direct-
torque control of induction motors. The model can be
estimated at a wide velocity range and persistent zero-
speed operation.

Genetic Algorithm (GA) is one of intelligent search
technique to find optimised solution for a variety of
complex problems. The method has also been applied to
estimate the motor parameters which observed to produce
good accuracy of estimation [6]-[10], compared with
conventional recursive method. In fact, in absence of the
actual values of the rotor and stator related parameters in
healthy condition, one can estimate these parameters using
the motor specifications generally listed in the nameplate
by the earlier studies based on the GA method [6]-[7].
Huang et al. [8]-[9] estimated all motor parameters for the
motor model in the Park’d-q reference frame. The
estimation uses fewer measurements but was just
validated on simulation and it requires data during
machine transient operation. However, the proposed GA
method for the parameters estimation is different from the
carlier studies. This study has used a new scheme on the
parameter estimation by using 3-phase current and voltage
signals and rotor speed during normal motor operation. It
is practically more viable for any condition monitoring
method as there is no requirement of the machine transient
operation.
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Thus, this paper presents a model of the motor to
estimate the motor parameters using the proposed GA
method. The model is arranged from the flux linkage
models and torque model of a squirrel-cage induction
motor. The proposed GA method is used as a key
algorithm to find the best parameter values. The fitness
value is partly used to select the next generation of
population. Simulation study is conducted with 3 different
motor sizes and 5 different load levels of the induction
motor. Having established the proposed method on the
simulated examples, the method has then been applied to
the experimental data of the two identical 3-phase
induction motors under normal operating condition at
different load. The results show that the proposed method
can estimate the motor parameters effectively and indicate
the motor condition with reliability

II. DyNAMIC MODEL OF INDUCTION MOTORS

The dynamic model employed in this paper is the
Krause’s model [11]. It formulise the electromagnetic
relation of the induction motor with a set of flux
differential equations, rather than the voltage equations,
which is used in most of the previous work for parameter
estimation.. In particular, this model is adapted to the per-
unit system and does not need to calculate inverse matrix.
Therefore, it has fewer problems with numerical solution
and can be more efficiently, compared with the current
equations. The dynamic model written in magnetic flux
linkage F in QDO reference frame can be drived as Eq.1-

dF, . .
“E%W;%%+&Mmﬂvml% 1
dt a)u Xls Xlr Xls
dFds — Vqs _weFQS+RS[er Fdr+[)(rm_ ]Fds] (2)
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Where rotor speed is @
do

S (P, -1,) ©

r
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The electric torque of the induction motor can be
expressed by

3(p)1 . . 7
Te = 2(2jwb(Fdslqs - Fqslds) ( )

The base angular frequency @, =2x 7 x50 and the
motor parameters to be estimated: R ,R,, X, X, and
X

magnetizing reactance, stator leaking reactance and rotor
leaking reactance respectively.

denoting stator resistance, rotor resistance,

r
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Eg. 1-6 are nonlinear differential equations. The
solutions:  Fo, Fyo, Fo, Fy Fog, @

found easily through a fourth-order Runge-Kutta method.
From the solutions of the model, the stator and rotor
currents in DQO reference frame can be calculated
explicitly:

r, perunit can be

. 1 Fe . Fu 8
' :[x|s ][Fqs _Xaq[xl ! XTr J] ®
e R bt ©)

Xls Xls XIr
N (1
.1 _ Fo Fo (11)
Iqr - (Xn J[qu Xaq[ X X ]J

F, F

Idr = (LJ[ Fdr - Xaq (i + ar JJ (12)

XIr Xls Xlr
where .+ :()(1+)(1+X1J

m Is Ir

@ a)r,perunip)o (13)

T,rad/Sec = ZP

In order to calculate the fitness values in applying GA,

variables in QDO: i, i, and iy, are transformed into 3

gs 2

phase currents by a transformation matrix K,

Iabcs = quOs Ks = [Ias Ibs Ics]

(14)

Where iqd)s :liqs ids is()J and
cos(@) sin(0) 1
K, =| cos@—(@27/3)) sin@-@27/3)) 1
cos@+(Q2x/3)) sin@+Q2x/3)) 1

where @ =0, for the stationary frame used when the
currents in DQO are transformed into ABC reference
frame. The 3-phase voltages are used as measurement
data to input the model. The model will produces 3 phase
currents and rotor speeds called predicted data. The
proposed GA method is used to search the best motor
parameters by comparing the measured and predicted
data by Eq. 15 (attempt to find minimum error).

III. PARAMETER ESTIMATION BASED ON GA

A Genetic Algorithm (GA) is a search technique used in
computing to find solution in optimization problems [12-
13]. It applies the principles of evolution found in nature
to the problem of finding an optimal solution to a Solver
problem. In a "genetic algorithm," the problem is usually
encoded in a series of bit strings that are manipulated by
the algorithm. The algorithm of the parameter estimation
programming can be expressed in Fig. 1.
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A. An initial population creation of parameters. It is  Ppropability of Mutation, P, is 0.001in this paper. The

based on randomness. P, is generated with randomly oy generation (offspring) from their parent will be

selected individuals. Each individual parameter is  produced from this GA operation. They are used to

constrained by the following condition calculate for next iteration. The program will be
terminated if the minimal error from objective function or
| pevae the maximal number of generation is reached.
" The Estimation NextGenerciion
Population * Model
B l T | Mutation Method |
O T IV. SIMULATION STUDY

uction otor Function TOSSOVET £tho: 1 1 1
Tteron M Cressover Method A program of the motor parameters estimation is
Frrer m developed in Matlab code. It is important to define the

range of parameters - Pmin and Pmax to start the

computation. In the simulation study, the maximum
generation number was set up at 200 and the population
size equal to 10. The measured data of stator voltages,
currents and rotor speeds were collected from steady state
The Best period. Simulation test were conducted with 3 different
Forameters types of the induction motors. The specifications of each
motor are listed in TABLE 1. The test of each motor was

Fig. 1 The algorithm of the estimation model conducted with 5 different load levels (0%, 25%, 50%,
programming 75% and 100% of full load). The results of the estimated
parameters for the simulations are shown in Table IL.-IV.
Pn<P. 2P i=12..,nand j=12,.,m TABLE L
min 1 max 2 2ol and J =12 The specifications of simulated induction motors
where F’min and P__ are the limits of the parameter Specifications | Phase | Hz | Vline | Pol | HP
vector values. INis maximum numbers of generation and €
M is number of parameters or variables. After randomly Motor 3 30 415V. |4
generating initial population, they will be transformed Motor 2 3 50 416 V. |4 1
into binary number. Simultaneously, the ABC-reference Motor 3 3 S0 [220V. |4 10
frame voltages (V,,V, ,V.. ) are sent to the estimation TABLE IL . .
a2 Tsb> Tsc The results of parameter estimation on different load
model. The estimation model produces dqO-reference from Motor 1
frame currents (I, lsg > I,,) and rotor speeds (@, ). The Motor 1 R, Xis Rr X,/ X,
currents are transformed back into ABC-reference frame Real V. 2.2530 | 0.1000 [ 2.3510 [ 0.9000 [ 40.8000
currents and the rotor speeds are transformed into radian 0 % Load 22900 | 0.1040 | 2.3900 | 0.8980 | 40.0230

Error (%) 1.6423 | 4.0000 | 1.6589 | 0.2222 | 1.9044
25%Load | 2.2500 | 0.0970 | 2.3500 | 0.8850 | 40.3010
Error (%) 0.1332 | 3.0000 | 0.0425 1.6667 | 1.2230

per second unit. The only 1 stator phase current and rotor
speed are used to estimate the parameters by which they

are used to calculate the error (Eq. 16) by comparing 50% Load 1 2.2300 1 01050 1 23500 | 09370 | 20.2980
them with the measured currents and the rotor speeds Error (%) 1.0209 [ 5.0000 | 0.0425 [ 4.1111 | 1.2304
collected from the induction motor 75% Load | 2.2100 | 0.0980 | 2.3503 | 0.9140 | 40.7190

Error (%) 1.9086 | 2.0000 | 0.0298 | 1.5556 | 0.1985
100%Load | 2.2290 | 0.1050 | 2.3000 | 0.9080 | 40.8000
Error (%) 1.0652 .0000 | 2.1693 | 0.8889 | 0O

Unit: Ohm (Q)

B. Evaluation Operation. Firstly, the binary number of
each parameter will be transformed back into decimal
number. Then, each individual is used to calculate the

L . o TABLE III.
error from objective function. The error of objective L .
. The results of parameter estimation on different load
function can be shown as
from Motor 2
— Motor 2
E(ngen,t) =Y (ngen,t) —Y (ngen,t) (15) Rs Xis Rr Xir X
. — - — Real V. 0.0453 | 0.0775 [ 0.0222 | 0.0322 2.0420
where Y (t) = [Isa a)r]and Y(t)=|la or 0% Load | 0.0408 | 0.0788 | 0.0200 | 0.0360 [ 2.0288
— Error(%) 9.9338 1.6774 | 9.9099 | 11.8012 | 0.6464
where vectors Y are measured data and Y are estimated 25%Load 0.0408 | 0.0778 | 0.0200 | 0.0339 | 2.0458
data. Error(%) | 9.9338 | 03871 | 9.9099 | 52795 | 0.1861
T max 50%Load 0.0448 | 0.0801 | 0.0200 | 0.0310 2.0208
Fitness(ngen) = Z E(ngen,t)T AE(ngen,t) (16) Error(%) 1.1038 | 3.3548 | 9.9099 | 3.7267 1.0382
t=0 75% Load 0.0408 | 0.0798 | 0.0200 | 0.0320 2.0418
where A is a unit matrix, tis sampling time Error (%) 9.9338 | 2.9677 | 9.9099 | 0.6211 0.0098
C. GA procedures: selection, Crossover, Mutation 100%Load | 0.0408 1 0.0717 | 0.0200 | 0.0310 | 2.0488
' p ' ! ! Error (%) 9.9338 | 7.4839 [ 9.9099 | 3.7267 0.3330

Operation. The Probability of Crossover, P, is 0.80 and Unit: Ohm ()

c
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TABLE IV.
The results of parameter estimation on different load
from Motor 3

Motor 3 Rs XIs Rr XIr Xm
Real V. 3.3500 | 2.1803 1.9900 | 2.1803 51.4373
0% Load 3.3450 | 2.1292 1.9210 | 2.1232 51.3186
Error(%) 0.1493 2.3437 | 3.4673 | 2.6189 0.2308
25%Load 3.3150 | 2.2662 1.9410 | 2.2172 51.2906
Error(%) 1.0448 | 3.9398 | 2.4623 1.6924 0.2852
50%Load 3.3550 | 2.1989 | 2.0310 | 2.1002 51.6086
Error(%) 0.1493 0.8531 2.0603 3.6738 0.3330
75% Load 3.3550 | 2.1452 1.9910 | 2.1302 51.3272
Error (%) 0.1493 1.6099 | 0.0503 | 2.2978 0.2140
100%Load 3.4350 | 2.3452 1.9410 | 2.2522 51.2206
Error (%) 2.5373 7.5632 | 2.4623 3.2977 0.4213

Unit: Ohm (Q)

The results in simulation test show good accuracy of
estimation. The population and generation sizes can help
improve the accuracy, but it also increase the time of the
estimation. However, this test has been done without
voltage unbalance and measurement noises. These factors
can affect the accuracy of estimation

V. EXPERIMENTAL VERIFICATION

Having validated the proposed method on the simulations,
the method has now been tested on the experimental
cases. The experimental setup is shown Fig. 2. The setup
consists of an induction motor with load cell with a
facility to collect the 3-phase current - voltage signals and
rotor speed decoder data directly to the PC at the user
define sampling frequency. The technical specifications of
the induction motor used in this experiment are listed in
TABLE V. Motor 1 (M1) and 2 (M2) in TABLE V. are
identical motors, Motor 1 has the rotor fault only and
Motor 2 is healthy but the stator fault can be simulated by
the 5 turn short circuit, 10 turn short circuit and 15 turn
short circuit. The load cell is nothing but a DC generator.
The load in the induction motor can be adjusted by
changing field resistance of the DC generator. Hence the
experiments were conducted at different load levels. The
data were collected at the sampling frequency of 1280
samples/s. Initially the values of the parameters have been
estimated by the method suggested by Mutlue et. al. [7]
using the specifications shown in the nameplate of the
motor. Thus, these data are listed beiow and assumed
these parameters reflecting as the healthy status of the
motor.

R, = 1.7056 Q, R, =1.0020 Q, X, = 0.8553 Q, X, =
0.8553 Q, X, =40.1854 Q

TABLE V.
The specifications of experimental induction motors
Phase | Power | Voltages f PF
M1 |3 4 Kw A230/Y400 |50 |0.75
M2 |3 4 Kw A230/Y400 | 50 |0.75

MI1= Rotor Fault Motor, M2 = Healthy and Stator Fault
Motor
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Fig. 2 Schematic of the experimental setup

This test, maximum generation was set up at 200 and
population number as 10. The data are also collected from
5 different load levels and 3 different conditions (healthy,
rotor fault and stator faults). The stator fault motor (Motor
2) can be divided into open circuit (healthy), 5 turn short
circuit, 10 turn short circuit, 15 turn short circuit. During
experiments, several sets of the stator voltage, current and
rotor speed data were collected at different times. The
average values of the estimation results will be expressed.
The estimated results are shown in TABLE VIL.-X. It can
be seen from all tables, the estimated parameters for the
healthy case are close to the actual values irrespective of
load conditions. For the faulty stators, the estimated
parameters related to the stator only are decreasing and the
rotor parameters are remain close to the healthy values,
and similar observations have been made for the rotor
faults. Hence the suggested approach is robust for the
experimental cases as well where the signals are expected
to have some measurement noise. Unfortunately, both the
rotor and stator faults were not simulated simultaneously
in the experiments to further enhance the confidence level
in the suggested approach.

TABLE VI.
The estimated parameters for the experimental case

(0 % Load)
25%
Load Rs Xls Rr Xlr Xm
Actual 1.7056 | 0.8553 1.0020 | 0.8553 | 40.1854
Value
Estimated Parameters
Healthy 1.5744 | 09577 | 0.9170 | 0.8344 | 40.2353
5 Turn | 0.8654 | 0.6944 | 0.9554 | 0.8656 | 40.0665
Short
10 Turn | 0.5776 | 0.4875 | 0.8944 | 0.8767 | 40.1646
Short
15 Turn | 0.3355 | 0.3233 1.0436 | 0.8891 | 40.3640
Short
Broken 1.5500 | 0.9945 | 1.5237 | 1.2741 | 40.2233
Bars
Unit: Ohm (Q)
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TABLE VIL
The estimated parameters for the experimental case
(25 % Load)
0,
ii::i Rs Xls Rr Xlr Xm
Actual 1.7056 | 0.8553 | 1.0020 | 0.8553 | 40.1854
Value

Estimated Parameters

Healthy | 1.5779 | 0.9232 | 0.9510 | 0.8461 | 40.1403

5 Tum | 0.7790 | 0.7454 | 0.9944 | 0.8901 | 40.2800

Short
10 Turn | 0.5906 | 0.4544 | 0.9875 | 0.8362 | 40.1098
Short
15 Turn | 0.3013 | 0.3112 | 0.9233 | 0.8990 | 40.0435
Short
Broken 1.5566 | 0.9237 | 1.5345 | 1.3211 | 40.2443
Bars
Unit: Ohm (Q)
TABLE VIIIL.
The estimated parameters for the experimental case
(50 % Load)
50%
Load Rs Xls Rr Xlr Xm
Actual 1.7056 | 0.8553 | 1.0020 | 0.8553 | 40.1854
Value

Estimated Parameters

Healthy | 1.5912 | 0.9170 | 0.9577 | 0.8476 | 40.2353

5 Tum | 0.8654 | 0.6450 | 0.9446 | 0.8487 | 40.0654

Short
10 Turn | 0.5776 | 0.4988 | 0.9385 | 0.8590 | 40.0558
Short
15 Turn | 0.3155 | 0.2806 | 0.9243 | 0.8566 | 40.2774
Short
Broken 1.5632 | 0.9237 | 1.4931 | 1.3351 | 40.1567
Bars
Unit: Ohm (QQ)
TABLE IX.
The estimated parameters for the experimental case
(75 % Load)
75%
Load Rs XIs Rr XIr Xm
Actual 1.7056 | 0.8553 | 1.0020 | 0.8553 | 40.1854
Value

Estimated Parameters

Healthy | 1.5904 | 0.9457 | 0.9489 | 0.8344 | 40.2333

5 Turm | 0.8790 | 0.6309 | 0.9409 | 0.8211 | 40.1980

Short

10 Turn | 0.5089 | 0.4342 | 0.9487 | 0.8598 | 40.1043
Short

15 Turn | 0.3240 | 0.3036 | 0.9300 | 0.8133 | 40.1040
Short

Broken 1.5560 | 0.9001 | 1.3945 | 1.2922 | 40.0031
Bars

Unit: Ohm (Q)
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TABLE X.
The estimated parameters for the experimental case
(100 % Load)
0,
]ld(())(;g) Rs Xls Rr XIr Xm
Actual 1.7056 | 0.8553 | 1.0020 | 0.8553 | 40.1854
Value

Estimated Parameters
Healthy 1.5766 | 0.9170 | 0.9577 | 0.8795 | 40.0879
5 Turn | 0.9104 | 0.6554 | 0.9934 | 0.8370 | 40.2341
Short
10 Turn | 0.5640 | 0.4944 | 0.9671 | 0.8297 | 40.1754
Short
15 Turn | 0.3046 | 0.2896 | 0.9473 | 0.8534 | 40.0233
Short
Broken 1.5500 | 0.9257 | 1.3730 | 1.2678 | 40.0223
Bars

Fig. 3-4 show typical comparison of the stator phase
current and rotor speeds both the measured and the
estimated data during iterative process. The steady state
period of the data are used while estimation.

MMeasured and Estitmated Stator Current
100 T T T T

Measured Current
— — — Estirnated Current

S0

Stator Phage Curreni( A
o
i é
»
o

0 0.1 0.z 0.3 0.4 05 0.6 0.7 o8
Time (sec)

Fig. 3 A typical comparisons of the measured and the
estimated stator phase current from phase A

Mesured and Estimated Rotor Speed
<00 T T T T T T T
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] /
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[ 1
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— — — Estimated Speed
;

i H 1 1
0.1 0.2 03 0.4 os 06 0.7 [WR=]
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Fig. 4 The rotor speed from measured and estimated data

Fig. 5 shows the plotting of the Objective Function with
Generation for the healthy Motor-2 at 100% load during
GA convergence. Fig. 6 shows the typical plots of the
parameter estimation at each generation for the healthy
Induction Motor 2 at 100% load for the experimental case.
There is small fluctuation in the estimated parameters has
been observed with generations. However, fluctuation is
always around the mean position for all the 5 parameters.
This also indicates there is no divergence in the estimation
for the experimental case as well.

Ohjective Function
200 T

e o e SR SE e
2 ]
2
g 100 J
=
=
&
B 50 4
5
< 2
o i i i i H i i i L
a 20 40 50 a0 100 120 140 160 180 200

Generations

Fig. 5 The convergence of the Objective Function with
Generation for the healthy Motor-2 at 100% load
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Fig. 10 Parameters estimation vs Generation for the
healthy Experimental Motor-2 at 100% load;

(@ R, (b) X (©) R, (d) X, and (e) X,

VI. CONCLUSIONS

A model is arranged from the flux linkage models and
torque model of a squirrel-cage induction motor. The
proposed GA method is applies as a key technique to
estimates the motor parameters: stator and rotor
resistance, stator and rotor reactance, and magnetizing
reactance. The only 2 measurements (stator phase current
and rotor speed) during the machine normal operation
were used as the input data. The simulations were used to
evaluate the proposed method and then the method has
further been validated through the experiments on the
induction motors. The motor faults (stator and rotor faults)
can be predicted by observing the change in the
parameters. The voltage unbalances from the motor
installed at site in some cases may slightly affect the
accuracy of the estimation. Thus, the further development
is also under way
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