
Efficient Encoding of SystemC/TLM in Promela
Kevin Marquet, Bertrand Jeannet, and Matthieu Moy

Abstract—To deal with the ever growing complexity of
Systems-on-Chip, designers use models early in the design
flow. SystemC is a commonly used tool to write such models.
In order to verify these models, one thriving approach is
to encode its semantics into a formal language, and then to
verify it with verification tools. Various encodings of SystemC
into formal languages have already been proposed, with dif-
ferent performance implications. In this paper, we investigate
a new, automatic, asynchronous means to formalize models.
Our encoding supports the subset of the concurrency and
communication constructs offered by SystemC used for high-
level modeling. We increase the confidence in the fact that
encoded programs have the same semantics as the original one
by model-checking a set of properties. We give experimental
results on our formalization and compare with previous works.

I. INTRODUCTION

As the complexity of embedded systems grows, the need
for new methods has appeared for the co-design of hard-
ware and software. Indeed, low-level hardware description
languages such as VHDL and Verilog simulate slowly, can
hardly be used to design complex systems and therefore make
early software development difficult. Consequently, higher-
level modeling tools have appeared, allowing hardware and
software descriptions.

Transaction-Level Modeling [4] (TLM) is an approach in
which the architecture and the behavior of a System-on-Chip
(SoC) are described in an executable model, but the micro-
architecture details and precise timing behavior are abstracted
away. SystemC [20] has become the de facto standard for
TLM modeling. It contains a simulation kernel that can ex-
ecute concurrent processes communicating through channels
and shared variables, using C++ libraries. In this paper, we
are interested in TLM programs, written in SystemC. We
focus on the subset of SystemC needed for TLM modeling,
leaving apart the constructs originally introduced in SystemC
to write lower-level programs (like RTL).

SystemC descriptions are C++ concurrent programs that
can be tested and/or verified in order to detect design
flaws. Verifying a concurrent program can be done with
various approaches. One thriving approach is to describe its
semantics formally, and then to verify this semantics using
verification tools. The first step is called model extraction and
leads to the translation of the program into a formal repre-
sentation, and the second step is the verification performed
on the formal representation. Different representations can
be chosen, that model differently time and concurrency, and
that are connected to different verification tools.

Manuscript received December 1, 2010; revised January 15, 2011.
Kevin Marquet is with VERIMAG, Université Joseph Fourier, Grenoble,

France. Kevin.Marquet@imag.fr
Bertrand Jeannet is with the INRIA Rhônes-Alpes, Grenoble, France.

Bertrand.Jeannet@inrialpes.fr
Matthieu Moy is with VERIMAG, Grenoble INP, Grenoble, France.

Matthieu.Moy@imag.fr

SC_MODULE(mytop) {
sc_event e;
SC_CTOR(mytop) {

SC_THREAD(myFctP); SC_THREAD(myFctQ);
}
void myFctP() {. . .; wait(e); . . . }
void myFctQ() {. . .; e.notify(); . . . }

}

Fig. 1. A basic SystemC module

This paper focuses on the issue of model extraction, in
the context of the verification of SoC modeled as SystemC
concurrent programs. Our contributions are as follows:
1) We present new encoding principles in section IV for

the extraction of formal representations from SystemC
programs, and in particular for modeling the semantics
of SystemC scheduler. We argue that this encoding is
simple and elegant. Its main goal is however to favor
the efficiency of verification tools. This extraction is
performed in a fully automatic way by our verification
chain.1

2) In order to validate their correctness, we define prop-
erties that must hold for an encoding to be valid. These
properties and how they are tested are detailed in section
V.

3) At last, section VI presents experimental results on Sys-
temC examples translated to Promela, the asynchronous
formalism used as input to the SPIN model-checker. Our
results show major improvements over past similar works,
thanks to the fact that our encoding does not introduce
complex behaviors limiting the applicability of formal
verification tools. We show in particular a tremendout
reduction of the number of states that SPIN needs to
explore.

Before presenting these, we present SystemC in section II
and compare our approach to related works in section III.

II. SYSTEMC
We give a very partial overview of SystemC, focusing on

the points that are relevant for this paper.
A SystemC program defines an architecture, i.e. a set of

components and connections between them, and a behavior,
i.e. components have a behavior defined by one or several
processes and communicate with each other through ports.
Once the architecture is defined (by the elaboration phase
performed at the beginning of execution), the simulation
phase starts: processes execute according to the SystemC
scheduling policy. As an example, figure 1 shows a SystemC
module containing two processes, one waiting for an event,
the other notifying it.

We do not consider here the notion of δ-cycles [20], in-
spired from traditional HDL languages, since it is not useful

1The implementation is open-source and available from http://gitorious.
org/pinavm.

http://gitorious.org/pinavm
http://gitorious.org/pinavm

for TLM models (this implies that we do not support Sys-
temC constructs like wait(SC ZERO TIME), which makes
a process wait until the next evaluation phase, or components
sc signal and sc fifo). We focus on the following constructs
of SystemC, which are the basis for TLM modeling:
wait(d: int) Stops executing the current process, yields back

the control to the scheduler and makes the current
process to wait for the given duration.

wait(e: event) Stops executing the current process, yields
back the control to the scheduler and makes the current
process to wait for the event to occur. SystemC also
allows the constructs wait(e1 & e2) and wait(e1 | e2)
to wait for conjunctions and disjunctions of events.

event.notify() Makes processes waiting for the specified
event eligible (without stopping the current process).

event.notify(delay: int) Triggers a notification after the
given delay. In SystemC, only the earliest timed no-
tification is kept, which simplifies the semantics of this
primitive.

SystemC scheduling follows a non-preemptive scheduling
policy. When several processes are eligible at the same time,
the scheduler runs them in an unspecified order.

Concerning communications between process, we use
shared variables to model several threads belonging to the
same module communicating by accesses to the fields of the
module. Concerning TLM ports, our implementation does
not (yet) manage them explicitly; it requires the function
calls to be done directly from modules to modules instead
of relying on port/socket bindings [21], which is a (useful)
syntaxical sugar. We therefore focus on the notion of method
calls.

Restricting ourselves to a strict subset of SystemC is not a
limitation as far as we are focused on TLM models. Of course
it implies that we cannot handle more general SystemC
programs, but it also makes our approach more general in
the sense that it could easily be adapted to other discrete-
event cooperative simulator (like the cooperative version of
jTLM [2]).

III. OVERVIEW OF THE PROBLEM AND RELATED WORKS

General overview: The challenge raised by formal veri-
fication of SystemC models is that SystemC has not been
designed for this purpose. An option could be to consider
them as regular C++ programs, but few verification tools
are available for them, especially when the goal is to check
functional properties. Moreover, a general verifier would
have to analyze the SystemC class library and to rediscover
by itself its high-level semantics. For these reasons, most
related work proceeds differently: the user’s code is trans-
lated and abstracted into the formal model accepted by the
targeted verification tool, whereas the high-level semantics
of SystemC/TLM class libraries is hand-coded in the formal
model. The verification tool is then applied to the resulting
model.

Representation of the SystemC scheduler: Modeling the
semantics of the SystemC library reduces mainly to modeling
the SystemC scheduler. Three options can be imagined to
represent the scheduler in a formal representation: (1) model
the deterministic behavior of the reference implementation
described in the SystemC standard [20]; or (2) model a
more general non-deterministic scheduler, either (2a) as an

(SystemC)
Concurrent

program

Synchronous automata
+ scheduler

[17], [19]

T1 × T2 × T3 ×Sch

Asynchronous automata
[22], [3]

T1 × T2 × T3 ×Sch

Asynchronous automata
Dedicated product

[13]

T1 × T2 × T3

Asynchronous product
shared variable

This paper

T1 × T2 × T3

Fig. 2. Different approaches for translating SystemC programs into other
formalisms

explicit additional process, or (2b) by incorporating it in
the semantics of the synchronization instructions (typically
the ones described above). Choosing arbitrarily a specific,
deterministic scheduler allows only to explore a subset of
the behaviors. We do not want such restriction and therefore
do not consider solution 1.

Solution 2a is interesting as it does not restrict the set of
possible behaviors. This is the solution considered in [17].
However, encoding the scheduler as a special process inter-
acting with the SystemC processes complexifies the behavior
of the global system. Typically, such an encoding induces
additional communications between processes, compared to
the original SystemC semantics. For instance, the encoding
of the event.notify() primitive is likely to induce a context-
switch (as it changes the state of the scheduler), which
does not occur in the original SystemC semantics. The bad
consequence is that such additional communications may
prevent verification tools to perform powerful optimizations.
Typically, partial-order reduction relies on a notion of “inde-
pendent transitions”, and cannot be applied if the notion of
“transition” of the model does not correspond to the notion
of atomic sections in SystemC.

Consequently, we have chosen the approach of point
2b: we do not encode the scheduler as an explicit pro-
cess composed in parallel with the SystemC processes.
Instead, we integrate the scheduler in the semantics of the
synchronization primitives that are used sequentially inside
each SystemC process, without introducing any “artificial”
context-switches.

Related work: The related work based on encoding of
SystemC programs in other formalisms we are aware of (see
Fig. 2) are all based on solution 2a, but they can be further
classified according to the considered formal model, which
may be synchronous or asynchronous.

LusSy [17] is a prototype of a complete verification chain.
It encodes the processes and the scheduler in synchronous
automata. The intermediate formalism is called HPIOM. The
main drawback of this formalism is that it breaks down
relevant information into lower-level ones, making the task
harder for verification tools, that are unable to handle real
case studies. A similar work [7] describes how to generate
UPPAAL models from SystemC programs. Several other
translation-based approaches have been proposed [19], [10],
also introducing a lot of complexity in the encoding.

Other works considers asynchronous formalisms. We ac-
tually show in section IV-C that SystemC’s time semantics
is encoded naturally and efficiently with deadline variables
(similar to “clocks”) evolving asynchronously, unlike the
semantics of timed automata used in UPPAAL, in which
clocks evolves synchronously.

In [13], a SystemC process is encoded with a MicMac au-
tomaton which distinguishes micro-states and macro-states.
Micro-states represent points where the process can not yield,
contrarily to macro-states that are yielding points (typically
following a wait()). MicMac automata can be composed
in parallel using dedicated product exploiting the notion
of micro-states. This approach cannot be used directly in
existing verification tools that are not aware of micro-states.
[22] proposes first to encode a SystemC programs into
MicMac automata and then to encode MicMac automata
into Promela. However, the last translation loses the specific
benefits of MicMac formalism. Moreover, we show that
some SystemC notions are encoded naturally in Promela (in
particular, atomic sections of SystemC correspond directly
to the atomic statement in Promela), while using MicMac
as an intermediate formalism prevents such direct translation
and introduces unnecessary complexity in the encoding. To
sum up, the approach implies the re-encoding in an explicit
and asynchronous way of some mechanisms that verification
tools, including SPIN, can tackle very efficiently when the
corresponding native mechanisms are used.

Our approach: asynchronous formalism + shared vari-
ables: This paper proposes a solution based on an asyn-
chronous model (namely Promela) to encode TLM concur-
rent programs, that consists in modeling the asynchronous
communications and the semantics of the scheduler by insert-
ing synchronization primitives manipulating shared variables
into the code of the processes. The expected gain of this ap-
proach is to minimize the interactions between processes, so
as to let verification tools freely apply reduction techniques
such as symmetry or partial order reductions.

Other Validation Approaches: Alternatives to formal ver-
ification are based on code execution, for instance stan-
dard testing, run-time verification [6] or explicit model-
checking [5]. In [5] the original C++ code is instrumented
so as to enable an on-the-fly state-space exploration of the
model, based on the techniques of the CADP [1] toolbox
to execute native code. These methods showed to be very
efficient to explore the possible schedulings of a system, but
are fundamentally limited to explicit-state exploration, and
cannot be extended to perform symbolic model-checking or
abstract interpretation. A hybrid approach is presented in [3],
which executes C++ code natively for SC_METHODs, but
relies on translation for SC_THREADs. This work is probably
the closest to the one presented in this paper, as the encoding
does not rely on a separate process for the scheduler.

IV. TRANSLATION FROM C++ AND ENCODING OF
SYSTEMC SCHEDULER

We first remind the general principles of our tool chain
for SystemC, then we describe precisely the encoding of
SystemC synchronization primitives, and last we discuss
some alternatives. Among the primitives mentioned in sec-
tion II, we will not consider delayed notifications, or waiting
for conjunctions or disjunctions of events, but discuss in

section IV-C how to extend our encoding to handle such
constructs.

A. Translating User Processes from C++ with PinaVM

Translating SystemC automatically requires the use of
a complete SystemC front-end. Borrowing some ideas
from Pinapa [16], we set up a SystemC front-end called
PinaVM [15] able to take as input a SystemC program
and to produce an intermediate representation. This front-
end is based on the compiler infrastructure LLVM [12]
and the intermediate representation is mainly composed
of basic blocks containing SSA (Static Single Assignment)
instructions. PinaVM executes the elaboration phase like
Pinapa, and uses a Just-In-Time compiler to retrieve Sys-
temC information on events or ports to enrich intermediate
representation obtained from LLVM.

From the intermediate representation produced by our
front-end, a back-end produces automatically a Promela pro-
gram. Each SSA instruction is translated into an equivalent
in Promela instruction. Although Promela provides some
of the structuring mechanisms of a call definition, these
mechanisms provide no benefit for the verification engine
compared to a static inlining, therefore, we chose to inline
directly all function calls.

In this translation, each SystemC thread generates a
Promela process. We do not consider in this paper dynamic
creation of processes, that are seldom encountered in SoC
models.

B. Encoding synchronization primitives

In the encoding of SystemC synchronization primitives, we
rely on three features related to concurrency that are provided
by Promela:

1) The ability to use shared variables.
2) The blocked(cond) primitive, which stops the execution

of the current process until condition cond on shared
variables becomes true, and gives the control to an-
other process (the actual syntax in Promela is simply
[cond]).

3) The notion of atomic section, that can be interrupted
with the blocked primitive.

In the sequel we denote by Ek the event k, with 1 ≤ k ≤ Ne

and the set of Np processes is denoted P .
Events: SystemC events are non persistent: the instruction

wait(Ek) is blocking, and takes into account only notifi-
cations taking place after its execution: if the event Ek is
notified before the execution of a wait(Ek) instruction, it
will be ignored by this instruction. An important consequence
is that a process can be waiting for at most one event (we
currently do not consider the construct wait(e1 & e2)
of SystemC).

For encoding events, we thus associate to each process p
a bounded integer 0 ≤Wp ≤ Ne such that:
• Wp = k when process p waits for Ek;
• Wp = 0 when process p is not waiting for an event and

is eligible;
and we define the wait and notify instructions in Tab. I. We
need for this encoding Np log2(1 +Ne) bits.

TABLE I
ENCODING EVENTS ALONE

p::wait(Ek):
1 Wp := k
2 blocked(Wp == 0)

p::Ek .notify():
3 ∀i ∈ P | Wi == K
4 Wi := 0

TABLE II
ENCODING TIME ALONE

p::wait(d):
1 Tp := Tp + d
2 blocked(Tp == min

i∈P
(Ti))

Time: SystemC time management internally assumes a
discrete time semantics, although in the API timed functions
use floating-point durations. We thus assume that we have a
specific construct wait(d:int) to wait for the discrete duration
d to elapse.

For encoding time, we attach an internal deadline variable
Tp : int to each process p. It represents the next deadline for
p when p is waiting, and the current date when p is running. It
is not necessary to examine the state of the process p for each
value of Tp, we only need to respect the schedulings allowed
by the durations waited for by the processes. Consequently,
we define the encoding wait(d) in Tab. II:

• Tp is incremented with d;
• p becomes eligible if its deadline variable is the mini-

mum of all deadline variables.

Alternatively, we could maintain a global clock Tg
to min

i∈P
(Ti) and replace the blocking condition by

blocked(Tp == Tg). The advantages and drawbacks of this
option w.r.t. the efficiency of the verification process is hard
to assess a priori.

Interaction between time and events: Events and time
interact together, and things become subtle when some pro-
cesses are waiting for events and others for a time duration.
We propose the encoding given on table III, based on the
following principles:

(1) The value of a deadline variable Tp is meaningful only
if W = 0 (process p is not waiting for an event). When
a process is waiting for an event, Tp is not updated.
The main invariant becomes thus: “the deadline variable
of a running or eligible process is the minimum of the
deadline variables of processes not waiting for an event.”

(2) Concerning the wait(d) instruction, the blocked process
becomes eligible as soon as its deadline variable is the
minimum of deadline variables of processes not waiting
for an event, according to principle 1).

(3) When process p notifies an event Ek, not only should the
variables Wi be reset (for processes i waiting for Ek),
but also should their deadline variable be updated to the
current date (which is equal to the deadline variable Tp
of the running process p). This is because of principle
(1): these deadline variables becomes meaningful again,
and the invariant above should be maintained. This is
important to make a sequence wait(Ek); wait(d) behave
correctly in a process p.

Fig. 3 depicts the Promela code corresponding to the
pseudo-code of Tab. III.

TABLE III
ENCODING EVENTS AND TIME

p::wait(d):
1 Tp := Tp + d
2 blocked(Tp == min

ı∈P
Wi==0

(Ti))

p::wait(Ek):
3 Wi := K
4 blocked(Wi == 0)

p::Ek .notify():
5 ∀i ∈ P | Wi == k
6 Wi := 0
7 Ti := Tp

int e[NBTHREADS];
int T[NBTHREADS];
bool end[NBTHREADS];

inline init_coding(i) {
i = 0;
do :: i == NBTHREADS -> break;

:: else ->
e[i] = 0; T[i] = 0; end[i] = false;
i++; od;

}

inline notify(pid, nevent, i) {
i = 0;
do :: i < NBTHREADS && e[i] == nevent ->

e[i]=0; T[i]=T[pid]; i++;
:: i < NBTHREADS && e[i] != nevent ->

i++;
:: i == NBTHREADS -> break; od;

i = 0;
}

inline wait(pid, time) {
T[pid] = T[pid] + time;
((end[0]) || (e[0] != 0) || (T[pid] <= T[0]) &&
(end[1]) || (e[1] != 0) || (T[pid] <= T[1]) &&
(end[2]) || (e[2] != 0) || (T[pid] <= T[2]));

}

inline wait_e(pid, nevent) {
e[pid] = nevent;
e[pid] == 0;

}

Fig. 3. Encoding in Promela. Compared to Tab. III, we
add the end array to handle the particular case where
a task is completed in the wait(d:int) instruction.

C. Discussion and Improvements

Our encoding implements in some way an asynchronous
time semantics, as opposed as the synchronous time seman-
tics of timed automata used in tools like UPPAAL [11],
in which clocks evolves synchronously. Our approach thus
does not enable the use of these tools. Notice however
that we hardcode in our approach the fact that we only
need to know the next deadlines, and not all the possible
intermediate values that a discrete synchronous clock would
take between the current time and the next deadline. As a
result, multiplying all the durations by a constant factor does
not impact the size of the reachable state-space with our
encoding.

Finite-state model-checkers like SPIN [8] do not support
unbounded deadline variables. However, it is easy to modify
our encoding by exploiting the fact that two global states
agreeing on the differences Ti − Tj between deadline vari-
ables are equivalent w.r.t. the synchronization primitives of
Tab. III. In the resulting relative time encoding, the invariant:
“the minimum of the deadline variables of processes not
waiting for an event is zero” is ensured by shifting accord-
ingly those deadline variables in wait(d) instructions.

Implementing delayed notification on a single event could
be done with the principles we followed in this section.
This would require to add another deadline variable in each

process. Implementing waiting for conjunction or disjunction
of events would require the following modifications:
• The bounded integer variables 0 ≤ Wp ≤ Ne should

be replaced by Ne Boolean variables Wp,k with 1 ≤
k ≤ Ne denoting the event Ek, because a process p
can know wait for a set of events.

• We should also add a Boolean variable per process
to distinguish whether the process is waiting for a
conjunction or a disjunction of events.

To sum up, our approach can easily model such constructs,
at the cost of additional finite-state variables.

V. VALIDATING THE ENCODING PRINCIPLES

The encoding of SystemC primitives defined above may
seem intuitively correct, but experience shows that concurrent
systems are often faulty !

The ideal solution would be to prove that our encoding
is correct for any program using it. Such a quantification
on programs requires the use a proof-assistant, which is a
very demanding task. This would require to give a formal
semantics to SystemC (which implies C++) and to Promela,
and to prove that the two programs are equivalent.

The approach we have chosen is to construct a set of
properties and to verify them on instances of the translation,
in order to get confidence in the correctness of the encoding,
just like certifying compilers [18] verify the result of each
compilation. Those verifications were actually very useful,
allowing us to detect bugs in several preliminary versions of
our encoding.

We considered three invariants (see [14]). (i) the invariant
stated in section IV-B; (ii) “If process i notifies event Ek

for which process j is waiting, then Ti ≥ Tj”; (iii) “When a
process p waiting for an event is made eligible by a notifying
process (line (7) of Fig. III), the deadline Tp does not change
until its election as the running process.” These can be easily
translated to a relative time setting discussed in section IV-C.

Two techniques were used to verify them with SPIN:
direct assertions in the code, or a “monitoring” process for
properties not related to a specific line number. This process
only contains assertions, which can be detected as violated in
the automata product performed by SPIN. As the examples
we considered are deadlock-free, we also verified that the
encoding does not introduce deadlocks (for instance, by
scheduling processes in the wrong order).

The examples on which we checked these properties are
the following. First, we experimented on an adaptation of
the reader/writer problem in which two writers and one
reader access a FIFO. Second, we considered a model of
a communication between a Memory, a DMA, a bus and a
CPU. Third, we considered the example used in a previous
translation from SystemC to SPIN [22], described in the
appendices of [14].

VI. EXPERIMENTS AND EFFICIENCY OF OUR ENCODING

The aim of the previous section was to check that our
encoding actually reflects SystemC semantics. However, our
motivation for the encoding we propose is to enable better
performances of model-checkers, compared to other encod-
ing approaches described in section III. We now compare
experimentally the efficiency of our encoding w.r.t. model-
checking with the encoding proposed in [22] applied to the
same example.

A. A SystemC example

Our test model is the one used in [22] and detailed in
[14]. It consists of a chain of modules. The first module
triggers an interrupt in the next one. This interrupt notifies an
event, allowing the module to trigger an interrupt in the next
module, and so on. The last module contains an assertion
which is either always false (bug) or always true (no-bug).
The latter forces SPIN to compute the whole state space
when checking for invalid assertions. While this program
may seem artificial, it exhibits the characteristics found
in more complex real-world models and leading to state
explosion: many processes, synchronized by SystemC events,
which can thus be lost depending on the execution order
of the various statements. Such study allows to experiment
on how the state space that needs to be explored grows
depending on parameters. As this test model is untimed, we
test here only the efficiency of the encoding of events.

B. Results

The results presented in Fig. 4 focuses on the main
parameter which is the number of modules. It shows the
number of states computed by SPIN during the model-
checking of the example presented above.

Those results show a reduction by a factor of about
10 compared to previous results presented in [22]. The
comparison between the two approaches, in the case where
there is no bug is shown in figure 4. We can see that, with our
encoding, SPIN is able to model check up to 21 processes,
compared to 15 in the other approach.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 2 4 6 8 10 12 14 16 18 20 22

N
b

of
 s

ta
te

s

Nb of components

PinaVM

PinaVM
[SPIN 07]

Out of memory

Fig. 4. Experimental results of the two approaches

VII. CONCLUSION

We investigated the formalization of models of SoC in
the form of asynchronous automata. We proposed an en-
coding of synchronization primitives related to events and
time using shared variables and sequential instrumentation
of processes. This choice contrasts with other approaches
in which parallel instrumentation is used, under the form
of an additional process modeling the SystemC scheduler
added to the system. We ensured that the encoding principles
are correct by verifying a number of invariants. The given
principles are general and are applicable to different back-
end languages.

We experimented on the SPIN model-checker, showing on
a typical example that our encoding leads SPIN to explore

ten times less states during model-checking of the encoded
model, compared to an encoding based on parallel instrumen-
tation. This confirms the conjecture we express in section III.
In addition, the translation has been fully automated: our tool
reads SystemC code directly, and generates Promela code
without human intervention. Our results are thus due to our
encoding and not to some specific optimizations. The tool
can be downloaded freely from http://gitorious.org/pinavm.

Besides experimenting with a wider set of cases studies,
we see at least two point to investigate in the future. First
we have yet to compare our time management to other
approaches. We intend to compare this solution to approaches
based on timed automata and relying on the UPPAAL [7] tool
for model-checking to validate our discussion of section IV-C
on the asynchronous encoding of time in SystemC. A second
perspective to evaluate the relevance and the efficiency of
static analysis tools such as CONCURINTERPROC [9] for
checking safety properties of timed SystemC models.

REFERENCES

[1] J. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP a protocol validation and verification toolbox.
In Computer Aided Verification, pages 437–440. Springer, 1996.

[2] Giovanni Funchal and Matthieu Moy. jTLM: an experimentation
framework for the simulation of transaction-level models of systems-
on-chip. In DATE, 2011. (to appear).

[3] Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and Wendelin
Serwe. Verification of an Industrial SystemC/TLM Model using
LOTOS and CADP. In 7th ACM-IEEE International Conference
on Formal Methods and Models for Codesign MEMOCODE’2009,
Cambridge, MA United States, 2009.

[4] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM
Concepts and Applications for Embedded Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2006.

[5] Claude Helmstetter. TLM.open: a SystemC/TLM Front-end for the
CADP Verification Toolbox. Extended abstract for SBDCES workshop
(http://unit.aist.go.jp/cvs/workshop/SBDCES.html) Work financed by
the Multival project.

[6] Claude Helmstetter, Florence Maraninchi, and Laurent Maillet Contoz.
Full simulation coverage for SystemC transaction-level models of
systems-on-a-chip. Formal Methods in System Design, 35(Number
2 / October, 2009):pages 152–189, 06 2009.

[7] Paula Herber, Joachim Fellmuth, and Sabine Glesner. Model check-
ing SystemC designs using timed automata. In CODES/ISSS ’08:
Proceedings of the 6th IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, pages 131–136,
New York, NY, USA, 2008.

[8] Gerard J. Holzmann. Design and validation of computer protocols.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

[9] B. Jeannet. Relational interprocedural verification of concurrent
programs. In Software Engineering and Formal Methods, SEFM’09.
IEEE, November 2009. to appear.

[10] D. Karlsson, P. Eles, and Z. Peng. Formal verification of systemc
designs using a petri-net based representation. In Proceedings of the
conference on Design, automation and test in Europe: Proceedings,
page 1233. European Design and Automation Association, 2006.

[11] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int.
Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

[12] Chris Lattner and Vikram Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In CGO ’04: Proceedings
of the international symposium on Code generation and optimization,
page 75, Washington, DC, USA, 2004. IEEE Computer Society.

[13] F. Maraninchi, M. Moy, J. Cornet, L. Maillet-Contoz, C. Helmstetter,
and C. Traulsen. SystemC/TLM semantics for heterogeneous system-
on-chip validation. In NEWCAS-TAISA 2008: Proceedings of the Joint
6th International IEEE Northeast Workshop on Circuits and Systems
and TAISA Conference, pages 281–284, 2008.

[14] Kevin Marquet, Bertrand Jeannet, and Matthieu Moy. Efficient
encoding of SystemC/TLM in Promela—full version. Technical Report
TR-2010-7, Verimag Research Report, 2010.

[15] Kevin Marquet and Matthieu Moy. PinaVM: a SystemC front-end
based on an executable intermediate representation. In International
Conference on Embedded Software International Conference on Em-
bedded Software, page 79, Scottsdale, USA, 10 2010. SD B.4.4, I.6.4,
D.2.4 OpenTLM (projet Minalogic).

[16] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
Pinapa: An extraction tool for SystemC descriptions of systems-on-
a-chip. In EMSOFT, September 2005.

[17] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz.
LusSy: an open tool for the analysis of systems-on-a-chip at the
transaction level. Design Automation for Embedded Systems, 2006.
special issue on SystemC-based systems.

[18] G.C. Necula and P. Lee. The design and implementation of a certifying
compiler. ACM SIGPLAN Notices, 33(5):333–344, 1998.

[19] B. Niemann, C. Haubelt, M. Oyanguren, and J. Teich. Formalizing
TLM with communicating state machines. Advances in Design and
Specification Languages for Embedded Systems, pages 225–242, 2007.

[20] Open SystemC Initiative. IEEE 1666 Standard: SystemC Language
Reference Manual, 2005. http://www.systemc.org/.

[21] Open SystemC Initiative (OSCI). OSCI TLM-2.0 Language Reference
Manual, July 2009. Version JA32, available from http://www.systemc.
org/downloads/standards.

[22] Claus Traulsen, Jérôme Cornet, Matthieu Moy, and Florence Maran-
inchi. A SystemC/TLM semantics in Promela and its possible
applications. In 14th Workshop on Model Checking Software SPIN,
July 2007.

http://gitorious.org/pinavm
http://www.systemc.org/
http://www.systemc.org/downloads/standards
http://www.systemc.org/downloads/standards

	Introduction
	SystemC
	Overview of the problem and Related Works
	Translation from C++ and encoding of SystemC scheduler
	Translating User Processes from C++ with PinaVM
	Encoding synchronization primitives
	Discussion and Improvements

	Validating the encoding principles
	Experiments and efficiency of our encoding
	A SystemC example
	Results

	Conclusion
	References

