
Towards a Language Based Synthesis of NCL
Circuits

Hemangee K. Kapoor, Abhinav Asthana, Tomas Krilavičius, Wenjie Zeng, Jieming Ma and Ka Lok Man

Abstract—This paper is an attempt to provide a language
front-end to synthesise asynchronous control circuits using NCL
technology. The target implementation being delay insensitive
(DI), the specification language should be DI as well. Delay
Insensitive Sequential Processes (DISP) is a process algebra
where the behaviour of asynchronous control logic blocks is
expressed by the processes.

We show that one can confine the orphan paths in an NCL
implementation by decomposing the language expressions.

A few basic DISP constructs have been successfully mapped
to NCL and small cases studies performed. This is a step
towards an alternative synthesis path for NCL circuits.

Index Terms—Specification languages, logic design, inte-
grated circuits

I. I NTRODUCTION

W ITH recent advances in the field of chip manufac-
turing technology, although packing density of logic

on silicon wafer has increased tremendously, at the same
time devices are approaching their physical limits in termsof
dimensions as well as delays. Effect of delays is becoming
more prominent over the timing issues of a design. With
decreasing dimensions of devices there exists a possibility
of increased power density. Circuits that are insensitive to
delays, dissipate lesser power, faster in speed and are clock-
less, are required. Clock-less or asynchronous circuits [1],
[2] are obtained by replacing the clock by the additional
control circuits. However, automation tools and specification
languages are missing for design of such circuits.

Digital circuits are designed and implemented to satisfy
the given specifications. Correct working and required per-
formance depend on certain factors related to the physical
parameters of the implementation technology, such as width
of transistors, delays in the interconnects, capacitances, metal
layers etc. Delay-Insensitivity is the property of delivering
correct functioning, independent of the physical delays in
wires and gates. Such circuits can be described using a pro-
cess algebraic language called Delay Insensitive Sequential
Processes (DISP) [3].

Null Conventional Logic [4]–[6] is a delay-insensitive
circuit implementation methodology that claims to synthesise
DI circuits. The term NCL is derived from the notion
of absence of data using a specialnull (not data) value.
We attempt to provide a language front-end to synthesise
NCL using DISP. The similarities between the nature of

H.K. Kapoor, Indian Institute of Technology Guwahati, India, e-mail:
hemangee@iitg.ernet.in

A. Asthana, Member IEEE, India, India, e-mail: abhinavasthana@ieee.org
T. Krilavičius, Baltic Advanced Technologies Institute,Vilnius, Lithuania,

e-mail: t.krilavicius@gmail.com
W. Zeng, J. Ma and K.L. Man, Dept. of Computer Science and Soft-

ware Engineering, Xi’an Jiaotong-Liverpool University (XJTLU), e-mails:
wenjie.zeng07@student.xjtlu.edu.cn, jieming84@gmail.com and ka.man@
xjtlu.edu.cn

the specifications from the latter, and the basic building
blocks from the former, provide an opportunity to identify
an alternate synthesis path.

The paper is organized as follows. The next section
discusses related work. In Section 3 DISP and its syntax are
presented. Section 4 discusses NCL and Section 5 gives the
translation method. Case studies performed using the given
technique are shown in Section 6. Finally we draw some
conclusions in Section 7.

II. RELATED WORK

Currently, the language based synthesis of asynchronous
circuits uses CSP [7] based formalisms. The related work
includes languages like CHP [8], Tangram [9], Balsa [10],
DI-Algebra [11] and DISP [3].

Graphical modelling techniques include Petri nets that use
the tool Petrify [12] for synthesis.

There have also been attempts to use industry-standard
HDLs like Verilog and VHDL to synthesise asynchronous
circuits. However, these languages lack the basic constructs
required for asynchronous behaviour, therefore special pack-
ages should to be added to the language. VHDL is currently
used to synthesis NCL-based circuits. Verilog along with the
tool pipefitter has also been applied to synthesis of large
circuits including an asynchronous DLX pipeline processors
[13].

III. DISP

DISP, a variant of DI-Algebra [11] and CSP [7], is a struc-
tured parallel programming language specifically designed
for behavioural specification of a delay insensitive circuits.
Using a DISP, a developer can specify the behaviour of a DI
circuit in terms of a processes. It allows a designer to spec-
ify behaviour of asynchronous logic blocks and investigate
diverse handshake protocols.

Gate net-list can be obtained from DISP specifications
using a toolsdi2pn [14] and petrify [12]. Former is
used to translate the DISP expressions into Petri net, and the
later synthesises the circuit from the Petri net specification.

A. Language Syntax

Behaviour of a circuit is described as a process in DISP.
Each process is associated with an input and output alphabet
and is capable of absorbing inputs and emitting outputs. The
language syntax is defined as follows:

proc :=var | stop | skip | error | burst |

proc ; proc | proc or proc | proc par proc |

forever do proc end | select alt-setend

alt-set::= [burst [then proc] {alt burst [thenproc] }]

burst ::= siglist1 / siglist
2

is an innput and output burst,
where the set of input events (siglist

1
) must occur before the

output events (siglist
2
) are generated.siglist is a set of sig-

nals (possibly empty), specified assiglist ::= − | sig{, sig}
where− denotes an empty list and signal names are given
in comma-separated list.

A process can be identified by using a process variable.
Behaviours likestop and error are used to specify pro-
cesses that will eventually diverge (do anything whatsoever).
A skip does not perform any action and terminates imme-
diately. It can also be written asskip = −/−. A guarded
choicebehaviour can be specified using analt− set ex-
pression. The choices are guarded by theburst expression.
The processes whose guard is satisfied are chosen for exe-
cution. Continuous executionis provided by theforever
construct. Theor operator specifies a non-deterministic
choice between two processes. Processes can be composed
sequentiallyP ; Q and in parallelP par Q. For two
processes P and Q with input alphabetsIP andIQ and output
alphabetsOP and OQ when composed in parallel, must
satisfy alphabet restrictionsIP ∩ IQ = ∅ andOP ∩OQ = ∅.
In other words, they should not generate the same outputs
and cannot share inputs. However, output from one process
can be input to the other process in the composition. Such
signals((IP ∩OQ) ∪ (IQ ∩OP)) are called internal signals
and are not observable from the environment.

The behaviour is delay-insensitive, hence every transition
on a wire must be acknowledged before another transition is
sent on that same wire, because two consecutive transitions
on the same wire may superimpose on each other leading
to the transmission interference. I.e., pulses cannot be safely
transmitted.

a/− ; a/− ; P = a/− ; a/− ; error

−/c ; −/x ; P = error

IV. N ULL CONVENTIONAL LOGIC

N ND D

data wavefront

null wavefront null wavefront null wavefront

data wavefront

Fig. 1. Wavefronts in a data flow

Null conventional logic (NCL) [4], [15], [16] is a deviation
from the conventional boolean systems where the value of
the signal itself is used to show its arrival/presence/validity.
Thus each variable in the expression has two values: (a)
DATA (indicating the value as well as validity) and (b) NULL
(indicating absence of data). DATA can be an abstract set
of values. Use of a NULL value for a variable gives this
system the nameNull Conventional Logic(NCL). As the
variables represent their own presence, the validity of the
outputs is easily determined, therefore is not required to
compute the stabilised output generation time. It reduces the
burden of estimating the timing requirements and strengthens
the logical structure of the system [6].

There are two conceptual flows for signals in an NCL
implementation: the data-wavefront and the flow of NULL
items (to clear all states) called the null-wavefront, fig. 1.

One set of input values leads to one set of output values.
The final generation of output can be easily detected by using
a completion detection circuit. To read a new set of input
values, previously generated outputs are flushed by making
all the inputs NULL.

1

2

6

8
3

4

5

7

11

10

9

B C D E

O

 U

 T

 P

 U

 T

 S

I
 N

 P

 U

 T

 S

A

Fig. 2. Presentation (validation) boundaries for input variables

Fig. 2 shows a connection of NCL gates (1-11) forming
a multi-level logic implementation. A, B, C, D and E are
the logical boundaries for the representation of a signal. The
final set of generated outputs (at the boundary E) is valid iff
all the outputs of boundary D are valid, and so on. Following
the chain, it is easy to see that all the output elements can
be generated only when all the inputs have arrived [17].

2

Basic 2−of−3 NCL gate

W
av

ef
ro

nt

W
av

ef
ro

nt

O
ut

pu
t

In
pu

t

Fig. 3. Diagram for basic NCL gate

A basic NCL gate is shown in fig. 3. It has three inputs and
a threshold of two, hence a 2-of-3 NCL gate. The number
inside the gate denotes it’s threshold. As follows from the
description, to get logical1 in output at least two out of
three inputs should have value1, e.g. let a, b and c be t he
inputs and z be an output, then the gate represents a logical
equationOutput = a.b+ b.c+ c.a. To reset the output to0,
all the inputs must go to0 irrespective of the threshold. Until
all the inputs are reset the gate holds the previous state.

Note that an N-of-N NCL gate is equivalent to an N input
C-element [18].

V. M APPING DISP EXPRESSIONS TONCL

2 3 4

5 6

a, b / c, d ; a, b, c / d, e ; a, b, c, d / e, f ;

a, b, c, d, e / f, g ; a, b, c, d, e, f / g, h ;

Fig. 4. Burst withN (2 ≤ N ≤ 6) inputs and two outputs

a) Burst expression:as discussed earlier, a DISP burst
can be directly mapped to an NCL gate. Further optimisations
can be performed on the implementation to take care of
threshold limitations and to reduce the overall gate count.
An input-output burst in DISP means that transitions on
the inputs must be followed by transitions on the output.
Each DISP burst therefore consists of a pair of data and null
wavefront in the NCL implementation. E.g., the bursta/b in
DISP is implemented in NCL to have a data wavefront on
signalsa andb; generation of data wavefront onb starts the
null wavefront ona; which in turn starts the null wavefront
on b.

To translate a DISP burst having N inputs and M outputs
we use an N-of-N NCL gate with output forked in M different
directions. E.g., burstB = a, b, c / d, e waits for all inputs
(a, b, c) to become valid before it can generate the output
signals (d, e). The second gate in the fig. 4 is similar to the
above burst expression. The other structures in the figure
show example bursts and their NCL implementations with
input signals ranging from two to six.

a

b

c

d
3

Fig. 5. Non-fragmented burst.

2

c

b

a

d

x

2

Fig. 6. Fragmented burst.

In NCL the number of inputs to a gate cannot be more than
six, hence bursts with more than six inputs are decomposed.
For example, the burstB = a, b, c / d is implemented without
decomposition as shown in fig. 5, and with decomposition
as in fig. 6, using two 2-of-2 gate.

b) Guarded choice:select alt-set end. The selection
can be done with the help of a decision-wait element (de-
scribed in Section VI).

enables P

inputs to P outputs to environment

Completion detection
of last burst in P

P

Fig. 7. A forever process

c) Infinite repetition:forever do proc end is required
to express continuously running hardware. The process is im-
plemented using other basic translation rules. The completion
of the last burst in it will enable the first burst.

r1

r2

P

Q

enP

enQM
U

T
E

X

E
LE

M
E

N
T

E
N

V
IR

O
N

M
E

N
T

r1, r2 initialty enabled
enP, enQ : enable P, Q

Fig. 8. Non-deterministic choice among processes

d) Non-deterministic choice:P or Q. To perform it
we need mutual-exclusion, which can be implemented using
a Mutex element, fig. 8. The two requests to the Mutex are
assumed to be present when the composition is invoked by
the environment. The Mutex then arbitrarily decides whether
to executeP or Q.

QInput Burst

Input Burst

Output Burst

Output Burst

P
CDp

CDq

Fig. 9. Sequential Composition of Bursts

e) Sequential composition:P ; Q can be implemented
using a sequencerelement. The sequencer keeps track of
the order of execution. The completion ofP is an input to
the sequencer, which in turn enables the execution ofQ.
The data and null-wavefronts forP should be completed
before those ofQ. WhenQ has signals distinct fromP , the
null-wavefront ofP can be delayed to happen concurrently
with data-wavefront ofQ. A generic sequencer is shown in
fig. 9, the implementation is given only for small size burst
compositions (cf. Section VI).

data wavefrontdata wavefront

ENVIRONMENT

ENVIRONMENT

internal signals

P Q

Fig. 10. Parallel Composition of Burst Expressions

f) Parallel composition:P par Q. Both processes are
implemented using their respective process constructs and
they can run concurrently. The internal signals of each are
cross-connected, fig. 10.

VI. CASE STUDIES

Merge 1

a0

a1

c
a0

a1

c

(a) Normal MERGE element (b) MERGE using NCL gate

Fig. 11. Model of a Merge element using NCL gates

A Merge [19] has two input terminals, and one output
terminal. It ‘merges’ signals on the input terminals to the
output terminal. Input and output signals alternate. The
environment has to guarantee mutual exclusion on the inputs.

merge = forever do select a0 / c alt a1 / c end end

The merge elements waits for an activity on the inputs
and propagates the output. As activity over a single input
element is enough to generate the output and the environment
guarantees mutual exclusion of input elements, the merge
element can be formed using a 1-of-2 NCL gate, fig. 11.

A generalised K-merge

K-merge = forever do

select a0 / c alt a1 / c alt . . . alt ak / c end

end

can be implemented using 1-of-K NCL gate.

(a) Normal JOIN element

c
a

b
JOIN

(b) JOIN element using NCL gate

c
2

a

b

Fig. 12. Model of a Join element using NCL gates

Join [19] has two input terminals and one output terminal.
It waits until input signals on both input terminals arrive,
after which it produces a signal on its output terminal.

join = forever do a, b / c end

As a join element waits for both inputs to arrive, we can use
a 2-of-2 NCL gate for its implementation, fig. 12. Similarly,
a K-join element can be synthesised using a K-of-K NCL
gate.

2

2
b1

b0a0

a1

c

(b) Decision Wait element using NCL gates

DECISION

WAIT

ELEMENT

(a) Block diagram of Decision Wait element

a0

a1

b0

b1

c

Fig. 13. Model of a 2×1 Decision wait element

2×1 Decision Wait has three inputs (a0, a1,and c), and
two outputs (b0, b1). It waits for a signal on one of the
ai inputs and a signal onc, before it outputs onbi. The
environment has to guarantee mutual exclusion on the a-
inputs (shown by erroneous behaviour after both a0 and
a1 arrive). Each guard is implemented using an appropriate
threshold NCL gate, see fig. 13.

decision-wait= forever do

sel a0, c / b0 alt a1, c / b1 alt a0, a1 /− then error end

end

2

2

a

c

b

d

Fig. 14. Block and Internal diagrams for Sequencer element

This example shows asequential compositionof two
burst expressions. Completion of the first bursta/b triggers
the beginning of the second burstc/d. We need the concept
of a state to sequence the bursts. The implementation is
shown in fig. 14. The first gate is enabled initially and when
a arrives, the outputb is generated. It enables the second
gate and disables the first gate enabling the reception ofc
and generation ofd.

sequencer = forever do a / b ; c / d end

Note that in the given implementation, the data wavefront
on a/b happens before the data wavefront onc/d and the
null wavefront ona/b happens concurrently with the data
wavefront ofc/d. It becomes a limitation when we compose
burst using common signals. For such cases we need to
complete the null-wavefront of the first burst before the data
wavefront of the second can begin. It can be implemented
with using state variables as in the toggle element

2

2

2

a

b

c

x

(b) Toggle Element using NCL−gates

T

(a) A Toggle Element

a
b

c

Fig. 15. Model for Toggle Element based on NCL gates

Toggle [19] has one input (a) and two outputs (b and
c). Each input signal produces one output signal. Input and
output signals alternate. Signals on the output also alternate,
first on b then on c, etc.

toggle = forever do a / b ; a / c end

As mentioned, we need a state variable to implement such
sequential composition, see fig. 15. The state variable is
required because, after the data-null wavefronts ona/b are
over, the circuit is in the same state as it started, and it has
no way to distinguish between the firsta and the seconda.
It is called a state coding conflict in digital logic [20], [21].

M

T

a

b

c

d

x

Fig. 16. Model for 2 to 4 phase
converter using NCL gates

M

a0

a1

d0

d1

c b

D
ecision−

w
ait

E
lem

ent

Fig. 17. Model of a call element

2 to 4 Phase Converter[19] has two inputs (a and d)
and two outputs (b and c). Input a and output b alternate
(together forming a passive handshake channel), as do output
c and input d (together forming an active handshake channel).
Every 2 phases ab enclose 4 phases cdcd.
Conv = forever do

select a/c then

select d/c then
select d/b

alt a/- then error end
alt a/- then error end

alt d/- then error end end

Effectively the behaviour is following

2to4 phase converter= forever do a / c ; d / c ; d / b end

with the constraint that inputsa andb are mutually exclusive.
ObservingP , we get two sequential compositions, viz.,

a/c; d/c andd/c; d/b. The first one, given the constraint that
a andd are mutually exclusive can be implemented using a
merge-element. The second composition is similar to a toggle
element. As the two compositions are connected, output of
one goes as input to the other. The implementation using
merge (M) and toggle (T) is shown in Figure 16, and it is
same as that given in [19].

A non-arbitrating, blocking call-element [19] has three
inputs (a0, a1, b) and three outputs (c, d0, d1). A signal
appearing on either of theai’s will produce a signal atc.
The combination of a signal atai andb will produce a signal
atdi. It does not matter which of the two input signals arrives
first. The environment of the Call must guarantee mutual
exclusion of the signals ona0 anda1. Theai andc signals
alternate, theai and di signals alternate, and the b anddi
signals alternate.
call = forever do

select a0/c then select b/d0
alt a0/- then error end

alt a1/c then select b/d1
alt a1/- then error end

alt b/- then error end end

The description puts constraints that inputsa0 and a1 are
mutually exclusive (indicated by divergence after botha0
anda1 arrive).

The outputc is generated by eithera0 or a1. Hence,
we can use a merge-element with inputsa0 and a1 to
generatec. The overall behaviour of Call is a guarded choice
implemented by a 2×1 decision-wait (DW) element. The
inputs to DW area0, a1, b and outputs -d0, d1. See this
implementation, matching one in [19], in fig. 17.

VII. O RPHAN PATHS

3

3

b
a
c

e g

f

(b)(a)

2

2

2
b
a

e

c
f

g

x

Fig. 18. (a) Orphan path, (b) Confined orphan path

An orphan path is a branched off connection carrying data
to an NCL gate and is not used to produce any output [6].
When the output of an NCL implementation transitions to
a complete DATA state, it implies that the input data set is
complete and that the transitions to DATA have propagated
over the effective path. There will also beineffectivepaths
branching off from this effective path that do not contribute to
the output and therefore are not logically determined by the
output. These ineffective paths are calledorphansbecause

they have lost all of their logical relations. In the fig. 18,
orphan paths are depicted by dotted lines.

A. Identifying Orphan paths in DISP

Orphan paths can be identified at a point, when a par-
ticular data wavefront follows two different paths producing
different outputs. In terms of DISP,
P = forever do

select a,b,c/f alt a,b,e/g end
end

Here DATA wavefronts ona andb follow two different paths
to get mixed with other elements and produce various ele-
ments. Depending on the availability of other input elements,
only one of the split DATA waves will result in an output
burst. Other wavefronts ona andb will remain ineffective.

E.g., if we get DATA wavefront ona, b, c , the circuit
will send a DATA wavefront on the outputf , and the
wavefront depicted by the dotted line (going to the second
gate) becomes orphan.

B. Confinement of Orphan paths

Though one cannot avoid orphan paths in an NCL imple-
mentation, we suggest to confine and convert them. Orphan
paths stem from the forked paths. By extracting the common
burst expression, it can be implemented using an extra NCL
gate. The output of this extra intermediate gate is neither an
input nor an output and can be used as an internal signal.
Such an internal element denotes the presence of a common
input burst as well. E.g., in the above expression we separate
the common input burst a,b/- and rewrite it:
P = forever do

a,b/- ; select c/f alt e/g end
end

Then we expand it using an internal variable (x):
P = forever do

a,b/x ; select x,c/f alt x,e/g end
end

Internal variablex represents a steady presence ofa and
b. One may notice thatx gets forked and sent to the
separate bursts; it results into an orphan path as well. The
main difference between an ordinary orphan path andx is
the following: the latter is logically determined. The idea
to generatex also reduces the number of orphan paths
significantly. Elementx may still behave as a slow orphan
but its impact is reduced, because it cannot get mixed with a
DATA or NULL wavefronts. Those wavefronts are governed
by the presence/absence ofa andb. Instead of appearing at
the beginning of the expression, the fork isconfinedinside
the expression and converted into an internal variable. The
confinement is illustrated in fig. 18-(b).

C. Advantage at the language level

A slow orphan is not a problem for the correctness, as the
output DATA wavefront is generated using other variables.
However, this trailing wavefront on the orphan may interfere
with the succeeding DATA wavefront in a non-deterministic
manner and cause unexpected glitches.

As discussed in [6], there may exist an implementation,
where all the inputs of an NCL gate are fed by the orphan
paths in the circuit. Such an NCL gate gives out an orphan

path as its output. Though the output of the gate may also
be used by another gate, hence there must be some security
measure restricting the orphan inputs to change their state.
By renaming the generation of orphan output as one of the
completion detection criteria of the circuit, solves the issue.
The DATA wavefront is not allowed to change the state, until
conflict among the orphan paths is not over.

Using DISP
Our solutions differs from the one in the earlier works,

because the expressions are in the form of I/O bursts and
not as combinational logic. The completion detection of
a burst is determined by the generation of all the output
elements. Confining the orphan path within the expression
makes superfluous other completion detection criteria. The
internal element generated by the extracted burst expression
seems to be similar to the orphan output of [6]. However, due
to the confinement of the orphan path, this internal element
needs not be exposed to the environment, thereby reducing
the complexity in the completion detection circuitry. Even
after this fragmented implementation, the input and output
elements are directly related to each other as specified by the
DISP expression, unaware of the fact that the bursts were
fragmented before their actual implementation.

VIII. C ONCLUSION

The paper presented an attempt to find an alternative
synthesis path for NCL based implementations. The target
implementation being delay-insensitive the language chosen
was DISP. The basic construct of the language, an input-
output burst, was found to be directly implementable using
N-of-M NCL gates.

The main idea of synthesis is to construct the basic
building blocks of DI [22] using NCL gates. Then identify
these in the DISP language and map them appropriately.

While translating a given behaviour, what remains is to
identify such basic blocks in the language and map them
to NCL implementations. However, the concept of a data
followed by null wavefront forms a crucial factor. Care
needs to be taken to make sure that each data wavefront
is complete in order to generate the correct outputs and
also the computational block goes through a null wavefront
before another computation can begin. This leads to the study
of orphan paths [6], paths not used by the circuit but still
carrying data wavefronts. The implication of ‘hysteresis’and
‘variable threshold’ on the implementation also need to be
addressed.

Issues related to state variable insertion to solve state
coding conflicts is another problem. This is due to the
fact that although the logic blocks can undergo a data-null
wavefront, the state variables need to be prevented from
doing so immediately (in order to hold state). This controlled
nullification of state variables remains to be solved. The
paper demonstrated this with a small example of a toggle
element which had only one state coding conflict. However,
a generic method of state variable insertion requires a deeper
study of the wavefronts and correct identification of places
to insert state variables.

Although many issues still remain to be addressed, this
initial study has given a confidence in designing such an
alternative synthesis path. This is a positive step as currently
there is no pure asynchronous language front-end to NCL

synthesis. Automation of the complete synthesis also needs
to be dealt with.

REFERENCES

[1] S. Hauck, “Asynchronous design methodologies : An overview,”
Proceedings of the IEEE, vol. 83, pp. 69–93, January 1995.

[2] J. Sparsø and S. Furber,Principles of Asynchronous Circuit Design A
System Prespective. Kluwer Academic Publishers, 2001.

[3] M. B. Josephs and D. P. Furey, “A programming approach to the design
of asynchronous logic blocks,” inConcurrency and Hardware Design,
Advances in Petri Nets, ser. Lecture Notes in Computer Science, vol.
2549. Springer, 2002, pp. 34–60.

[4] K. M. Fant and S. A. Brandt, “Null convention logic : A complete and
consistent logic for asynchronous digital circuit synthesis,” in ASAP.
IEEE Computer Society, 1996, pp. 261–273. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ASAP.1996.542821

[5] K. Fant and S. Brandt, “Null convention logic,” 1994. [Online].
Available: citeseer.ist.psu.edu/fant94null.html

[6] F. K. M., Logically Determined Design – Clockless System Design with
Null Conventional Logic. New Jersey: Wiley Interscience, 2005.

[7] C. Hoare, “Communicating sequential processes,”Comm. ACM,
vol. 21, no. 8, pp. 666–677, aug 1978.

[8] A. J. Martin, “Programming in VLSI: From Communicating Processes
to Self-timed VLSI Circuits,” inProceedings of UT Year of Program-
ming Institute on Concurrent Programming. Addison-Wesley, March
1987.

[9] K. v. Berkel, Handshake Circuits - An Asynchronous architecture for
VLSI programming. Cambridge University Press, 1993.

[10] A. Bardsley and D. Edwards, “Compiling the Language Balsa to
Delay-insensitive Hardware,”Hardware Description Languages and
their Applications, pp. 89–91, April 1997.

[11] M. B. Josephs and J. T. Udding, “An overview of DI algebra.” in 26th
Hawaii Int. Conference on System Science (HICSS 1993), JAN 1993,
pp. 329–338.

[12] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: A Tool for Manipulating Concurrent Specifica-
tions and Synthesis of Asynchronous Controllers,”IEICE Transactions
on Information and Systems, vol. 3, no. E80-D, pp. 315–325, 1997.

[13] M. Amde, I. Blunno, and C. P. Sotiriou, “Automating the Design of
an Asynchronous DLX Microprocessor,” inProceedings of the 40th
Design Automation Conference (DAC), ACM, 2003, pp. 502–507.

[14] D. Furey and M. B. Josephs, “Asynchronous circuit
design via automated petri net generation,” 2003. [Online].
Available: http://citeseer.ist.psu.edu/607069.html;http://www.sbu.ac.
uk/∼fureyd/petrinetcombinators.pdf

[15] M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev,
“Asynchronous design using commercial HDL synthesis tools,” in
ASYNC. IEEE Computer Society, 2000, p. 114.

[16] S. K. Bandapati and S. C. Smith, “Design and characterization of
NULL convention arithmetic logic units,” inProceedings of the
International Conference on VLSI, VLSI ’03, June 23 - 26, 2003, Las
Vegas, Nevada, USA, H. R. Arabnia and L. T. Yang, Eds. CSREA
Press, 2003, pp. 178–184.

[17] C. L. Seitz, “System Timing,” inIntroduction to VLSI Systems, Mead
and Conway, Eds. Addison-Wesley, 1980, ch. 7.

[18] I. E. Sutherland, “Micropipelines.”Commun. ACM, vol. 32, no. 6, pp.
720–738, 1989.

[19] T. Verhoeff, “Encyclopedia of delay-insensitive systems (EDIS),”
http://www.win.tue.nl/˜edis/edis.html , Dept. of
Math. and C.S., Eindhoven Univ. of Technology.

[20] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “A Region-based Theory for State Assignment inSpeed-
Independent Circuits,”IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 16, no. 8, pp. 793–812, August
1997.

[21] ——, “Complete State Encoding Based on the Theory of Regions,”
Proceedings of Second International Symposium on AdvancedRe-
search in Asynchronous Circuits and Systems, pp. 36–47, March 1996.

[22] P. Patra and D. Fussell, “Building-blocks for designing DI circuits,”
Department of Computer Science, University of Texas at Austin, Tech.
Rep., November 1993.

