
Extracting Logical Formulae that Capture the
Functionality of SystemC Designs

Nicolas Vallée, Bruno Monsuez, Vladimir-Alexandru Paun

Abstract—Object-oriented hardware design languages like
SystemC have become very popular to co-design hardware
and software systems. Such designs are classically translated
into a transition system in order to verify a specification with
model-checkers. However, compositionnality and parametricity
of SystemC components complicate their translations into finite
transition systems. Processing analysis of high-level designs
occurs early in the design flow and aims to greatly reduce the
correction costs of eventual errors. In this paper, we propose
a formal method to statically analyze SystemC designs. Our
approach consists in extracting a logical formula representing
the behavior of the system in order to avoid combinatorial
explosion. This method combines a symbolic execution of
SystemC code to infer logical formulae representing its behavior
and a generalization phase of these inferred logical properties.

Keywords : SystemC, hypergraphs, symbolic execution, abstract
interpretation

I. INTRODUCTION

Modern embedded systems are growing in complexity ren-
dering the use of high level Hardware Description Languages
(HDL) mandatory. The increasing sophistication of the de-
sign spirits the use of tools that support parametricity and
compositionality of Intellectual Properties (IP). SystemC is
becoming a de facto standard in the design of embedded sys-
tems by meeting all these requirements. The blend of HDL
with the C++ programming language, empowers SystemC
with parametricity and compositionality through the template
engine and the object-oriented paradigm respectively.

SystemC has been conceived for system co-designs and
simulations at a higher level of abstraction, that should
imply a high-level system verification. Nonetheless, formal
verification of SystemC has still a long way to go, given the
fact that its object-oriented nature and its scheduler father a
sophisticated event driven simulation semantics.

Transactional Level Modeling [1] corresponds to an
industry-proven approach in order to raise the level of ab-
straction to specify and model SoC design. Starting from this
abstraction level, our approach consists in extracting func-
tional properties of the design. We consider that a relevant
analysis technique for SystemC components designed using
TLM (Transactional Level Model) must throughly comply
with several demands [2], [3]:
• be sufficiently compositional;
• minimize the information loss despite the different

abstraction levels;
• support refinement.
By compositionality [4] we understand that the global

property can be established from composing local properties
as the system-level analysis is the composition of component-
level analyses. Traditionally, designs of embedded systems

All authors are with the Laboratory of Electronic and Computer Engineer-
ing of ENSTA, Paris, France. e-mail: firstname.lastname@ensta-paristech.fr

HDL

Transition
System

Specifications

Logical
formula

Model-Checker

Fig. 1. Classical way to verify HDL designs

are statically verified according to the scheme in Figure 1.
HDL design is modeled into a transition system, while
the expected specification is translated into temporal logical
properties. Thereafter, the results of the transformations are
given as argument to a model-checker that makes sure the
transition system abides all the expected properties, lending
otherwise an execution path representing a counter-example.
The problems in synthesizing a transition system from the
HDL design, in the context of SystemC, is depicted by the
component interdependencies generating the combinatorial
explosion of the state space.
Our approach consists in extracting a logical formula repre-
senting the behavior of the system so as to avoid combinato-
rial explosion. We may consequently proceed to convert this
logical formula into an ad-hoc representation exploitable by
a tool that verifies if this behavior fulfills the specification.
To the best of our knowledge, we introduce a novel method
to compute this logical formula.

A. Expected analysis

We aim to extract a logical formula that describes the
functional behavior of a SystemC component. Considering
the member function clear_locks of the simple_bus
class, as pictured in Figure 2, we would like to extract a
functional behavior represented by a logical formula, that is
to be manipulated with model-checkers or theorem provers
so as to check whether a specification is verified.

1 void s i m p l e b u s : : c l e a r l o c k s ()
2 {
3 for (int i = 0 ; i < m r e q u e s t s . s i z e () / / t e s t T1
4 ; ++ i)
5 if (m r e q u e s t s [i]−>l o c k == SIMPLE BUS LOCK GRANTED)

/ / t e s t T2
6 m r e q u e s t s [i]−>l o c k = SIMPLE BUS LOCK SET ;
7 / / i n s t r u c t i o n block S1
8 else
9 m r e q u e s t s [i]−>l o c k = SIMPLE BUS LOCK NO ;

10 / / i n s t r u c t i o n block S2
11 }

Fig. 2. simple bus::clear clocks

In the Figure 2, the guard of the for loop depends on
the results of a m_requests.size() method call. It

should thus be considered as a symbolic parameter of the
analysis. Unfortunately, the for loop cannot be statically
unrolled, leading to a combinatorial explosion of the state
space. Hopefully, some techniques to generate an invariant
of this loop, could subsequently be used. This invariant will
be used as a meta-state of the transition system, i.e. a state
that represents all the states associated to the loop.

The functional behavior of the function in the Figure 2
can be expressed through a first order logical formula:

∀o, [class(o) = simple bus⇒ ∀r ∈ o.m requests,
(r.lockinitial = granted⇒ r.lockfinal = set)
∨(r.lockinitial 6= granted⇒ r.lockfinal = no)]

where:
• granted = SIMPLE_BUS_LOCK_GRANTED
• set = SIMPLE_BUS_LOCK_SET
• no = SIMPLE_BUS_LOCK_NO

This logic formula is interpreted as:

for all instances o of the simple bus class, for all requests r
contained by o.m requests, if the lock of r is granted then the
lock of r becomes set; otherwise the lock of r becomes unset.

SystemC CFG HGF

HGFHGF trace

code

logic

hierarchization Symbolic

Execution
Model-Checker

Theorem Prover

Fig. 3. Analysis steps

The first step of the analysis consists in generating the
control flow graph CFG, by parsing the SystemC code. Once
the CFG is generated we construct the fractal hypergraph
HGFcode, a hierarchical model created in a statical way
depending on the characteristics of the language, see Fig-
ure 4. We thereafter use a trace based semantics to statically
build the HGFtrace hypergraph, a family of hypergraphs that
abstracts the execution traces generated when the HGFcode
hypergraphs are executed. This step may be seen as a gener-
alized form of symbolic execution. Classically the symbolic
execution not only constructs the execution traces, but also
adds some extra information in the form of a Path Condition,
PC. The logical informations contained in the PC will be
the ground of the behaviour extraction from the traces, in the
form of logical formulae. Thus the logical fractal hypergraph
HGFlogic is created.

The functional information are to be transformed through
the generalization phase in order to be consequently exploited
by specification validation tools.

B. Contributions:

In this paper, we propose an analysis methodology, for
TLM-designed SystemC components, that manages to be
compositional and that tries to limit the information loss.
The main point in our article consists in the generalization
of logical formulae representing the component behaviour.

The paper is organized as follows. Section II describes the
related works; Section III presents the mathematical model
of fractal hypergraphs and a formal method called symbolic
execution; Section IV describes how to represent logical

formulae with fractal hypergraphs; Section V describes how
to convert a fractal hypergraph describing the implemen-
tation of a SystemC component into a fractal hypergraph
representing a logical formula that describes the behaviour
of this SystemC component; Section VI finally describes the
sizeable design we have analyzed: the SystemC Simple Bus,
and it consequently shows the result of our analysis.

II. RELATED WORKS

SystemC modelizations and analysis are various. First
there are a few semantics for SystemC, that approximately
respect the real behavior of its scheduler [5], [6], but they
are especially useful for its simulation.

Dynamic verifications with monitoring [5] are also used,
whose execution traces, among other elements, could be
statically analyzed. For instance, Vardi et al. create an
extendable framework for temporal logics [7], yet it might
miss some details due to its big-step semantics, therefor
excluding soundness.Furthermore, there is an approach based
on symbolic model-checking that captures the reactive fea-
tures of SystemC [8], [9], enabling the analysis of component
communication, transactional memory, etc.

Another approach, that is closer to our work, consists
in formalizing a subset of SystemC, called SystemCFL, by
using Algebra of Communication Processes (ACP) and A
Timed Process Algebra for Specifying Real-Time Systems
(ATP) [10]. SystemC designs are then translated into an ad-
hoc representation for model-checkers.

III. PRELIMINARY NOTIONS

A. Fractal hypergraphs

In [12], we proposed a new mathematical structure that
is well suited to capture and represent the object-oriented
nature of SystemC components. Hypergraphs [13] are a
mathematical extension of graphs. A hypergraph is a graph
whose hyperedges may connect two or more vertices. Fractal
hypergraphs as presented in [12] is a special category of
hypergraphs where the hyperedges between the vertices may
be defined by fractal hypergraphs.

We proposed in [12] a formal representation of SystemC
components based on fractal hypergraphs. For instance, the
fractal that corresponds to the function given in the Figure 2
is represented in the Figure 4. Nodes represent all the sepa-
rators of the system description source. Arrows (hyperedges)
represent either instructions, or transitions for the sequence
of declaration blocks. Frames represent a hierarchical level in
fractal hypergraphs, that may embed a static scope, a function
body, a block of instructions, etc.

Finally, we also proposed in [12] a formal semantics of
SystemC based on the transformation of the fractal hyper-
graphs. The proposed semantics is a trace based semantics
that can be used to perform abstract interpretation or sym-
bolic execution. A very nice feature is that the execution
traces are also represented by fractal hypergraphs.

In this paper, we use the formal model as well as the
formal semantics of SystemC based on fractal hypergraphs.

This model is used at the beginning of our analysis in
order to translate the CFG into a hierarchical model.

Fig. 4. Fractal hypergraph of simple bus::clear clocks

B. Abstract interpretation

All possible behaviors of a system S can be defined
by a transition system FS . Properties of the system S are
analyzed when studying FS . Unfortunately it may be too
complex to handle. Abstraction can construct a computable
over-approximation of FS . Abstract interpretation [14], [11]
assumes that semantics can be expressed as fixpoints of
monotic functions in partially ordered domains. It classically
works in an abstract domain related to a concrete domain
through a Galois connection.

Definition 1 (Galois connection): Given two partially or-
dered sets 〈C,≤〉 and 〈C̄,v〉, two monotone functions
α : C → C̄ and γ : C̄ → C provide a Galois connection iff:

∀X ∈ C,∀X̄ ∈ C̄, α(X) v X̄ ⇔ X ≤ γ(X̄)

denoted 〈C,≤〉
γ←−−−−→
α
〈C̄,v〉

Given a transition system F in the concrete domain, a
transition system F] defines a sound abstraction for F with
respect to the Galois connection 〈C,≤〉

γ←−−−−→
α
〈C̄,v〉 iff:

∀X̄ ∈ C̄, (γ ◦ F])(X̄) ≤ (F ◦ γ)(X̄)

Among all transition systems, we only consider the trans-
fer function describing the symbolic execution. It corre-
sponds to the concrete domain of the set of execution traces
partially ordered by inclusion 〈2Σ,⊆〉. The soundness of
the analysis is implied by the fact that we always keep an
over-approximation of the initial state, i.e. all the possible
behaviors are still in the abstract state.

C. Symbolic execution as Abstract Interpretation

We choose to present the symbolic execution as a transfer
function in the framework of Abstract Interpretation. The
use of an operational semantics enables us to construct
execution traces. As oposed to a normal simulation, the
symbolic execution represents all the parameters as symbolic
values. Therefore we construct execution traces throughout
all the possible execution paths, in a compact manner with
the help of symbols and the Path Conditions that represent
constraints on an abstract path. As described in [12], there
exists an operational semantics of SystemC based on fractal
hypergraphs. High level features as templates and class are

managed. In this section we will only focus on the execution
rules in order to ensure the safety of symbolic execution.

For the assignment, the new symbolic expression of
variables consist just in updating the abstract environment.
Conditional branchings present two cases. In the first case
we can statically determine the value of the conditional test.
Symbolic execution knows which branching is to be taken.
We can also simplify the trace fractal hypergraph in order
just to represent this path – see Figure 5.

I1 I2

cond
c=false

cond
c=true c

value I
eval(c)

Fig. 5. Traversal of a dispatch point – the original fractal hypergraph is
modified: all the unused branchings are deleted. the final fractal hypergraph
also goes on representing the execution trace.

Proposition 1: The soundness of symbolic execution of
statically determined conditional branchings is verified.

γ ◦ FS] = S.(cond = true) = FS ◦ γ

In the second case, the conditional entry cannot be stat-
ically resolved. Symbolic execution has to build also a
disjunction of all possible branchings – see Figure 6.

Fig. 6. Traversal of a dispatch point – the original fractal hypergraph is
modified: no condition value can be determined, so no branching is unused.

Proposition 2: The soundness of symbolic execution of
conditional branchings is verified.

F ◦γ(S) ⊆ γ◦F](S) = S.(cond = true)∪S.(cond = false)

Conditional loops
When entering the loop block, the frame that denotes the

condition gets replaced by the logical expression denoting
the condition being evaluated. If the condition evaluates to
“false”, the exit edge is active, in which case we simply
have a returning transition to the upper level. If the condition
evaluates to “true”, the transformation continues with the
frame b that denotes the body of the loop. When the
transformation reaches the exit node of the frame b, the loop
is unrolled to pursue the transformation – see Figure 7.

Proposition 3: The soundness of symbolic execution of
conditional loops is verified.

F ◦ γ(S) ⊆ γ ◦ F](S).

Handling loops implies symbolically iterating the loop
body. However, the lack of information about the iteration
number or having to many iterations may render it im-
possible. To solve this problem we have to find a sound

Fig. 7. Conditional loop unrolling

overapproximation of all execution traces of this loop. This
generalization will be described more precisely in Sec-
tion V-A.

D. Symbolic Execution and Fractal Hypergraphs

The third step of our analysis consists in the transformation
of the code fractal hypergraph into a trace fractal hypergraph
by means of symbolic execution.

Fractal hypergraphs can represent the SystemC compone-
nents as well as the execution traces generated by the
simulation of SystemC components.

Definition 2 (System state): A system state consists in:
• t : the current time ;
• He : the hypergraph that denotes the history of the

system execution ;
• Hs : the hypergraph representing the whole system.
We define a transition function that maps a system state

to another system state.
A trace-based semantics [15], [16] manipulates paths rep-

resenting the execution traces He. The traces contains the
complete history of the symbolic execution or more generally
the complete history of any static analysis ; it totally defines
the current context. Such a trace based semantics has been
presented in [12].

IV. REPRESENTING LOGICAL FORMULAE WITH FRACTAL
HYPERGRAPHS

In order to extract logical property when statically
analysing a component defined in SystemC, we want to ex-
tend the system state with a set of additional logical formulae
that completely describes the behavior of the components.

Definition 3 (Extended system state): A extended system
state is represented by :
• t : the current time ;
• He : the hypergraph that denotes the history of the

system execution ;
• Hl : the hypergraph that denotes the inferred logical

formulae ;
• Hs : the hypergraph representing the whole system.
We decide to represent the logical formulae using fractal

hypergraph. Further on, we show how we can express first-
order logical formulae using fractal hypergraphs.

Definition 4 (Logical formula): Considering a program-
ming language L , the set of all possible identifiers A , the
set of variables χ = {x;xi|x ∈ A ∧ i ∈ N}. We define:
• constants: > defines the boolean true and ⊥ defines

the boolean false;
• logical atoms: polynomials on χ with coefficients in Z

that are constrained by a comparison with 0.

Z[χ] � 0 where � ∈ {=, <,>,≤,≥}

• terms: constants or logical atoms;
• predicates: terms or logical connections P ∧Q, P ∨Q

or ¬P such that P and Q are predicates;
• logical propositions: predicates or logical quantifica-

tions ∀x, P or ∃x, P such that P is a logical proposition
and that x is a variable.

A. Terms

Constant atoms are defined as simple transitions. Logical
atoms are also expressed by encapsulating the atoms into
a frame. The variables defined in Z[χ] are present in the
environment associated to the fractal hypergraph that denotes
the execution.

Native values and constraints on atoms are associated to
fractal hypergraphs through the environment that is shared
among the hypergraph He representing the execution paths
and the hypergraph Hl representing the logical formulae.

B. Predicates

Conjunctions and disjunctions
A conjunction of two logical terms means that verifying

this conjunction implies verifying both logical terms. A
sequence of logical hyperedges defines the conjunction of the
logical terms associated to these hyperedges – see Figure 8.

Fig. 8. Conjunction of logical terms

A disjunction of two logical terms means that verifying
this disjunction implies verifying at least one logical term.
Verifying at least one logical term is translated into two par-
allel transitions. Two logical hyperedges, that have the same
origin and destination, are also used to define the disjunction
of the logical terms associated to these hyperedges – see
Figure 9.

Fig. 9. Disjunction of logical terms

Negations
A logical negation is transformed by applying De Mor-

gan’s rules only to the concerned terms and not to more
complex predicates. We then use the following rule, in order
to obtain a disjunctive logical fractal hypergraph:

∀a ∈ Z[χ], ∀[i; j] ∈ I,
[¬(a ∈ [i; j])⇔ a ∈ [−∞; i− 1] ∨ a ∈ [j + 1;+∞]]

C. Logical propositions

Logical propositions associate a logical term to a set
of free variables, similarly to functions in programming
language. Logical predicates are also represented by a hy-
peredge embedding a fractal hypergraph that represents its
parameters and the logical formula. Each parameter of the
logical predicate is represented by an empty hyperedge – see
Figure 10.

Fig. 10. Logical proposition

D. Universal and existential quantifications

A formula can be verified for a set of values. We can
abstract the set of all formulae verified for each value to a
formula that denotes the set of all formulae. This transfor-
mation creates a first-order abstraction, called a ∀ − term –
see Figure 11.

Fig. 11. Universal quantifier

A formula may be verified for at least one value in a given
set. We can abstract this formula to a first-order abstraction,
called an ∃ − term – see Figure 12. Such a quantification
ensures that a property is verified for at least one element of
a container, such that a find function does not fail.

Fig. 12. Existantial quantifier

E. The place of logical fractal hypergraphs in our formal
debugger

A SystemC design models the behavior of a circuit.
However, it corresponds to an executable description of this
circuit, that may describe irrelevant implementation details.
Another way to describe its behavior is by inferring relations
between the inputs and outputs as well as the internal states
of this circuit.

Our formal debugger [3] semi-automatically extracts log-
ical fractal hypergraphs from trace fractal hypergraphs in
order to represent an abstract behavior of the corresponding
system. Execution traces have been produced by symbolic
execution of the concrete semantics as detailed in [12]. Those
execution traces are then iteratively abstracted to logical
fractal hypergraphs that represent relations between the initial
states and the final states of the execution traces.

V. CONVERTING A TRACE FRACTAL HYPERGRAPH INTO A
LOGICAL FRACTAL HYPERGRAPH

The last step of our analysis consists in the behaviour
extraction, from the traces annotated with path conditions,
that were previously generated by symbolic execution, in the
form of logical formulae.

This section presents the relevant transformations to ex-
tract a logical fractal hypergraph from a function body. We
then show how the basic logical fractal hypergraphs are
aggregated when calling sub-methods.

A. Intraprocedural analysis

Variable declarations, variable assignments, conditional
branchings and loops qualify as intraprocedural actions. Vari-
able declarations and assignments are managed by the envi-
ronment while conditional branchings are converted through
symbolic execution. Handling loops is more difficult: we test
if the entry condition is verified, in which case we unroll
some iterations. A precise result cannot always be guaranteed
with this method therefore we often have to proceed to a
generalization.

Conditional branchings
The if-then-else conditional branching is a simple

pattern - the dispatch point. A hyperedge labelled by an
entry condition precedes all possible paths. When entering
one of those paths, the trace-based semantics must record the
branching condition.

If the conditional entry can be statically resolved, the
symbolic execution knows which branching is to be taken.
In this case, we can simplify the fractal hypergraph in order
to represent the logical formula:

condition = true ∧ branch formula

The cond = false case is symmetrical so we do not
describe it.

If the conditional entry cannot be statically resolved, the
symbolic execution has to build a disjunction of the logical
formulae of all possible branchings:

cond = true ∧ branchtrue formula ∨
cond = false ∧ branchfalse formula

Application to simple bus:clear locks
With previous transformations, we can now convert the loop
body of the method simple_bus::clear_:locks. Its
associated logical fractal hypergraph represents the following
logical formula (where SB = SIMPLE BUS):

m requests[i]→ lock(n) = SB LOCK GRANTED ∧
m requests[i]→ lock(n+1) = SB LOCK SET

∨
¬(m requests[i]→ lock(n) = SB LOCK GRANTED) ∧

m requests[i]→ lock(n+1) = SB LOCK NO

Conditional loops
Handling loops may imply symbolically iterating the loop

body. However, the lack of information about the iteration
number or having to many iterations may render the unrolling
of the loop impossible. To solve this problem we unroll for
a fixed number of iterations all the possible execution paths
and we then proceed to a generalization in order to infer an
abstract formula that abstracts all the possible situations.

Generalization
When symbolic execution may not be able to statically

determine a logical formula or when it may determine too
complex formulae, we must try to generalize the inferred
logical formulae.

To illustrate the generalization step, an additive block is
analyzed – see Figure 13.

The generalization step consists in finding an invariant in
order to represent loop iterations, i.e. a set of execution traces

1 i n t f a c t (i n t n)
2 {
3 i n t r e s = 1 ;
4 i n t i ;
5 f o r (i =0 ; i<n ; i ++)
6 r e s += 1 ;
7 re turn r e s ;
8 }

Fig. 13. Additive block

will be collected into a logical formulae representing the
invariant of the loop. At this moment we leave the area of
second order analysis (path based) for the area of first order
analysis (state based), as described in [16].

We use classical abstract interpretation techniques, such
as widenings or convergence accelerators [17], to generate
a relation between all the variables used inside the loop
body and the loop condition as well as the loop counter.
For instance, if we choose the numerical abstract domain of
integer polyhedra [18], the behaviour of the loop presented
in Figure 13 can be summed up into the following invariant:

res = 1 + counter ∧ i = counter

Note: In this paper, the previous exposed techniques
are enough to limit the loss of precision. However more
advanced abstraction techniques, as described in [19], can
manage more complicated designs.

B. Managing method calls

In this section we describe how we handle sub-programs1

in a compositional way. During the analysis, each time we
encouter a method call two cases are considered. If the
method M has never been analyzed we then extract a logical
fractal hypergraph HM associated to the out of context
behaviour of M . Otherwise we specialize HM by adding
the constraints on the input parameters of M , depending on
the context call.

As stated in Section III-C, the soundness of the analysis of
method calls relies on the soundness of symbolic execution.

Remark: The method body may contain loop instructions.
As a consequence the extraction of the out of context
behaviour may be too coarse due to the generalization
step (see Section V-A for more details). In that case, our
strategy consists in analyzing the function calls by inlining
the method body in order to reduce the loss of precision.

VI. EXPERIMENTAL RESULTS

A. SystemC design of Simple Bus

We will analyze the SystemC Simple Bus that is available
in the SystemC standard library. It is a basic component
described at transactional level. Simple Bus is a synchronous
bus – i.e. all subcomponents are synchronized through a
unique clock. There is no limit for concurrent connection
number. An arbiter manages priority and access grants to
a unique provider. Each interval of message addresses is
mapped to a unique consumer.

1We do not consider recursive methods since they cannot occur in
electronic designs. If we want to handle mutual recursive functions, we
can use a generalization in a similar way as when handling loops.

There are two available modes:
• a blocking mode: the provider calls the method
write_burst. It then waits until the message is read.
In the same way, the consumer waits for a message
when read_burst is called.

• a non-blocking mode: the provider calls the method
write and immediately returns. Likewise, the con-
sumer does not wait when no message is available –
by using the method read.

B. Abstract behavior of Simple Bus

Scalability of our analysis has been tested on the
whole Simple Bus. In Figure 15, you can see a log-
ical formula describing the behaviour of the method
simple_bus_arbiter::arbitrate. In this method,
there are conditional branchings, loops and method calls.
Notice that we have deleted all verbose mode lines.

1 s i m p l e b u s r e q u e s t ∗
2 s i m p l e b u s a r b i t e r : : a r b i t r a t e (c o n s t

s i m p l e b u s r e q u e s t v e c &r e q u e s t s)
3 {
4 i n t i ;
5 s i m p l e b u s r e q u e s t ∗ b e s t r e q u e s t = r e q u e s t s [0] ;
6

7 f o r (i = 0 ; i < r e q u e s t s . s i z e () ; ++ i) / / s e l e c t i o n P1
8 {
9 s i m p l e b u s r e q u e s t ∗ r e q u e s t = r e q u e s t s [i] ;

10 i f ((r e q u e s t−>s t a t u s == SIMPLE BUS WAIT) &&
11 (r e q u e s t−>l o c k == SIMPLE BUS LOCK SET))
12 re turn r e q u e s t ;
13 }
14

15 f o r (i = 0 ; i < r e q u e s t s . s i z e () ; ++ i) / / s e l e c t i o n P2
16 i f (r e q u e s t s [i]−>l o c k == SIMPLE BUS LOCK GRANTED)
17 re turn r e q u e s t s [i] ;
18

19 f o r (i = 1 ; i < r e q u e s t s . s i z e () ; ++ i) / / s e l e c t i o n P3
20 {
21 s c a s s e r t (r e q u e s t s [i]−>p r i o r i t y != b e s t r e q u e s t−>

p r i o r i t y) ;
22 i f (r e q u e s t s [i]−>p r i o r i t y < b e s t r e q u e s t−>p r i o r i t y)
23 b e s t r e q u e s t = r e q u e s t s [i] ;
24 }
25

26 i f (b e s t r e q u e s t−>l o c k != SIMPLE BUS LOCK NO)
27 b e s t r e q u e s t−>l o c k = SIMPLE BUS LOCK GRANTED ;
28

29 re turn b e s t r e q u e s t ;
30 }

Fig. 14. simple bus arbiter::arbitrate: code

The method simple_bus_arbiter::arbitrate
takes the list of all requests and selects the best request if
possible – i.e. if an adequate request exists. To choose the
request we browse the list of all requests looking for the
first request that verifies a given condition. If any request is
found, the method returns an error.

Fig. 15. simple bus arbiter::arbitrate: logical fractal hypergraph

C. Interpretation of the experimental results

Our process extracted the logical fractal hypergraph de-
scribed in Figure 15. The three selective browsings used to
select the best request have been found and are represented
by the logical formulae P1, P2 and P3.

test1(req) : req → status = SB WAIT ∧ req → lock =
SB LOCK SET
test1 verifies if the given request is currently waiting for being executed
and whether its lock is set.
test2(req) : req → lock = SB LOCK GRANTED
test2 verifies whether the lock of the given request has been granted.
P1 : ∃i, ∀j, 0 ≤ i ≤ requests.size() ∧ test1(requests[i]) ∧ 0 ≤
j ≤ i ∧ ¬test1(requests[j])
P1 selects the request that verifies the test1 and that has the lowest index.
P2 : ∃i, ∀j, 0 ≤ i ≤ requests.size() ∧ test2(requests[i]) ∧
0 ≤ j ≤ i ∧ ¬test2(requests[j])
P2 selects the request that verifies the test2 and that has the lowest index.

P3 : ∃i, ∀j, 0 ≤ i ≤ requests.size() ∧ 0 ≤ j ≤ requests.size()

∧ i == j ∨
requests[i] → priority < requests[j] → priority ∧
requests[i] → lock 6= SB LOCK NO ∧ requests[i] → lock =

SB LOCK GRANTED

P3 selects the request that has the lowest priority and grants its lock if it
was unset.

The structure of the fractal hypergraph shows the succes-
sive use of these selective browings. If P1 finds any request,
the method returns the respective request. Otherwise, P2 is
used in a similar way, then P3. If none of these three selective
browsing finds any request, the method returns the default
choice, the first element of the request collection. At the
beginning of the method, we test whether this collection
is empty when selecting its first element. If this selection
fails, the method fails and returns an error – represented by
a special exit hypernode.

VII. CONCLUSION

In this paper, we propose an analysis techniques for
TLM-designed SystemC components that manages to be
compositional and intends to reduce the information loss of
abstractions. This method combines a symbolic execution of
the SystemC code to infer logical formulae representing its
behavior and a generalization phase of the inferred logical
properties in order to manage loops, parametric code, func-
tion abstraction, etc.

The extraction process does not only make consecutive
steps but also proceeds to on-the-fly generalization of the
inferred formulae. Inferred logical properties representing a
sound abstraction of the system behavior are still general
enough to be translated into an ad-hoc representation for a
wide range of tools in order to verify whether it respects
a specification. These tools can be either classical model-
checkers, or theorem provers.

Although we only analyze functional properties with our
analysis methodology, we hope to use it for non-functional
properties as estimating Worst Case Execution Times. Futher-
more, we will define a general framework for the general-
ization techniques that could be used in our analysis.

Acknowledgements

The authors would like to thank Alexandre Chapoutot for
his helpful comments in improving the quality of this paper.

REFERENCES

[1] F. Ghenassia, Transaction-Level Modeling with Systemc: Tlm Concepts
and Applications for Embedded Systems. Secaucus, NJ, USA:
Springer-Verlag New York, Inc., 2006.

[2] M. Y. Vardi, “Formal techniques for systemc verification; position
paper,” in DAC, 2007, pp. 188–192.

[3] B. Monsuez, F. Védrine, and N. Vallée, “On the design of a formal
debugger for system architecture,” in ICC’08: Proceedings of the
12th WSEAS international conference on Circuits. Stevens Point,
Wisconsin, USA: World Scientific and Engineering Academy and
Society (WSEAS), 2008, pp. 462–467.

[4] P. Cousot and R. Cousot, “Modular static program analysis, invited
paper,” April 6—14 2002.

[5] W. M. Lab, W. Mueller, J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf, and
W. Rosenstiehl, “The simulation semantics of systemc,” in In Proc. of
DATE 2001. IEEE CS. Press, 2001, pp. 64–70.

[6] B. Monsuez, Y. ZHANG, and F. Védrine, “Systemc waiting-state
automata,” in VECoS’07, Algiers, Algeria, May 2007.

[7] D. Tabakov, M. Y. Vardi, G. Kamhi, and E. Singerman, “A temporal
language for systemc,” in Proceedings of the 2008 International Con-
ference on Formal Methods in Computer-Aided Design, ser. FMCAD
’08. Piscataway, NJ, USA: IEEE Press, 2008, pp. 22:1–22:9.

[8] R. Shyamasundar, F. Doucet, R. Gupta, and I. Krger, “Compositional
reactive semantics of systemc and verification with rulebase,” in Next
Generation Design and Verification Methodologies for Distributed
Embedded Control Systems, S. Ramesh and P. Sampath, Eds. Springer
Netherlands, 2007, pp. 227–243.

[9] F. Doucet, R. Shyamasundar, I. Krüger, S. Joshi, and R. Gupta,
“Reactivity in systemc transaction-level models,” in Hardware and
Software: Verification and Testing, ser. Lecture Notes in Computer
Science, K. Yorav, Ed. Springer Berlin / Heidelberg, 2008, vol. 4899,
pp. 34–50.

[10] K. L. Man, A. Fedeli, M. Mercaldi, M. Boubekeur, and
M. Schellekens, “Sc2scfl: automated systemc to systemcfltransla-
tion,” in Proceedings of the 7th international conference on Embed-
ded computer systems: architectures, modeling, and simulation, ser.
SAMOS’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp. 34–45.

[11] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approx-
imation of fixpoints,” in Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. Los Angeles, California: ACM Press, New York, NY,
1977, pp. 238–252.

[12] N. Vallée and B. Monsuez, “A formal model of systemc compo-
nents using fractal hypergraphs,” in Design, Analysis and Tools for
Integrated Circuits and Systems – International MultiConference of
Engineers and Computer Scientists, 2010.

[13] C. Berge, Graphs and Hypergraphs. Elsevier Science Ltd, 1985.
[14] P. Cousot and R. Cousot, “Static determination of dynamic properties

of programs,” in Proceedings of the Second International Symposium
on Programming. Dunod, Paris, France, 1976, pp. 106–130.

[15] C. Colby and P. Lee, “Trace-based program analysis,” in POPL
’96: Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. New York, NY, USA: ACM,
1996, pp. 195–207.

[16] D. A. Schmidt, “Trace-based abstract interpretation of operational
semantics,” Lisp Symb. Comput., vol. 10, no. 3, pp. 237–271, 1998.

[17] L. Gonnord, N. Halbwachs, and G. France, “Combining widening and
acceleration in linear relation analysis,” in In SAS, 2006, pp. 144–160.

[18] P. Cousot and N. Halbwachs, “Automatic discovery of linear re-
straints among variables of a program,” in Proceedings of the 5th
ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, ser. POPL ’78. New York, NY, USA: ACM, 1978, pp.
84–96.

[19] F. Védrine, “Binding-time analysis and strictness analysis by abstract
interpretation,” in SAS ’95: Proceedings of the Second International
Symposium on Static Analysis. London, UK: Springer-Verlag, 1995,
pp. 400–417.

