



Abstract—Our system named GrasSmart2 is designed to

develop and implement a solution to the problem of building

efficient coverage paths for a team of robots. The system

generates an efficient multi robot coverage algorithm by

constructing a coverage path for every robot, such that the

union of all the generated paths means that the terrain is fully

covered and that the total coverage time is minimized. This

work modifies and improves the Create Tree for Efficient

Multi-Robot Coverage algorithm and implements it in the

GrasSmart2 system. Moreover, our system finds a position for

a new robot when a group of robots are constrained in a

geometric position. GrasSmart2 finds the best positioning

coordinates that achieve a total minimal covering path.

Index Terms—Terrain, coverage, multi robot systems, cell

decomposition

I. INTRODUCTION

search has increasingly been focusing on multi agent

and multi robot tasks. A branch of this research area is

the use of multiple robots in coverage[12-15]. Sam and Fua

[2] defined the coverage problem as the maximization of the

total area covered by a robot’s motion. The static coverage

problem is as follows: how should a robot be deployed in a

static configuration such that every point in the environment

is known to the robot, and is analyzed to find the optimal or

preferred path for covering the terrain. Many of the real

world automated technologies involve area coverage tasks;

mapping and validation of topological maps, automated

mine-sweeping, and more [9]. As a result of the evolution of

automated devices, simple and house-hold tasks such as

vacuum cleaning, snow removal, painting, lawn mowing,

and pool cleaning are being left to the care of robots

[1,7,8,11].

To accomplish these tasks, a robot is given a bounded
work area, which in many cases contains obstacles. The area
coverage problem may be looked at as a geometric version of
the Covering Salesman Problem [10]. As stated in [3], the
multiple agent algorithms solve the covering problem in
much more efficiency than a single robot solution for two
main reasons. Firstly, by dividing the work area between
them, multiple robots will complete the task more quickly
than a single robot. Secondly, multi-robot systems are more
likely to reach the assigned objective; if a single robot fails,

Manuscript received November 10, 2010; revised December 25, 2011.

Miri Weiss-Cohen is a Senior lecturer in the Software Engineering

Department of Braude College of Engineering, POB 78, Karmiel 21982,

Israel (e-mail: miri@braude.ac.il).

Oz Bar is with ISCAR Ltd.. TEFEN Industries Kfar Veradim Israel (e-mail:

Ozbar@gmail).

Shai Shapira is with CMT Medical Technologies Ltd Hacarmel Street,

Building 7/2 P.O.B. 111 Yokneam Ilit 20692, Israel (email:

shai@cmt.co.il)

the other robots in the team simply cover its assigned area
[5].

Single-robot coverage problems are solved in polynomial

time. The problem becomes significantly more complex

when we try to minimize the cover time using multiple

robots. The multi-robot coverage problem is NP-complete

[12]. Hazon et al. [4] dealt with this problem by using the

Spanning Tree Covering (STC) algorithm [6], which was

generalized to the Multi-Robot Spanning Tree Coverage

(MSTC) algorithm. Hazon et al. [4] improved the cover time

by finding the longest segment in the possible path and

dividing it evenly between two adjacent robots. This reduces

the STC cover time by a factor of at least 2 (or 3/2) for

3K . The work by Agmon et al in [4] solved the multi-

robot system by constructing an MSTC algorithm by

constructing one search tree for each robot in the group.

II. THE IMPROVED CREATE TREE FOR AN EFFICIENT MULTI-

ROBOT COVERAGE ALGORITHM

GrasSmart2 is a simulation system which was developed
for efficient Multi robot covering procedure. Our new
algorithm modifies and improves the algorithm: Create Tree
for Efficient Multi-Robot Coverage algorithm, which is
detailed in [4]. Our system improved the time and space
complexity of the paths found by the system. The user is free
to input any work area, and any number of constraints and
obstacles. As in MSTC [5,6], we defined the robot or agent's
tool to be a square of size D. The work area is then
approximately decomposed into cells, with each cell being a
square of size 4D. As with other approximate cell-
decomposition approaches [2], cells that are partially covered
by obstacles or outside the bounds of the work area and are
ignored.

When constructing the spanning trees, the algorithm tries

to minimize the maximal distance between every two

consecutive robots along the spanning tree path. Robustness

and efficiency for the above is detailed in [5]. The Create

Tree for Efficient Multi-Robot Coverage algorithm has a

polynomial time complexity in the number of cells to be

covered. Fig. 1 indicates that the structure of the spanning

tree strongly influences the algorithm’s coverage time.

Hazon et al. [5] proved that any algorithm that follows a

spanning tree path exactly, without having the robots bypass

one another, does not necessarily improve the path achieved

by a different tree path which is not optimal nor restricted by

any coverage time criteria. Fig. 2 shows an example of two

different spanning trees defined for the same terrain

producing different coverage time results [4].

GrasSmart2: A Multi-Robot Terrain Coverage

System

Miri Weiss-Cohen, Oz Bar, and Shai Shapira,

R

Fig. 1. Create_Tree.

The algorithm, shown in Fig. 1, has two stages. First, a
sub-tree is created gradually for each robot, starting from the
robot’s initial position such that in each cycle either one or
two cells are added to each sub-tree. This is done by trying to
find the longest possible path for the tree. When the
algorithm fails (cannot find the longest path), it tries to
perform a Hilling Procedure (see Fig. 3), in which it looks
for two contiguous, unoccupied cells adjacent to the path. If
the algorithm finds such cells, it adds them to the path as
demonstrated in Fig. 3. If the algorithm fails to find more
hills, it expands the tree, along both sides of the path,
attempting to add one cell to its right, then one cell to its left,
and so on, until the entire grid is covered by all k disjoint
sub-trees.

After k sub-trees are generated, the algorithm must find

k−1 bridges in order to connect the k sub-trees so that there

will be one tree covering the entire grid. These bridges

should be chosen in a way that the resulting tree does not

contain cycles but covers the entire grid. Create Tree

randomly picks a valid number of k−1 bridges, and

calculates the maximal distance between two adjacent robots

on the tree according to the fine grid. It repeats this process
2K times, and reports the best tree observed, according to the

above criterion.

Fig. 2. Two options for constructing a tree [4].

The time complexity of the Create Tree Algorithm is
2 2()O N K N [4].

Our system, which we call GrasSmart2, improves the
Create Tree Algorithm by twofold to achieve better
complexity, as follows:

Instead of the hilling, which occurs when the algorithm
fails to continue (one robot cannot continue to move away
from the other robot or robots), it tries to look for two
contiguous, unoccupied cells adjacent to the path. If it finds
such cells, it adds them to the path. When our algorithm fails
to continue, it retraces its path along the tree and searches
for the first point in which it leaves the path and continues to
another direction until it fails. At this point it again retraces
the path and so on.

Another improvement is introduced for the situations

when the coverage time without any of the bridges is better

than the time with the performing bridges. The original

algorithm first calculates the time without any bridges and

then the time with the best bridges. Once this is completed,

it determines and uses the minimal between the two (that is,

it takes K^2 random bridges, and from among these, finds

the best set of K-1 bridges). Our algorithm takes 3*K*N

random bridges, where K is the number of robots and N is

the size (number of cells) of the terrain, and from among

these, finds the best set of K-1 bridges.

Fig. 3. Hilling Procedure [4].

The Pseudo Code of the algorithm with the relevant

changes we made is as follows:

1. Build K sub-trees as follows
 For each robot R, 0< i <k, do

1.1 For each possible next cell (up, down, right, left),
compute the Manhattan distance from the current
location of all other robots.

1.2 If more than one possible next move is exists, then
pick the one whose minimal distance to any other
robot is maximized.

1.3 If there is no next possible move, then move back
on the tree until finding one possible move, if
there is more than one possible move select the
next move like 1.2 (Note: the next move will start
from the new position).

1.4 If failed to find an unoccupied cell then branch
out, otherwise go back to step 1.1

2. Each robot circumnavigates his tree

 Best_Result  Maximum (time that took to each
robot to circumnavigates his tree)

3. Pick 3*K*N random bridges between the k trees.
4. For each set of K-1 bridges do

4.1 Set bridges.

4.2 Compute the set iS of distances between every

two consecutive robots on the tree.

4.3 If the maximal value in iS is lower than the

maximal value in Best_Result, then Best_Result

iS

5. For Best_Result add outside tree cell as follows
 For each robot R, 0 < i < k run over the tree

5.1 If you find an unoccupied cell and it is not inside a
cell that is already occupied, then add this cell to
your tree (if more than one robot wants to add this
cell, give priority to robots with the lowest
number).

6. Return the tree associated with Best_Result.
Fig. 4. The Improved Create_Tree Algorithm

The complexity of the algorithm with our changes is:
2 2(3)O N KN

The algorithm includes a step in which it tries to build all
the bridges between the robots’ separate spanning trees
(Steps 3-4 in Fig. 4), provided the terrain is large enough so
that the length of each spanning tree is sufficiently long and
the algorithm has enough bridges to test. Thus the algorithm
randomizes only 3*K*N bridges and tests only them and
find the best pick of K-1 bridges in order that the coverage
time will be optimal. Because of this solution, when having
a big map there might be different paths to the robots and
different results between some results running the algorithm
because each time it randomizes different 3*K*N bridges
and finds the best choice of K-1 bridges, respectively.

In addition to the above, the algorithm can also run
without the random pick of 3*K*N bridges. (This option
might take longer to run, especially if a big area has to be
covered).

The complexity of this option is:
2((/) ()K KO N N K O N .

III. INITIAL ROBOT POSITIONING

In many cases in the real world, a new robot must be
introduced into a set of existing robots that have a fixed
initial position. We suggest a calculation based on the
geometry of the terrain, which provides some heuristics in
order to detect the most efficient coordinates to place the
new robot so that all the robots’ coverage time will be
optimal. Fig. 5 depicts a terrain where two robots have
already been placed and marked by points. We want to find
the best placement for a third robot that will also give us the
optimal coverage time.

We define the locations of the two robots as (x1,y1) and
(x2,y2), respectively and Xmax, Xmin, Ymax, Ymin ,the
coordinates of the terrain.

The following steps are calculated:
1. Define A and B for the known terrain as depicted in

Fig. 5:

Xmax-Xmin

NumOfRobots
A

Ymax-Ymin

NumOfRobots
B

NumOfRobots – total number of robots to be placed in

the terrain
2. Calculate the distance between every two robots and

then average all the distances:

1
ijD D

n

n is the number of distances, and Dij is the distance
between Robots i and j, with the locations (xi,yi) and (xj,yj),
respectively), given by

2 2() ()ij i j i jD x x y y

R = R * 1.2 expresses the radius in which the new robot
cannot be placed.

Combining all the steps gives:

1.2
3

A B D
R

Fig. 5. Initial robot positioning; circles depicted to calculate possible new

robot coordinates.

In Fig. 5, the red area has been calculated to include all

the possible positions where the robots can be placed. A

number of points are processed randomly so that the best

spanning tree path can be chosen. The option of combining

the robots’ static and dynamic locations provides an optimal

and less constrained solution. The full details are given in

Example 3.

IV. EXAMPLES

Fig. 6a-c depict the result of the system simulation. Fig.
6a shows the initial positioning of the four robots. Note the
excellent results when the robots are located as far as
possible one from another. Fig. 6b shows an in-between
state of the robots’ collective procedure and the tree that has
been built. The robots paths’ are colored in pale green. Fig.
6c depicts the end result of the area covered by the four
robots. In this simple example, the terrain does not contain
obstacles or constraints. Fig. 6d is a table showing the
statistical calculations made by the system, such as
percentages of cells that were covered more than once,
percentages of cells that were covered more than once,
number of turns made by all the robots, percentages of total
area that was covered by the algorithm, time, and percentage
of coverage as compared to the optimum theoretical value.

Example 2 contains two obstacles and constrained areas.

Fig. 7a and b depict two intermediate stages of three robots

and three trees. Fig. 7c is the statistical results. It can be seen

that 94% of the area is covered, with a minimal percentage

of coverage duality.

Example 3 is an initial positioning example where three

robots were positioned randomly (the user can define a fixed

position), and the fourth robot is positioned by calculating

one of the best coordinate options. Fig. 8a illustrates the

initial state of the robots and the calculated position. Fig. 8b

shows what happens after the improved algorithm is applied

and simulated. It can be seen in the examples that the blue

robot has finished traversing his tree, where the other robots

are still on their working path. This situation is the result of

the robots being placed very close to one another at the start.

In a perfect world, the robots should be as spread apart as

possible. In reality, this is often not possible (in many real

life applications, robots start from a single initial point, and

must return to a single finishing point.)

 .

a b

c d

Fig. 6. (a)-(c) A simple example of the multi robot procedure. (d) The statistical results.

a b

c d
Fig. 7. (a)-(c) An example of the multi robot procedure. (d) The statistical result.

Fig. 8. (a) Calculating a new position for the 4

th
 robot. (b) An interim state of the simulation.

V. CONCLUSION

In this work we improved the Create Tree Algorithm
as a basis for solving the coverage path problem.
GrasSmart2 is a simulation system where a number of
robots are placed on a terrain with obstacles, and the
paths are calculated and simulated. The system takes into
consideration new parameters intended to improve the
STC algorithm. In the suggested algorithm a mobile
robot, given a bitmap of a known geometric area as input,
derives an optimal coverage path for a given area. The
results of GrasSmart2, the program that mimics a grass
cutting robot’s path and provides statistical calculations
for testing optimality, presented and validated our
improved algorithm. Run-time results in terms of area
over-coverage and edge-completeness in terms of the
relative number of cells in the coverage. The positioning
of robots is addressed and calculated. Some examples of
the system are presented.

REFERENCES

[1] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-robot forest
coverage,” IROS, 2005, Edmonton, Canada.

[2] S. Sam and C. Fua, “Complete multi-robot coverage of unknown

environment with minimum repeated coverage,” IEEE Int. Conf.
on Robotics and Automation, 2005, Barcelona, Spain.

[3] N. Agmon, N. Hazon and G. Kaminka, “Constructing spanning

trees for efficient multi-robot coverage,” IEEE Int. Conf. on
Robotics and Automation, 2006, FL, USA.

[4] N. Hazon and G. A. Kaminka, “Redundancy, efficiency, and

robustness in multi-robot coverage,” IEEE ICRA, 2005, Barcelona,
Spain.

[5] Y. Gabriely and E. Rimon, “Spanning-tree based coverage of

continuous areas by a mobile robot,” Ann. Math. AI., vol. 31, pp.
77–98, 2001.

[6] M. A. Batalin and G. S. Sukhatme, “Spreading out: A local

approach to multi-robot coverage”, Int. Sym. on Distributed
Autonomous Robotic Sys., 2002, Fukouka, Japan.

[7] I. Rekleitis, G. Dudek, and E. Milios. “Multi-robot exploration of

an unknown environment,” in Proc. of the Int. Joint Conf. on AI,
1997, Nagoya, Japan, pp. 1340–1345.

[8] I. Rekleitis, G. Dudek, and E. Milios, “Multi-robot collaboration
for robust exploration,” Ann. Math. AI., vol. 31, pp. 7–40, 2001.

[9] H. Choset, “Coverage for robotics. A survey of recent results,”
Ann. Math. AI., vol. 31, pp. 113–126, 2001.

[10] E. M. Arkin, and H. Refael, “Approximation algorithms for the

geometric covering salesman problem,” Discrete Appl. Math., vol.
55, pp. 197–218, 1994.

[11] Z. Chai, and Z. Peng, “Cooperative coevoulutionary adaptive

genetic algorithm in path planning of cooperative multi-mobile

robot system,” J. of Intelligent and Robotic Systems, vol. 33, 2002,
pp. 61–71.

[12] J. Svennebring and S. Koening, “Building terrain-covering and
robots,” Autonomous Robots, vol. 16, 2003, pp. 313–332.

[13] C. S. Kong, N. A. Peng and I. Rekleitis, “Distributed coverage

with multi robot system,” IEEE ICRA, 2006, Orlando , Florida,
USA

[14] A. Davoodi, P. Fazli, P. Pasquier, and A. K. Mackworth. “On
multi-robot area coverage,” JCCGG, 2009, Japan.

[15] K. Williams and J. W. Burdick, “Multi-robot boundary coverage
with plan revision,” IEEE ICRA 2006, Orlando, FL, USA.

