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ABSTRACT—Cryptographic device ensures the secure 

information exchange and private authentication even in the 

face of various attacks. In this paper, we focus on how to 

prevent physical attacks and present the PUF-based security 

secret-key generation architecture. We develop a novel Spread 

PUF architecture that is more secured and has higher 

performance than existing PUF architectures. Our thesis also 

gives applications of the Spread PUF for security secret-key 

management, unlike prior proposals which only present their 

designed PUF without showing how to apply it in practical 

security device. All the experiments are implemented on 

FPGAs.  

Index Terms—Secret-key, Physical attack, Physical 

Unclonable Function (PUF), FPGA. 

I. INTRODUCTION 

As cryptographic devices become ubiquitous, secure and 
trusted computation are escalated as the prior needs. 
Fundamental to almost any security question is how to 
protect the secret-key. However, recently developed 
invasive and noninvasive physical tampering methods such 
as micro-probing[1], FIB, reverse engineering[2], glitch 
attacks, and power analysis have made it possible to extract 
digitalized secret information from integrated circuit(IC) 
and access systems by using illegal copies of the secret 
information. For example, an adversary can remove a 
device’s package and reconstruct the layout of the circuit 
using chemical and optical methods [2]. Even the data 
stored in EEPROM or FLASH can be revealed by 
sophisticated methods. So the traditional assumption that 
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security device have been designed to provide security 
against an adversary who has only black-box access to the 
secret information of honest parties is removed [3]. It was 
observed that this problem is highly non-trivial and that in 
the most general setting no security can be guaranteed.  

One solution is to build a sensor network which is easily 
destroyed under physical attacks. At the same time, this 
network is one part of the circuit. Without it the circuit can 
not complete its operation. These sensor nodes are 
vulnerable to little invasive, and even a tiny modification 
can propagate fake messages which bring down the entire 
network. Such attacks can be preventable if the message 
passing routines of each node which together form the 
tamper-evident environment. 

The variations of process make the number of ion 
implantation, transistor width and length of wire the most 
unpredictable characters. On the high level, it reflected by 
the variation of threshold voltage and the delay of wire. 
These variations are beyond the control of the 
manufacturers. We present in this paper the secure secrets 
generator architecture which utilizes these process 
variations to construct Physical Unclonable Functions to 
veritably create and maintain secret-keys. The concept of 
PUFs have first been proposed in [4] and been developed in 
[5] [6] [7]. We propose a new PUF architecture- Spread 
PUF, which extract a secret-key from hidden timing or 
delay information rather than digital information. 
Compared with previous structure, it is more rigorous and it 
mix complex algorithms into PUF. We also give the 
implementation of security secret-key management on 
FPGA.  

The remainder of the paper is organized as follows. In 
Section II we provide the previous work on PUF. We 
present the design of our PUF architecture in Section III. 
We perform experimental studies by using statistics in 
Section IV. Section V detailed designs how Spread PUF 
can be used for security secret-key management 
implementation. Finally, we conclude the paper in Section 
VI. 



II. PRIVIOUS WORKS 

In 2001, Pappu et al. [4], [8], introduced the concept of 
Physical Unclonable Functions (PUFs) or Physical Random 
Functions. The original construction of [8] is based on the 
response (scattering) obtained when shining a laser on a 
bubble-filled transparent epoxy wafer. Lim et al. [5] 
introduce arbiter based PUFs which use a differential 
structure and an arbiter to distinguish the difference in the 
delay between the paths. In [6], the authors introduced 
intrinsic PUFs for FPGAs based on the startup values of 
SRAM memories. An SRAM cell is a cross-coupled 
inverter circuit which maintains its state using positive 
feedback. During startup, a slight difference in the voltage 
on one of the floating inverters output is driven positively 
within the loop to force the SRAM to go to a 1 or a 0. In [7], 
Tuyls et al. present a coating PUF in which an IC is 
covered with a protective matrix coating, doped with 
random dielectric particles at random locations. The IC also 
has a top metal layer with an array of sensors to measure 
the local capacitance of the coating matrix that is used to 
characterize the IC.  

III. SPREAD PUF 

In this section, we introduce a new PUF design based on 
architecture symmetry delay chains and latch to determine 
the physical unclonable secret-key. It is more complicated 
to model and can fast generate secret- key in one clock. We 
call this new structure a Spread PUF. Compared to the 
PUFs described in the previous section, the Spread PUF 
allows an easier implementation for practical application, 
an easier function evaluation on FPGAs, and higher 
reliability and speed.  

A. SPREAD PUF overview 

A Spread PUF is a complicated delay network which can 
generate a series of binary bits. Fig. 1 depicts the Spread 
PUF schematic. It is composed by transposition units and 
latches which determine the faster of two signals. In this 
scheme, we excite the source with a positive pulse. At the 
first stage, the source separate to two directions. At the 
second stage, the above signal separate to two directions 
and the bottom do the same thing. The spread speed grows 

exponentially. At the n stage, the number of signal is 2 .  n

 

        Fig.1. Structure of a SPREAD PUF 
 
As the unpredictability of process variation, each two 

delay path pairs’ arrival time is undetermined and the race 
against each other can be use for information storage. The 
latch determines which rising edge arrives first and sets its 
output to 0 or 1 depending on the winner. The structural 
symmetry signals are used to compare for they go through 
the most different path even though they across the same 
distance visually. N pairs of signals can determine n bits 
keys. At every section, there exist shift units which can 
change two directions which make paths different. The 

circuit with n stages takes challenge bits as inputs 
to configure the delay paths and can determine 

2n −1
12n− bits 

key as output. There are  switches, and each value 
of challenge can change the configuration of the delay 
paths. Thus, the number of possible different configurations 

of the delay paths is

2n −1

2 12
n −  which is very huge if . The 

delay difference between the top and bottom paths is 
determined by the configuration of delay paths. At the 
output, we need to generate determined bits and we 
challenge the circuit with all possible combination. The 
solutions can vary obvious across ICs if the maximum 
delay variation in manufacturing is as great as possible. For 
the challenges, them should be imposed on the switches 
first of all and the source need to wait the configuration 
stable in that the delay difference between challenges could 
affect correct judgments. In addition, in order to maximize 
the path delay variation of PUF responses and prevent the 
simplification of model, the delay paths must be placed and 
routed symmetrically that can minimize the nominal delay 
difference between each two paths. Fig. 2 details a 
transposition scatter component. A unit scatters its input 
port i to the output ports (o0 and o1) with different 
configurations depending on the control bit (Ci); for Ci = 0, 
the paths go straight through, while for Ci=1 they are 
crossed. It is implemented with a pair of 2-to-1 

5n ≥



multiplexers and delay cell. 

 Fig.2. Operation and Component of Transposition Scatter 
 
Regarding the parallel lines through each node as the 

axis of symmetry, the cells are placed and routed 
symmetrically. On an FPGA platform, implementing a PUF 
is a challenging task because we neither have the ability to 
exploit layout level design techniques, nor have the 
knowledge about the gate-level structure of an FPGA fabric. 
In this constrained platform, it is expected that we lose 
significant variation information upfront, due to the 
averaging effect of individual component-level variations 
over larger composite structures such as LUTs and other 
vendor-specific structures. However, as we extract the 
variation of process, the imperfect of structure can be 
ignored in the functional verification phase.  

B. The architecture of important units 

The latch arbiter plays an important part in the PUF 
architecture. The scheme needs to exploits the precision 
delay of the path and the arbiter determines the winner for 
which to generate bits we need. A well-designed data latch 
with careful and precise simulation is necessary. Fig.3 is 
the logic gate level schematic of the latch. It is built by 
cross-coupling NOR gates with inverter drivers.  

 

           

Fig.3. The Schematic of Arbiter Latch 
 

When S1 and S2 both are zero, then the output of latch is 
0Q Q= = . Giving a challenge, the signal will go through 

two paths and arrive at the input of latch. If the above 
signal arrival first, S=0 and pull-up transistor turn to pull 

the output Q to high. Feedback make 0Q = whether the 

R=0 or 1. We also need to consider inappropriate 

circumstances in circuits when both signal arrival at the 
same time or the gap is very small. SR may go low 
simultaneously (i.e. a transition from restricted to keep). 
The output would lock at either 1 or 0 depending on the 
propagation time relations between the gates (a race 
condition). In certain implementations, it could also lead to 
longer ringing (damped oscillations) before the output 
settles, and thereby result in undetermined values (errors) in 
high-frequency digital circuits. Fig. 4 shows the operation 
of the latch as an arbiter in all possible delay differences. 
We define 

2 1s st t tΔ = −  and the value of each graph is as 

follow: (1) 350 ps; (2) 200 ps; (3) 100 ps; (4) 0 ps; (5) -350 
ps. We can see the threshold is not exactly at , but it 
is around 200ps. But it does not matter as two sides of the 
threshold can give the determined value and we just treat 
this point as center. 

0tΔ =

 
350t psΔ =

 
200t psΔ =

 
100t psΔ =

 
0t psΔ =

 
350t psΔ = −

 
Fig. 4. The Simulation Results of Arbiter Latch 

 

C. Characteristics of Spread PUFs 

PUF’s output is unclonable and unpredictable for 
individual. In order to know the habits of spread PUF, we 
need to identify individual ICs. We treat PUF as a function 
f(x), and the secret- key is the dependent variable. We can 
construct the equation as ( )K f C= . Solving the equation 

can tell us what configuration of the spread PUF could 
make it generates the secret-key we wanted. Obviously, the 
function is one direction function and it must have many 
solutions. We believe that the variation between each two 
different delay paths for big probability being different 
from each other with random configurations. And most of 



delay difference pair is sufficiently large compared to the 
noise effect. We also believe that the inter-chip variation 
between the outputs of PUFs for big probability being 
different from the same configuration. Then, by generating 
a sufficient number of solutions, we can distinguish 
different ICs with negligible probability of error. 
   Meanwhile, environmental variation, metastable, and 
aging could cause noise of PUF responses in measurements. 
To quantify the effect of noise, we define the bit errors 
percentage as the probability that how many a newly 
measured PUF output with all the reference solution apply 
on a given IC different from the corresponding reference 
output which we used to solve the function. To estimate the 
identification capability of the spread PUF scheme, this 
noise probability should be precisely measured by 
experiments. This will be shown in the next section.  

In the spread PUF scheme, we devise that the delay path 
pair go through the same distance in theory and use a 
relative delay measurement which can reduce a significant 
amount of noise effect induced by environmental variation. 
Even if environmental variation changes the absolute 
values of two delays, the difference between the two delays 
is likely to be preserved.  

Additionally, with the increasing of security and speed, 
the complexity and the area go up. A 256bits outputs need 
9 stages. This measurement scheme takes only one cycle to 
finish secret key generation and we could make the cycle as 
the multiple of the system clock in order to satisfy the 
timing relations. But then we can not solve all the solutions 
of the function because the computation is 2562 1− and it 
will cost years for a 200MHz speed. So we will 
use a hardware random number generator to try the 
solutions. The calculation stops when there is one 
configuration generate the secret-key we wanted. Then we 
can store the solution into the device to reconfigure the 
PUF when need secret-key. 

611.835 10×

IV. Experiment of SPREAD PUF on FPGA 

To examine characteristic of spread PUF, we solve all 
the solution when the stage is low and using random 
number generator to try the solution when the stage is high. 
The experiment using a FPGA implementation of an spread 
PUF may not satisfy the symmetrical architecture, but we 
can test inter-chip variation and environment variation 
conveniently. We present the experimental results of 
characteristics of spread PUFs such as inter-chip variation 
by using different FPGA boards or change HDL code and 

environmental noise over a practical range of environment 
variation. We also examine an aging effect that can 
potentially degrade identification capability after prolonged 
use.  

 Inter-chip Variation: Inter-chip variation of spread 
PUFs has been tested using 5 stages select delay path which 

generate 16 bits data. The solution space is . With the 
system clock of 50MHz, we use one cycle to determine one 
configuration. This will takes 43 seconds for each PUF to 
solve all the solutions. There are five FPGA boards and 
each have 20 type modified HDL code so as to form 100 
PUF architectures. Fig. 5 shows the distribution histogram 
of the number of solutions. The expected number is 

and the experiment results fall into 32000-33000 with 
great probability. No two numbers is identical, and the 
relation between two solutions has no obvious features. 
Since manufacturing variation consists of transistor to 
transistor and chip-to-chip, inter-chip variations then are 
classified to every board and assess internal units’ variation. 
We compared the inter-chip variation within a single FPGA 
and across FPGAs. Fig. 6 shows the average, min, and max 
number of solution variation across these five FPGA 
boards. 
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     Fig.5 Distribution of the Number of Solutions 
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Fig.6 Distribution of the Number of Solutions across 
FPGAs 

Fig.5. is the histogram of the solution distribution for all 
100 PUF configurations. Fig.6. classify these PUFs into 



every FPGAs. The results show chaotic distribution no 
matter in signal FPGA or across FPGAs, even the amount 
of PUF pairs is not strongly support the judgment. And 
98% numbers of solution close to expectations with 
probability. 
Noise and aging effect on PUF: Environmental variations 

such as temperature and power supply voltage variations 
are the primary causes of noise in PUF responses. Even 
without environmental variations, a setup time violation for 
a latch or the small fluctuation of junction temperatures and 
internal voltages can cause measurement noise. And as the 
using of device, the variations raised from aging effect can 
also cause measurement errors. This time we increase the 
stage of delay distance and use random number generator to 
try the solution. For a fixed configuration, we gain the first 
100 solutions and write these solutions into device to 
configure the PUF. Then we test the output of these PUF 
configurations under temperature variation and aging effect. 
Fig. 7 shows the amount of environmental noise introduced 
by temperature variations. The solutions are measured at 
25℃. Even if the circumstance temperature increases to 
45℃, the maximal variation of output key is 3.12%. This 
shows that the differential structure of spread PUF circuit 
reduces the environmental variations on delay path and the 
main effect comes from the variation of latch. Electro 
migration and hot-carrier effects cause the aging of wires 
and transistors in ICs. To consider the aging effect, Fig. 8 
shows the result of a one-month-long aging test. We still 
calculated the percentage of outputs bit differences from 
the original secret key with 100 solution pairs which were 
generated at the start of the one-month period. The 
percentage varies slightly around 0.25%. We conclude that 
any significant performance degradation has not been 
observed in this one-month aging test under normal 
operating conditions. However, a longer term aging test in 
more severe environmental fluctuation must be performed 
to guarantee the reliability of the PUF scheme in practice. 
For industry use of the PUF scheme, the test range of 
environmental conditions should be enlarged to prove the 
reliability of operation. For applications where a secret key 
is generated, we require substantially higher reliability. 
This can be achieved using error correction, which is 
discussed in the next section. 
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Fig.7 Environmental Noise introduced by Temperature 
Variations 
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Fig.8 Aging Variation Test in 30 days 
 

V. Key Management Implementation 

PUF responses can be considered as secrets because they 
are randomly determined by manufacturing variations, and 
difficult to predict without access the PUF. If the PUF 
architecture can generate the correct secret- key, the system 
can authenticate the information and deliver notice. 
Because of the measurement noise, PUF responses are 
likely to be slightly different on each evaluation, even for 
the exact same configuration. So we can not use PUF to 
generate secret key directly. There need some processes on 
the data. At first we provide the device with the original 
m-bits secret key K. A simple encryption is necessary. 
Then the processor computes a BCH Code syndrome for 
the encrypted key E (K). The BCH code is a popular error 
correcting code that is widely used for binary data. A 
syndrome is redundant information that allows a BCH 
decoder to correct errors on the PUF delay circuit output. 
The BCH (n, k, t, d) code can correct up to ( 1) 2d − errors 

out of n bits with an (n- k)-bit syndrome (b = n - k). For 
example, we can use the BCH (255, 139, 15) code to 
reliably generate 139-bit data. As the experiment shown, 
the error code rate do not need to much. The encoded data 



is expected response of PUF and now we can construct the 
equation as follow: 

( ) ( ( )) ( )E K BS E K PUF C=  

Supposing input m- bit secret-key has been encrypted 
by the hardware and E (K) is k bits. Then BCH (n, k, t) 
compute the syndrome and add it to the E (K). So the 
response of PUF is . The random number 

generator can generate random 2n-1 bits numbers. When a 
random number configuration can makes the spread PUF 
response , we get one of the solution C1. 

For higher security, we can solve the PUF as many as 
possible and random choose one solution. 

( ) ( ( ))E K BS E K

( ) ( ( ))E K BS E K

After that we can write the solution C into memory 
which can be EEPROM or ROM. In the process of 
operation, the circuit use C to configure the spread PUT 
delay path. The latches determine the winner of fast and 
generate n bits data. This bit series may not accurately 
equate to . Then the BCH decoder’s 

correction ability is useful and E (K) will be regained if the 
error within a reasonable range. Maybe the BCH’s error 
correction fails only once in half a million tries or the PUF 
response failure are so big that the BCH code cannot 
correct all the errors. After all, the probability of a incorrect 
is negligible. Therefore, with a high probability, the 

processor can believe the secret- key after a decryption

( ) ( ( ))E K BS E K

1E− . 

The returned secret-key is:  1( ( ( 1))K E BD PUF C−= )

Fig.9 illustrates our secure secret- key management 
implementation. We implemented our secure processor on 
an FPGA to validate and evaluate our design. All processor 
components including the processing core and protection 
modules are written in VHDL RTL. Our current 
implementation runs at 50MHz on an Alter StratixIII FPGA 
with 256-MB off-chip SDRAM (PC100 DIMM).  

 

     
Fig.9 System Block Diagram of FPAG Implementation 

VI. CONCLUTION 

We have described the security secret- key management 
architecture that can prevent physical attacks. A Spread 
PUF (Physical unclonable function) is used as the core of 
the processing architecture to reliably create, protect, and 
share secrets. The new proposed PUF provides more 
security and a few areas overhead. The integration of this 
PUF can run at a high speed and create precise secret-keys. 
The combination of the physical structure and cryptography 
is a new contribution which allows using mathematical 
model to describe the security of physical structure. Our 
design has been implemented on FPGAs, and we have 
shown that adoption BCH with low correction ability for 
verification of PUF output is reasonable. 
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