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Abstract—In this paper we deal with the problem of covering 

an environment using a group of mobile robots with 

nonholonomic kinematic and dynamic constraints. In 

comparison with standard coverage control procedures, we 

develop a combined controller for Voronoi-based coverage 

approach in which kinematic and dynamic constraints of the 

actual mobile sensing robots are incorporated in the controller 

design. The stability of the entire systems is guaranteed using 

Lyapunov stability theory, and numerical simulations are 

provided approving the effectiveness of the proposed method.   

 
Index Terms—Distributed coverage control, Sensor 

networks, Nonholonomic mobile robots, Voronoi tessellation. 

 

I. INTRODUCTION 

OWADAYS, sensor network has a broad application in 

environmental sampling, ecosystem monitoring, and 

military surveillance. The coverage problem is a 

fundamental issue of a sensor network system. Researchers 

have proposed various solutions to a lot of interesting sensor 

network coverage problems. In [1] coverage controllers are 

categorized in three common kinds, a Voronoi controller, 

which is geometric in nature, a minimum variance 

controller, which has a probabilistic interpretation, and a 

potential field controller.  

Cortes et. al. [2] proposes a decentralized control law for 

multi-robot coverage of an area partitioned into Voronoi 

diagram, in the sense that continually driving the robots 

toward the centroids of their Voronoi cells. A recent text that 

presents much of this work in a cohesive fashion is [3] and 

an excellent overview is given in [4]. Different extensions of 

the framework devised in [2] have been proposed in the 

literature. In [5] the problem of limited-range interaction 

between agents was addressed. In [6] the basic approach was 

extended to deal with the agents with limited energy. The 

problem of the online learning of the distribution density 

function, while moving toward the optimal locations, was 

addressed in [7], [8]. In [1] the authors propose a cost 

function form for coverage problems that can be specialized 

to fit different distributed sensing and actuation scenarios. 

The cost function is shown to subsume several different 

kinds of existing coverage cost functions. There has been 
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another extension to heterogeneous groups of finite size 

robots and non-convex environments in[9]. 

There are also a number of other notions of multi-robot 

sensory coverage (e.g.[10,11,12,13] ). Nevertheless, in this 

paper, we use the notion of an optimal sensing configuration 

developed by [2]. 

Standard approaches to Voronoi based coverage control 

assume simple integrator dynamics for the robots, yielding 

the ability of traversing both smooth and non-smooth 

trajectories for robots. They do not address the kinematic 

and dynamic constraints of physical nonholonomic mobile 

robots in developing coverage algorithms. However, most of 

the actual robots such as differential drive ones suffer from 

kinematic nonholonomic constraints confining the plausible 

motions of the robot. Once an appropriate feedback velocity 

control inputs are designed for kinematic steering system, 

one should take into account the specific dynamic vehicles 

to convert a steering system command into control inputs for 

the actual vehicle [14].   

Stabilization and tracking control of nonholonomic 

mobile robots has been a subject of intense research in the 

past years [15,16,17]. Many approaches have been proposed 

to address this issue of nonholonomic stabilization. As 

pointed out by Kim and Tsiotras [18], the majority of 

nonholonomic control laws are based on kinematic models 

[19,20,21]. Stabilization of dynamic models for 

nonholonomic systems has also been addressed in 

[22,23,24,25,26]. A review on some of the existing results 

addressing tracking problems for nonholonomic systems are 

reported in[27] . 

A popular way of implementing a kinematic control law 

to a dynamic nonholonomic system is by backstepping [28] 

the velocity control commands to acceleration input. 

Backstepping has been used in translating kinematic 

controllers into equivalent dynamic ones in [14,29,30]. 

In this paper we extend the contributions in kinematic and 

dynamic control of single nonholonomic mobile robots to 

the Voronoi-based locational optimization framework 

introduced in [2], and propose a control law with the aim of 

coverage control problem. After including a kinematic 

velocity controller in the coverage problem, we seek to 

incorporate the dynamics of the robots into the coverage 

controller design based on the backstepping approach of 

[14].Using Lyapunov stability theory, we prove that the 

control law causes the network to converge to a near optimal 

sensing configuration.  
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The remainder of the paper is organized as follows. We 

describe problem setup along with some background on 

nonholonomic mobile robots and locational optimization 

problem in section II. In section III we present the proposed 

controller and prove its stability. Numerical simulation 

results are described in section IV. Finally, we conclude the 

paper in Section V. 

II. PROBLEM SETUP 

Consider we want to deploy a group of N nonholonomic 

mobile robots in a bounded, convex environment 2
D   . In 

the following, we first describe the characteristics of the 

sensing mobile robots, and then depict the Voronoi based 

coverage approach with some background on locational 

optimization problem.   

A. Nonholonomic Mobile Robots 

Let each of the robots be a two-wheeled mobile robot 

moving on a horizontal plane as shown in Fig. 1. Let iq Q  

be the configuration of the 'i th  robot described by 

generalized coordinates in the global frame as 

[ ]T T
i i iq p   (1) 

where 
2( , )i i ip x y 

 
is the position of the point iC  of 

the 'i th  robot in the global coordinate frame {O, X, Y} and 

( , ]iθ     is the orientation of that,   measured from X-

axis of that frame. The vehicle is subjected to an 

independent velocity constraint of the form 

( ) [sin( ) cos( ) 0] 0T
i i i i iA q q q      (2) 

Defining a full rank matrix S ( q ) , such that ( ) ( ) 0T
iA q S q  , 

a vector v exists satisfying 

( )q S qi i i v  (3) 

where, 
T

i i iv    v  with i i   (the angular velocity) 

and 
2 2

i i iv x y    (the linear velocity) of the 'i th  robot. It 

is easy to verify that the kinematic equations of motion (3) 

of point iC  in terms of its linear velocity and angular 

velocity are[31]  
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The Lagrange formalism is used to find the dynamic 

equations of the mobile robots. The dynamical equations of 

an n-dimensional mobile robot can be expressed in the 

matrix form [31]: 

       

   

i i i i i i i ii

T
i i i i

M q v V q ,q F q G qm

B q S q

  

  

v

τ

  
  (5) 

where   n n
iM q  is a symmetric, positive definite 

inertia matrix,   n n
i iV q ,qm

 is the centripetal and 

Coriolis matrix,   1n
iF q   denotes the surface friction, 

1nG( q )   is the gravitational vector,   1n
iB q  is 

the input transformation matrix, 1n
i

τ is the input vector,  

and m n
i

  is the vector of constraint forces.  

One can rewrite the kinematic and dynamic equations of 

the mobile base (i.e. (5), (6)) by differentiating (5), 

substituting the result in (6) and multiplying by 
TS as [14]:  

     i i i i i i i i d i ii
M q V q ,q F q Bm    v v τ    (6) 

i i iBτ τ  (7) 

the parameters of which for the mobile base in figure 1 can 

be obtained as [14]:  
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  0 ,mi
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in which  m  and I represent the mass and inertia of the 

robot i , and iL and wir are shown in figure 1. It should be 

underlined that the matrix 2i mi
M V

 has a skew-symmetric 

property[14]. 

 Once the desired velocity control inputs for the kinematic 

model, denoted by di
v , are obtained, one should convert di

v

to the control torque inputs iτ  in order to incorporate the 

dynamics of the physical mobile robot platforms.  

B. Locational Optimization 

In the following, we state some basic definitions and 

results from locational optimization that will be useful in this 

work. More thorough discussions were given by[2] and [8]. 

Let an arbitrary point in D  be denoted by p . Let 

 1, ..., NV V be the Voronoi partition of D , for which the 

robots’ positions are the generator points. Specifically, 

 | ,i i iV p D p p p p j i          (10) 

 Let the unreliability of the sensor measurement be 

denoted by a quadratic function ( )f x  specifically, 

   
2

1 2i if p p p p    describes how unreliable is the 

measurement of the information at q by a sensor at ip . This 
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Fig. 1.  Nonholonomic mobile robot configuration 



 

 

 

form of  if p p  is physically appealing since it is 

reasonable that sensing will become more unreliable farther 

from the sensor [32]. 

Define the sensory function to be a continuous function

: D R   (where R is the set of strictly positive real 

numbers). The sensory function should be thought of as a 

weighting of importance over D . We want to have many 

robots where  p   is large, and few where it is small. Here, 

we assume that  p   is known by the robots in the network. 

As a measure of the system performance, we define the 

coverage functional as follows 

   
2

1
1

1
, ..., ( )

2

N

N iVii

p p p p p dp


    H  (11) 

The mass, first moment, and centroid of a Voronoi region 

iV  are defined as [2]  

   ,V Vi iV Vi i
M p d p L p p d p          

Vi
Vi

Vi

L
C

M
  (12) 

respectively. Thus, Vi
M  and Vi

C  have properties intrinsic to 

physical masses and centroids. The moments and the 

Voronoi regions themselves depend on the robot positions. 

Remarkably, despite this dependency, a standard result from 

locational optimization [2] is that 

     i V V ii iVii

p p q dq M C p
p




     
    
H

 (13) 

Equation (13) implies that critical points of H  

correspond to the configurations such that i Vi
p C  for all i , 

that is, each agent is located at the centroid of its Voronoi 

region. This brings us to the concept of optimal coverage as 

follows: A robot network is said to be in a (locally) optimal 

coverage configuration if every robot is positioned at the 

centroid of its Voronoi region, i Vi
p C for all i , which is 

called centroidal Voronoi configuration [2,7,32]. 

III. COVERAGE WITH NONHOLONOMIC MOBILE ROBOTS 

In this section we investigate the coverage control for a 

group of nonholonomic mobile robots. Before we proceed, 

let suppose that the following assumptions hold: 

Assumption 1: Every robot has complete knowledge of its 

own dynamics. 

Assumption 2: The robots have the ability to compute their 

own Voronoi partitions in a distributed manner [2].  

Assumption 3: The robots work in such conditions that the 

torque disturbances can be neglected, that is 0di
, i.    

A. Kinematic control 

In order to design a kinematic controller, we first need to 

presume the following assumption, which will be relaxed in 

section (III-B).  

 Assumption 4: perfect velocity tracking holds such that 

, .i di
i  v v N  

Define position errors for the 'i th  robot as 

,

, ,

e i V xi i

e i V yi i

x x C

y y C

 

 
 (14) 

 the desired orientation of motion for ( , ) (0,0)e ei i
x y  as 

Atan2( , ),d e ei i i
y x    (15) 

and the orientation error as  

.i di i
e     (16) 

  The kinematic error dynamics can be written 

independent of the inertial coordinate frame by Kanayama 

transformation [33]: 

   
   

cos sin

sin cos

x ei ii i
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 (17) 

where xi
e and yi

e are the error variables in mobile 

coordinate system which is attached to the 'i th  robot. 

We propose the following auxiliary velocity control law for 

the 'i th robot: 

cos( )d v ii i i
v k e    (18.a) 

di i
e     (18.b) 

where 2 2
i x yi i

e e   . 

Theorem 1: Consider a group of N nonholonomic mobile 

robots whose kinematic models are described through (4). 

Let the assumptions (1) through (4) hold. Under control law 

(18), it is guaranteed that the whole system is asymptotically 

stable and the robots positions converge to a centroidal 

Voronoi configuration.   

Proof: Consider the Lyapunov function candidate as 

V H= . The time derivative of V  along the trajectories of 

the error dynamics then can be obtained as follows 
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Fig. 2. Position and orientation errors in partition i  
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N

T
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i
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
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1

cos( )
N

v i xi i i
i

k e e

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Using the fact that cos( )
xi

i
i

e
e


 one can conclude that 

2 2

1

cos ( )
N

v ii i
i

k e


 H  (19) 

which is clearly non-positive. Due to the convexity of the 

region D , one can conclude that each of the Voronoi 

centroids Vi
C lies in the interior of the 'i th  partition and so 

in the interior of the region D . Looking at the control law 

(18.a) one can easily see that it provides the robots with 

bidirectional linear velocities the sign of which depends on 

the value of cos( )
i

e . One can then realize that the robots 

always move toward the interior of the region D and never 

leave it even if their initial local x-axis ( cx ) are outward it. 

Therefore, D is a positive invariant set for the trajectories of 

the closed loop system. Since this set is closed and bounded, 

one can make use of LaSalle’s invariance principle to infer 

that the robots positions converge to the largest invariant 

subset of the set {( 0) (cos 0), }i i
S e i     N . For 

each robot, in the case that cos 0
i

e  and  or 0x yi i
e e  , 

according to (18.b) | | / 2i  , so the set  {cos 0}
i

e   is a 

non-invariant set except the case that the 'i th  robot is 

located on the centroid of its Voronoi partition. On the other 

hand, 0i   only if both xi
e and yi

e are equal to zero. 

Therefore, the largest invariant set contained in S is the set 

{ 0, }x yi i
e e i     N . Moreover, for every invariant 

set in , it should be 0i  which yields 0i  . Therefore, 

under control law (18), the closed loop system is 

asymptotically stable and the robots positions converge to a 

set of centeroidal Voronoi configuration.        □ 

Remark 1: Convergence of i  to di
 can be made arbitrarily 

exponentially fast by the selection of [34]: 

i w di i i
w k e      (20) 

where 

2
,

x y x yi i i i
di

e e e e







 
 (21) 

which results in  

( ).i d i di i i
k         (22) 

One can also make use of a sufficiently smooth estimate of

di
 , namely

ˆ
di

 , which can be computed using the 

following estimations of xi
e and yi

e : 

( ) ( )
ˆ x xi i
xi

e t t e t
e

t

 



  (23.a) 

( ) ( )
ˆ y yi i
yi

e t t e t
e

t

 



  (23.b) 

for some small 0t  [27]. 

Remark2: The controller (18) may drive the robot i to a 

singular configuration in which cos( ) 0
i

e  . This condition 

can occur in two cases. The first one does when 

0x yi i
e e  , which can be conducted with zero control 

inputs. The second occurs when 0xi
e  and 0yi

e  , 

introducing a / 2  radian turn with respect to the current 

orientation of the robot, which violates from the 

nonholonomic constraint. One way to deal with this problem 

is to assume that the desired positions are located in such a 

way that they do not introduce such sharp turn.  This 

assumption can hold if the robots initiate with some 

considerations on their initial orientations, which we do not 

investigate in this paper. But even if this assumption is not 

satisfied, each robot can modify the desired orientation so 

that di
  is replaced with the following perturbed version 

[27]:  

d di i i
      (24) 

where 0
i

  is some small perturbation value. This 

condition guarantees that the system avoids singularities. 

Remark3: Here we assume that the dimensions of the robots 

and the area being covered are selected such that the robots 

do not collide with each other. Note that once the dimension 

of the robots is selected small enough with respect to that of 

the region D, the robots do not collide according to the fact 

that they all move toward their centroidal positions of their 

Voronoi partitions. We will discuss the collision avoidance 

problem in detail in our future work. 

B. Dynamic control 

Now we consider the case that the perfect velocity 

tracking assumption does not hold. Considering iu as an 

auxiliary input, a suitable control input for velocity 

following is given by the computed-torque nonlinear 

feedback control input [14] 

1( ( ) ( , ) ( )),i i i i i i i i i ii
B M q V q q Fm
  τ u v v  

which converts the dynamic control problem into: 

( )q S qi i i v  (25.a) 

.ii v u  (25.b) 

One can define the auxiliary velocity error as: 

d d ii i
e  v v  (26) 
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Differentiating (26) and using (6) and (7), one can write 

the mobile robots dynamics in terms of velocity tracking 

error and its derivative: 

   , ( )i i d i i d i i ii i i
M q e V q q e fm   τ x   (27) 

where  

     ( ) ,i i i i d i i d i ii i i
f M q V q q F qm x v v    (28) 

is the nonlinear mobile robot function and the vector ix  is 

defined as [ ]T T T T
i i d di i
x v v v . Proposing the 

auxiliary nonlinear control input iu  to be [15] 

i d di i
Ke u v  (29) 

where K  is a positive definite and diagonal matrix defined 

by 2K kI , one can obtain the following torque input for 

the  'i th  robot  

1( ( ) ( )).i i i i d i ii
B M q Ke f x τ  (30) 

 Theorem 2: Consider a group of N nonholonomic mobile 

robots whose kinematic and dynamic models are described 

through (4), (6) and (7). Let the assumptions (1) through (3) 

hold. Under control laws (18), (28) and (30), it is guaranteed 

that the whole system is asymptotically stable and the robots 

positions converge to a centroidal Voronoi configuration.   

Proof: Pick the candidate Lyapunov function as 

1

2

T
d i di i

V e M eH +=  (31) 

Differentiating V results in 

1

2

T T
d i d d i di i i i

V e M e e M e  H +=  

H is shown to be non-positive in (19). Substituting (30) 

into (27) results in the closed loop error dynamics as 

  ( ( ) ( , ))i i d i i i i di i i
M q e M q K V q q em     (32) 

Substituting (32) into (31) and considering the skew 

symmetric property mentioned in section II, one can write: 

( )T
d i di i

V e M K e H -=  (33) 

Since ( ) 0T
d i di i

e M K e   is positive semi-definite, 

considering the same argument as the preceding theorem, 

one can deduce that the closed loop system is asymptotically 

stable and the position and velocity errors asymptotically 

converge to the set 

 
,1 ,2

{ 0, }x y d di i i i
e e e e i       N .                 □ 

IV. SIMULATION RESULTS 

The proposed distributed coverage algorithm has been 

demonstrated via numerical simulations in Matlab 

environment. A team of 20 mobile robots is waiting to be 

deployed into a 2 2m m square environment. The robots in 

the network were started from random initial positions with 

the angle of 0 / 2i   . The Matlab numerical solver ode45 

was used to integrate the equations of motion of the group of 

robots, and the spatial integrals in (12) required for the 

computation of the centroids were computed by discretizing 

each Voronoi region and summing contributions of the 

integrand over the grid. Voronoi regions were computed 

using a decentralized algorithm similar to that of [2]. The 

employed parameters for the mobile robots and controllers 

are summarized in TABLE I. 

The simulations are carried out via two scenarios. In the 

first scenario, the robots are to be deployed in an 

environment with a Gaussian sensory function,  

  2 2(1/ 2 )exp( ( ) / 2 )p p         (34) 

where (1,1) , 0.18T   .The initial positions of the robots  

are shown in figure 3(a), while the final configuration of the 

robots as well as the trajectories of them during the 

simulation run the in the through the evolution are shown in 

Figure 3(b). In the second scenario, a bimodal Gaussian 

distribution function is considered as  

  2 2
1 1 1

2 2
2 2 2

(1/ 2 )exp( ( ) / 2 )

(1/ 2 )exp( ( ) / 2 )

p p

p

    

   

  

  

 



 (35) 

the parameters of which are selected as 1 (1/ 3,1/ 3)T  ,

2 (5 / 3,5 / 3)T  , 1 2 0.18   . The trajectories of the 

robots positions together with the final configuration in this 

scenario are shown in Figure 3(c). 

The centers of the contributing Gaussian functions and the 

centroids of the Voronoi partitions are marked with red o’s 

and blue ’s, respectively. The performance of the proposed 

controller is clearly demonstrated in the simulation results. 

V. CONCLUSION AND FUTURE WORK 

 In this study we considered the coverage problem of 

mobile sensing robots subject to nonholonomic kinematic 

and dynamic constraints  and introduced an extension to the 

Voronoi-based standard coverage problem for single 

integrator agents. The Lyapunov based stability analysis 

showed that the robots finally converge to the centroidal 

Voronoi configuration and the whole system is stable.   The 

proposed method has been successfully verified in numerical 

simulations. Future work will focus on guaranteeing 

collision avoidance among the robots and the extension of 

TABLE I 

SIMULATION PARAMETERS 

 

Robot Parameters  Controller parameters 

m  1 kg  vi
k  3 

I  0.5 kg-m2  
i

k  6 

r  0.08 m  iK    240I  

rw  0.03 m    

L  0.175m    

     

     
 
 

 

 

 



 

 

 

the proposed controller for coverage in unknown 

environments and with nonholonomic mobile robots having 

unknown dynamic parameters. 
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