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Abstract
1
– Fuzzy control of queues is a new method for 

controlling cost of the system, number of customers waiting 

in the queue and many other aspects of queues. This paper 

proposes fuzzy control approach for reducing cost of the 

system. 1// FM (Poisson arrival and fuzzy service rate) 

with flexible service time is examined in this paper.  All the 

fuzzy mathematics rules in this paper are based on Zadeh’s 

extension principle, Mamdani implication, possibility and 

probability concept. At the end of this paper a simple 

numerical example is presented. 

 

I. INTRODUCTION 

Queueing theory is a classical mathematical method for 

studying the queues such as average waiting time and 

average number of customers in the system [2], [3]. 

Fuzzy queueing and fuzzy control of queues would be a 

new approach for surveying the queueing systems. If we 

let service time be expressed by possibility rather than 

probability, then fuzzy queueing method would be a more 

realistic approach than classical queueing theory methods. 

1// FM (Poisson arrival and fuzzy service rate) with 

flexible service time is examined in this paper, and the 

objective is to employ a fuzzy policy to reduce the costs 

of the system and control the average number of 

customers in the queue.  All the fuzzy mathematics rules 

in this paper are based on Zadeh’s extension principle [1], 

Mamdani implication, possibility and probability concept. 

The results of this paper can be extended to other 

queueing systems. 

  

II. 1// FM  QUEUES IN FUZZY ENVIROMENT 

Consider we have a queueing system with Poisson arrival, 

one server and fuzzy service time. The arrival rate is λ
and the discipline is first in first served. Suppose that the 

service time is a fuzzy set denoted by S
~
. Therefore S

~
=

{ }0)(, >ℜ∈ + tt sµ  
. Imagine after each service 

completion we have a new state. The number of 

customers that a person whose service is just completed 
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sees in the system is considered as a state of the system. 

Therefore the Probability that we move from state i  to j
 

is identical to the probability that 1+− ij  customers 

enter the system during the service time t . The probability 

of i arrivals during service time t  is denoted by iP
~
. So 

this is a Markov chain and since all the probabilities are 

fuzzified, it’s considered as fuzzy Markov chain. We can 

show this fuzzy Markov chain as follows [5]: 
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We need to solve the stationary equations. The stationary 

equations are as follows: 

0

~
P

0π + 0

~
P

1π =
0π , 

1

~
P 0π +

1

~
P 1π + 0

~
P

3π =
1π and so 

on. The results are as follows: 
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iπ  represents the fraction of time in long run that the 

state of system is i . Now we can compute L by the 

following formula: 
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and therefore 
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We understand from above formulas that L and W are 

also fuzzy sets. So, 
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III. FUZZY CONTROL 

In this part we want to employ a policy to control the 

service time of queueing system in fuzzy environment. As 

Heyman has proved the optimal policy for costs, we just 

keep the server on as long as there is at least one 

customer in the system [4]. When system gets empty we 

turn the server off and the only thing we need to specify 

is when turn the server on. Suppose that in our system we 

have switching cost denoted by SC (whenever we turn 

the server on), Holding cost rate per customer (HC ) and 

server running cost rate ( RC ). Also suppose that we 

have a flexible server which can switch from one service 

time to another one. The important fact in the real world 

is that running cost rate depends on the service rate 

(higher service rate=higher service running cost). So we 

should try to employ a policy to control the service time 

after turning on the server. Our fuzzy controller has two 

outputs. One is 
1d which indicates whether or not the 

server is on and the other is 
2d which determines the 

service time. Now we need to know our inputs to be able 

to define our control logic. 

If there is no switching cost , obviously it will be optimal 

to turn the server on as soon as one customer enters to the 

system. But since we have a big switching cost in most of 

the cases, we turn the server on when the accumulated 

holding cost ( AHC )gets big enough to comptete with 

switching cost ( SC ):  

∑=
i

iHCSAHC , 

 where iS is the number of customers in the system in the 

ith  unit of time.  

Since we have the average arrival rateλ , therefore after 

first unit time we have average λ customers in the 

system. The average accumulated holding cost after first 

unit of time will be 2/λHCAHC = . After nunits of 
time the average accumulated holding cost will be 

2/2/)12(...2/5

2/32/

2 HCnHCnHC

HCHCAHC

λλλ

λλ

=−++

++=
.  

Since when AHC gets equal to switching cost SC , we 

turn the server on (
1d is on), therefore 
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TABLE I. Rule base 

L (length of the 

queue) 
HC (holding cost rate 

per customer) 1d  

2d  

Z  Z  NO  −  
S  Z  NO  −  
M  Z  NO  −  
B  Z  YES  M  

Z  S  NO  −  
S  S  YES  B  

M  S  YES  B  

B  S  YES  M  

Z  M  NO  −  
S  M  YES  B  

M  M  YES  M  

B  M  YES  M  

Z  B  NO  −  
S  B  YES  M  

M  B  YES  M  

B  B  YES  M  



                                                                                                                             

                                                                   

So when accumulated holding cost gets equal to

length of the queue is approximately 
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Therefore when the queue length is SCλ 2

turn the server on ( ond =1 ). Also we know that 

higher theh , the easier it is to make a decision to turn the 
server on. 

Now we should define the membership function of

and 
2d (service time). We computed that when length of 

the queue gets HCSC λλ 2 we turn the dormant 

server on. So HCSC λλ 2 is considered

our normalized interval is [ 6,0 ], we should scale 

HCSC λλ 2 to6 , so the scaling factor will 

HC

SC

λ
λ

2

6
. 

 

FIGURE I. Membership function: normalized input variable 

                                                                                                                                                           

 

hen accumulated holding cost gets equal to SC , the 

HCSC λ , we 

). Also we know that the 

, the easier it is to make a decision to turn the 

we should define the membership function ofh , L

time). We computed that when length of 

rn the dormant 

BIG . Since 

], we should scale 

, so the scaling factor will be 

The scaling factor for HC is SC6

functions for L and HC will be like figure I and II, 

respectively.  

We computed 
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The service time ( t ) by which 

HCSC λλ 2 ), is also considered 

should solve the following equation, which is
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We denote bigger t  we get from above equation by 

and consider it as BIG . Therefore the scaling factor for 

2d  is A6 (figure III).   

. Membership function: normalized input variable L  

                              

SC . The membership 

be like figure I and II, 

 L  is BIG  ( =L

is also considered as BIG . So we 

should solve the following equation, which is: 

we get from above equation by A  

. Therefore the scaling factor for 

 



FIGURE II. Membership function: normalized input 

 

FIGURE III. The

IV. NUMERICAL EXAMPLE 

Suppose that we have a queueing system M

arrival rate 1=λ , holding cost rate 88=h

switching cost 100=SC . Suppose that the length of the 

queue is 1 ( 1=L ). The scaling factor for 

SC/6 . So 88888.88  is scaled down to 

333333.5
100

688888.88
≈

×
. 

 Also the scaling factor for L  is 

. Membership function: normalized input HC  

The Membership function: normalized output 2d
 

 

 

1//MM with 

88888.88 and 

. Suppose that the length of the 

. The scaling factor for HC  is

4
2

6
=

HC

SC

λ
λ

. 

 So 1=L  is scaled to 4 . 

According to figure II, .5=HC

with grade 33333.0  and is BIG
Also from figure I, we understand that 

MEDIUM  with grade1. 1d
 
will be

outputs are YES . From table 1

Mamdani implication we have the follow

 

 

3333. is MEDIUM  

 with grade 66666.0 . 

we understand that 4=L  is 

will be YES if all fuzzy 

. From table 1 (fuzzy rules) and 

Mamdani implication we have the followings: 



If HC  is MEDIUM  with grade 33333.0  and L  is 

MEDIUM with grade1, then 1d  is YES  with grade

33333.0 . 

If HC  is BIG with grade 66666.0  and L  is 

MEDIUM  with grade1, then 1d  is YES  with grade

6666.0 . Because all the decisions on 
1d  isYES , then 

the final decision on 
1d  is alsoYES . 

According to Mamdani implication and fuzzy rule base in 

table 1, the decision on 
2d (service time) is as follows: 

If HC  is MEDIUM  with grade 33333.0  and L  is 

MEDIUM  with grade1, then 2d  is MEDIUM  with 

grade 33333.0 . 

If HC  is BIG  with grade 6666.0  and L  is 

MEDIUM  with grade1, then 2d  is MEDIUM  with 

grade 6666.0 . 

According to figure III and above decisions, the peak 

values and heights of the fuzzy set are as follows: 31 =e ,

32 =e , 33333.01 =f , 6666.02 =f . Now by the 

height method of defuzzification, our final decision on 

2d is 

399.2

2

1
2 ≈==
∑ =

i

i ii

f

ef
d .  

This is a normalized service time ( t ). For computing the 
original service time:  

3027.4
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