
Design and FPGA Implementation of Secure Key
Management

Xiaoxun Li, Zhiqiang Gao, and Guoqiang Bai

ABSTRACT—Cryptographic device ensures the secure

information exchange and private authentication even in the

face of various attacks. In this paper, we focus on how to

prevent physical attacks and present the PUF-based security

secret-key generation architecture. We develop a novel Spread

PUF architecture that is more secured and has higher

performance than existing PUF architectures. Our thesis also

gives applications of the Spread PUF for security secret-key

management, unlike prior proposals which only present their

designed PUF without showing how to apply it in practical

security device. All the experiments are implemented on

FPGAs.

Index Terms—Secret-key, Physical attack, Physical

Unclonable Function (PUF), FPGA.

I. INTRODUCTION

As cryptographic devices become ubiquitous, secure and
trusted computation are escalated as the prior needs.
Fundamental to almost any security question is how to
protect the secret-key. However, recently developed
invasive and noninvasive physical tampering methods such
as micro-probing[1], FIB, reverse engineering[2], glitch
attacks, and power analysis have made it possible to extract
digitalized secret information from integrated circuit(IC)
and access systems by using illegal copies of the secret
information. For example, an adversary can remove a
device’s package and reconstruct the layout of the circuit
using chemical and optical methods [2]. Even the data
stored in EEPROM or FLASH can be revealed by
sophisticated methods. So the traditional assumption that

Manuscript received November 26, 2010. This work was supported in

part by the National Natural Science Foundation of China.

X. X. Li is with the Institute of Microelectronics, Tsinghua University,

Beijing, 100084,China (phone: +86-10-62792712; e-mail: LixiaoxunTU@

gmail.com).

Z. Q. Gao is with the Institute of Microelectronics, Tsinghua University,

Beijing, 100084,China (e-mail: Gaozhiqiang@mail.tsinghua.edu.cn).

G. Q. Bai is with the Institute of Microelectronics, Tsinghua University,

Beijing, 100084,China (e-mail: Baigq@tsinghua.edu.cn).

security device have been designed to provide security
against an adversary who has only black-box access to the
secret information of honest parties is removed [3]. It was
observed that this problem is highly non-trivial and that in
the most general setting no security can be guaranteed.

One solution is to build a sensor network which is easily
destroyed under physical attacks. At the same time, this
network is one part of the circuit. Without it the circuit can
not complete its operation. These sensor nodes are
vulnerable to little invasive, and even a tiny modification
can propagate fake messages which bring down the entire
network. Such attacks can be preventable if the message
passing routines of each node which together form the
tamper-evident environment.

The variations of process make the number of ion
implantation, transistor width and length of wire the most
unpredictable characters. On the high level, it reflected by
the variation of threshold voltage and the delay of wire.
These variations are beyond the control of the
manufacturers. We present in this paper the secure secrets
generator architecture which utilizes these process
variations to construct Physical Unclonable Functions to
veritably create and maintain secret-keys. The concept of
PUFs have first been proposed in [4] and been developed in
[5] [6] [7]. We propose a new PUF architecture- Spread
PUF, which extract a secret-key from hidden timing or
delay information rather than digital information.
Compared with previous structure, it is more rigorous and it
mix complex algorithms into PUF. We also give the
implementation of security secret-key management on
FPGA.

The remainder of the paper is organized as follows. In
Section II we provide the previous work on PUF. We
present the design of our PUF architecture in Section III.
We perform experimental studies by using statistics in
Section IV. Section V detailed designs how Spread PUF
can be used for security secret-key management
implementation. Finally, we conclude the paper in Section
VI.

II. PRIVIOUS WORKS

In 2001, Pappu et al. [4], [8], introduced the concept of
Physical Unclonable Functions (PUFs) or Physical Random
Functions. The original construction of [8] is based on the
response (scattering) obtained when shining a laser on a
bubble-filled transparent epoxy wafer. Lim et al. [5]
introduce arbiter based PUFs which use a differential
structure and an arbiter to distinguish the difference in the
delay between the paths. In [6], the authors introduced
intrinsic PUFs for FPGAs based on the startup values of
SRAM memories. An SRAM cell is a cross-coupled
inverter circuit which maintains its state using positive
feedback. During startup, a slight difference in the voltage
on one of the floating inverters output is driven positively
within the loop to force the SRAM to go to a 1 or a 0. In [7],
Tuyls et al. present a coating PUF in which an IC is
covered with a protective matrix coating, doped with
random dielectric particles at random locations. The IC also
has a top metal layer with an array of sensors to measure
the local capacitance of the coating matrix that is used to
characterize the IC.

III. SPREAD PUF

In this section, we introduce a new PUF design based on
architecture symmetry delay chains and latch to determine
the physical unclonable secret-key. It is more complicated
to model and can fast generate secret- key in one clock. We
call this new structure a Spread PUF. Compared to the
PUFs described in the previous section, the Spread PUF
allows an easier implementation for practical application,
an easier function evaluation on FPGAs, and higher
reliability and speed.

A. SPREAD PUF overview

A Spread PUF is a complicated delay network which can
generate a series of binary bits. Fig. 1 depicts the Spread
PUF schematic. It is composed by transposition units and
latches which determine the faster of two signals. In this
scheme, we excite the source with a positive pulse. At the
first stage, the source separate to two directions. At the
second stage, the above signal separate to two directions
and the bottom do the same thing. The spread speed grows

exponentially. At the n stage, the number of signal is 2 . n

 Fig.1. Structure of a SPREAD PUF

As the unpredictability of process variation, each two

delay path pairs’ arrival time is undetermined and the race
against each other can be use for information storage. The
latch determines which rising edge arrives first and sets its
output to 0 or 1 depending on the winner. The structural
symmetry signals are used to compare for they go through
the most different path even though they across the same
distance visually. N pairs of signals can determine n bits
keys. At every section, there exist shift units which can
change two directions which make paths different. The

circuit with n stages takes challenge bits as inputs
to configure the delay paths and can determine

2n −1
12n− bits

key as output. There are switches, and each value
of challenge can change the configuration of the delay
paths. Thus, the number of possible different configurations

of the delay paths is

2n −1

2 12
n − which is very huge if . The

delay difference between the top and bottom paths is
determined by the configuration of delay paths. At the
output, we need to generate determined bits and we
challenge the circuit with all possible combination. The
solutions can vary obvious across ICs if the maximum
delay variation in manufacturing is as great as possible. For
the challenges, them should be imposed on the switches
first of all and the source need to wait the configuration
stable in that the delay difference between challenges could
affect correct judgments. In addition, in order to maximize
the path delay variation of PUF responses and prevent the
simplification of model, the delay paths must be placed and
routed symmetrically that can minimize the nominal delay
difference between each two paths. Fig. 2 details a
transposition scatter component. A unit scatters its input
port i to the output ports (o0 and o1) with different
configurations depending on the control bit (Ci); for Ci = 0,
the paths go straight through, while for Ci=1 they are
crossed. It is implemented with a pair of 2-to-1

5n ≥

multiplexers and delay cell.

 Fig.2. Operation and Component of Transposition Scatter

Regarding the parallel lines through each node as the

axis of symmetry, the cells are placed and routed
symmetrically. On an FPGA platform, implementing a PUF
is a challenging task because we neither have the ability to
exploit layout level design techniques, nor have the
knowledge about the gate-level structure of an FPGA fabric.
In this constrained platform, it is expected that we lose
significant variation information upfront, due to the
averaging effect of individual component-level variations
over larger composite structures such as LUTs and other
vendor-specific structures. However, as we extract the
variation of process, the imperfect of structure can be
ignored in the functional verification phase.

B. The architecture of important units

The latch arbiter plays an important part in the PUF
architecture. The scheme needs to exploits the precision
delay of the path and the arbiter determines the winner for
which to generate bits we need. A well-designed data latch
with careful and precise simulation is necessary. Fig.3 is
the logic gate level schematic of the latch. It is built by
cross-coupling NOR gates with inverter drivers.

Fig.3. The Schematic of Arbiter Latch

When S1 and S2 both are zero, then the output of latch is
0Q Q= = . Giving a challenge, the signal will go through

two paths and arrive at the input of latch. If the above
signal arrival first, S=0 and pull-up transistor turn to pull

the output Q to high. Feedback make 0Q = whether the

R=0 or 1. We also need to consider inappropriate

circumstances in circuits when both signal arrival at the
same time or the gap is very small. SR may go low
simultaneously (i.e. a transition from restricted to keep).
The output would lock at either 1 or 0 depending on the
propagation time relations between the gates (a race
condition). In certain implementations, it could also lead to
longer ringing (damped oscillations) before the output
settles, and thereby result in undetermined values (errors) in
high-frequency digital circuits. Fig. 4 shows the operation
of the latch as an arbiter in all possible delay differences.
We define

2 1s st t tΔ = − and the value of each graph is as

follow: (1) 350 ps; (2) 200 ps; (3) 100 ps; (4) 0 ps; (5) -350
ps. We can see the threshold is not exactly at , but it
is around 200ps. But it does not matter as two sides of the
threshold can give the determined value and we just treat
this point as center.

0tΔ =

350t psΔ =

200t psΔ =

100t psΔ =

0t psΔ =

350t psΔ = −

Fig. 4. The Simulation Results of Arbiter Latch

C. Characteristics of Spread PUFs

PUF’s output is unclonable and unpredictable for
individual. In order to know the habits of spread PUF, we
need to identify individual ICs. We treat PUF as a function
f(x), and the secret- key is the dependent variable. We can
construct the equation as ()K f C= . Solving the equation

can tell us what configuration of the spread PUF could
make it generates the secret-key we wanted. Obviously, the
function is one direction function and it must have many
solutions. We believe that the variation between each two
different delay paths for big probability being different
from each other with random configurations. And most of

delay difference pair is sufficiently large compared to the
noise effect. We also believe that the inter-chip variation
between the outputs of PUFs for big probability being
different from the same configuration. Then, by generating
a sufficient number of solutions, we can distinguish
different ICs with negligible probability of error.
 Meanwhile, environmental variation, metastable, and
aging could cause noise of PUF responses in measurements.
To quantify the effect of noise, we define the bit errors
percentage as the probability that how many a newly
measured PUF output with all the reference solution apply
on a given IC different from the corresponding reference
output which we used to solve the function. To estimate the
identification capability of the spread PUF scheme, this
noise probability should be precisely measured by
experiments. This will be shown in the next section.

In the spread PUF scheme, we devise that the delay path
pair go through the same distance in theory and use a
relative delay measurement which can reduce a significant
amount of noise effect induced by environmental variation.
Even if environmental variation changes the absolute
values of two delays, the difference between the two delays
is likely to be preserved.

Additionally, with the increasing of security and speed,
the complexity and the area go up. A 256bits outputs need
9 stages. This measurement scheme takes only one cycle to
finish secret key generation and we could make the cycle as
the multiple of the system clock in order to satisfy the
timing relations. But then we can not solve all the solutions
of the function because the computation is 2562 1− and it
will cost years for a 200MHz speed. So we will
use a hardware random number generator to try the
solutions. The calculation stops when there is one
configuration generate the secret-key we wanted. Then we
can store the solution into the device to reconfigure the
PUF when need secret-key.

611.835 10×

IV. Experiment of SPREAD PUF on FPGA

To examine characteristic of spread PUF, we solve all
the solution when the stage is low and using random
number generator to try the solution when the stage is high.
The experiment using a FPGA implementation of an spread
PUF may not satisfy the symmetrical architecture, but we
can test inter-chip variation and environment variation
conveniently. We present the experimental results of
characteristics of spread PUFs such as inter-chip variation
by using different FPGA boards or change HDL code and

environmental noise over a practical range of environment
variation. We also examine an aging effect that can
potentially degrade identification capability after prolonged
use.

 Inter-chip Variation: Inter-chip variation of spread
PUFs has been tested using 5 stages select delay path which

generate 16 bits data. The solution space is . With the
system clock of 50MHz, we use one cycle to determine one
configuration. This will takes 43 seconds for each PUF to
solve all the solutions. There are five FPGA boards and
each have 20 type modified HDL code so as to form 100
PUF architectures. Fig. 5 shows the distribution histogram
of the number of solutions. The expected number is

and the experiment results fall into 32000-33000 with
great probability. No two numbers is identical, and the
relation between two solutions has no obvious features.
Since manufacturing variation consists of transistor to
transistor and chip-to-chip, inter-chip variations then are
classified to every board and assess internal units’ variation.
We compared the inter-chip variation within a single FPGA
and across FPGAs. Fig. 6 shows the average, min, and max
number of solution variation across these five FPGA
boards.

312

152

0
5
10
15
20
25
30
35
40
45

be
lo
w3
00
00

30
00
0

31
00
0

32
00
0

33
00
0

34
00
0

35
00
0

ab
ov
e3
50
00

Number of resolution

Di
s
tr
i
bu
t
io
n
 o
f
PU
F
s

 Fig.5 Distribution of the Number of Solutions

0

10000

20000

30000

40000

50000

1

N
u
m
be

r
 o

f
 r

e
s
ol

u
ti
o
n

FPGA1 FPGA2 FPGA3 FPGA4 FPGA5
MIN AVE MAX

Fig.6 Distribution of the Number of Solutions across
FPGAs

Fig.5. is the histogram of the solution distribution for all
100 PUF configurations. Fig.6. classify these PUFs into

every FPGAs. The results show chaotic distribution no
matter in signal FPGA or across FPGAs, even the amount
of PUF pairs is not strongly support the judgment. And
98% numbers of solution close to expectations with
probability.
Noise and aging effect on PUF: Environmental variations

such as temperature and power supply voltage variations
are the primary causes of noise in PUF responses. Even
without environmental variations, a setup time violation for
a latch or the small fluctuation of junction temperatures and
internal voltages can cause measurement noise. And as the
using of device, the variations raised from aging effect can
also cause measurement errors. This time we increase the
stage of delay distance and use random number generator to
try the solution. For a fixed configuration, we gain the first
100 solutions and write these solutions into device to
configure the PUF. Then we test the output of these PUF
configurations under temperature variation and aging effect.
Fig. 7 shows the amount of environmental noise introduced
by temperature variations. The solutions are measured at
25℃. Even if the circumstance temperature increases to
45℃, the maximal variation of output key is 3.12%. This
shows that the differential structure of spread PUF circuit
reduces the environmental variations on delay path and the
main effect comes from the variation of latch. Electro
migration and hot-carrier effects cause the aging of wires
and transistors in ICs. To consider the aging effect, Fig. 8
shows the result of a one-month-long aging test. We still
calculated the percentage of outputs bit differences from
the original secret key with 100 solution pairs which were
generated at the start of the one-month period. The
percentage varies slightly around 0.25%. We conclude that
any significant performance degradation has not been
observed in this one-month aging test under normal
operating conditions. However, a longer term aging test in
more severe environmental fluctuation must be performed
to guarantee the reliability of the PUF scheme in practice.
For industry use of the PUF scheme, the test range of
environmental conditions should be enlarged to prove the
reliability of operation. For applications where a secret key
is generated, we require substantially higher reliability.
This can be achieved using error correction, which is
discussed in the next section.

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35 40 45

Differnce from reference key(25℃)℃

E
nv

iro
nm

en
t v

ar
ia

tio
n

ra
te

s(
%

)

Fig.7 Environmental Noise introduced by Temperature
Variations

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

1 4 7 10 13 16 19 22 25 28

days

v
a
r
i
a
t
i
o
n

p
e
r
c
e
n
t
a
g
e
(
%
)

Fig.8 Aging Variation Test in 30 days

V. Key Management Implementation

PUF responses can be considered as secrets because they
are randomly determined by manufacturing variations, and
difficult to predict without access the PUF. If the PUF
architecture can generate the correct secret- key, the system
can authenticate the information and deliver notice.
Because of the measurement noise, PUF responses are
likely to be slightly different on each evaluation, even for
the exact same configuration. So we can not use PUF to
generate secret key directly. There need some processes on
the data. At first we provide the device with the original
m-bits secret key K. A simple encryption is necessary.
Then the processor computes a BCH Code syndrome for
the encrypted key E (K). The BCH code is a popular error
correcting code that is widely used for binary data. A
syndrome is redundant information that allows a BCH
decoder to correct errors on the PUF delay circuit output.
The BCH (n, k, t, d) code can correct up to (1) 2d − errors

out of n bits with an (n- k)-bit syndrome (b = n - k). For
example, we can use the BCH (255, 139, 15) code to
reliably generate 139-bit data. As the experiment shown,
the error code rate do not need to much. The encoded data

is expected response of PUF and now we can construct the
equation as follow:

() (()) ()E K BS E K PUF C=

Supposing input m- bit secret-key has been encrypted
by the hardware and E (K) is k bits. Then BCH (n, k, t)
compute the syndrome and add it to the E (K). So the
response of PUF is . The random number

generator can generate random 2n-1 bits numbers. When a
random number configuration can makes the spread PUF
response , we get one of the solution C1.

For higher security, we can solve the PUF as many as
possible and random choose one solution.

() (())E K BS E K

() (())E K BS E K

After that we can write the solution C into memory
which can be EEPROM or ROM. In the process of
operation, the circuit use C to configure the spread PUT
delay path. The latches determine the winner of fast and
generate n bits data. This bit series may not accurately
equate to . Then the BCH decoder’s

correction ability is useful and E (K) will be regained if the
error within a reasonable range. Maybe the BCH’s error
correction fails only once in half a million tries or the PUF
response failure are so big that the BCH code cannot
correct all the errors. After all, the probability of a incorrect
is negligible. Therefore, with a high probability, the

processor can believe the secret- key after a decryption

() (())E K BS E K

1E− .

The returned secret-key is: 1(((1))K E BD PUF C−=)

Fig.9 illustrates our secure secret- key management
implementation. We implemented our secure processor on
an FPGA to validate and evaluate our design. All processor
components including the processing core and protection
modules are written in VHDL RTL. Our current
implementation runs at 50MHz on an Alter StratixIII FPGA
with 256-MB off-chip SDRAM (PC100 DIMM).

Fig.9 System Block Diagram of FPAG Implementation

VI. CONCLUTION

We have described the security secret- key management
architecture that can prevent physical attacks. A Spread
PUF (Physical unclonable function) is used as the core of
the processing architecture to reliably create, protect, and
share secrets. The new proposed PUF provides more
security and a few areas overhead. The integration of this
PUF can run at a high speed and create precise secret-keys.
The combination of the physical structure and cryptography
is a new contribution which allows using mathematical
model to describe the security of physical structure. Our
design has been implemented on FPGAs, and we have
shown that adoption BCH with low correction ability for
verification of PUF output is reasonable.

REFERENCES
[1] O. Kommerling, M. G. Kuhn, “Design principles for tamper-resistant

smartcard processors,” in Proc. USENIX Workshop Smartcard

Technology, pp. 9–20, 1999.

[2] R. Torrance, D. James, “The State-of-the-Art in IC Reverse

Engineering,” Cryptographic Hardware and Embedded Systems —

CHES 2009, pp. 363–381, Oct 2009.

[3] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali and T. Rabin,

“Algorithmic Tamper-Proof Security: Theoretical Foundations for

Security against Hardware Tampering,” Theory of Cryptography

Conference (TCC), pp. 258-277, Feb 2004.

[4] R. Pappu, B. Recht, J. Taylor, and N. Gershen-Feld, “Physical one-way

functions,” Science, vol. 297, pp. 2026–2030, 2002.

[5] J.W. Lee, D. Lim, B. Gassend, G. E. Suh, M. vanDijk, and S. Devadas.

“A technique to build a secret key in integrated circuits with

identification and authentication applications”, Proceedings of the

IEEE VLSI Circuits Symposium, June 2004.

[6] J. Guajardo, S. Kumar, G. Schrijen, and P. Tuyls. “FPGA Intrinsic

PUF and Their Use for IPProtection. Cryptographic Hardware and

Embedded Systems”, CHES 2007, pp.63–80, Oct 2007.

[7] P.Tuyls, G.-J. Schrijen, B.Skoric, J. van Geloven, N. Verhaegh, and R.

Wolters. Read-Proof Hardware from Protective

Coatings .Cryptographic Hardware and Embedded Systems — CHES

2006, pages 369–383, Oct 2006.

[8] R. S. Pappu. “Physical one-way functions.” PhD thesis. Massachusetts

Institute of Technology. Mar 2001.

	I. INTRODUCTION
	II. PRIVIOUS WORKS
	III. SPREAD PUF
	A. SPREAD PUF overview
	B. The architecture of important units
	C. Characteristics of Spread PUFs
	IV. Experiment of SPREAD PUF on FPGA
	V. Key Management Implementation
	VI. CONCLUTION

