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Abstract—A new concurrent cell formation method for 

solving a Cell Formation (CF) problem in a Cellular 
Manufacturing System (CMS) is developed and proposed in 
this research. To solve such problem, conventionally a facility 
planner needs to classify parts into families and group 
machines into cells, respectively. However, existing methods for 
solving the CF problem are difficult and complicated. 
Moreover, efficient solutions of some of those methods are not 
guarantee. So, the efficient method based on two important 
performance measures, called Exceptional Elements (EE) and 
the Void Elements (VE) of a perfect grouping, are developed. 
Preemptive Fuzzy Goal Programming (P-FGP) is applied to 
these two performance measures for finding the efficient 
solution. The problems of grouping part family and machine 
cells can be simultaneously easily solved. Moreover, machines 
and parts grouping can also be adjustable to find preferred 
solutions by use of P-FGP. The numerical examples existed in 
the literatures are shown to demonstrate the efficiency of the 
proposed model over the conventional method.  
 

Index Terms—Cell Formation Problem, Cellular 
Manufacturing System, Concurrent Formation Method, 
Preemptive Fuzzy Goal Programming  
 

I. INTRODUCTION 

ECAUSE of fast changes in the market needs and 
manufacturing technologies, Cellular Manufacturing 

System (CMS) based on Group Technology (GT) has been 
emphasized. The CMS enhances manufacturing flexibility 
and productivity in order to overcome difficulties concerned 
with multi-product and batch-production systems [1]-[3]. 
 One of the most crucial problems in the CMS faced in 
classifying parts into families and grouping machines into 
cells is called Cell Formation (CF) problem [1], [4]. The 
common considerations in part family formation can be 
similar geometry, function, material or process requirement 
to take benefit of their similarities for designing and 
manufacturing purposes. Whereas, machines involved part 
manufacturing will be assigned and dedicated to the part 
family in machine cell formation [4]-[6].  
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 By the past recent decades, various numbers of methods 
for solving the CF problem have been presented. However, 
solving such multivariate data in CF problem is known to be 
NP-complete [5], [6]. Thus, satisfying method for solving 
the CF problem is always required. The basic idea to solve 
the problem is to rearrange the rows and columns of the 
incidence matrix. The incidence matrix refers to the 
relationships between parts and machines. So, rearranging 
the matrix to perform the groups of parts which has 
corresponding operations and the required machines is 
preferred. The well-known matrix rearrangement methods 
are the Bound Energy (BE) algorithm and Rank Order 
Cluster (ROC) algorithm [1], [3], [7], [8]. Nevertheless, 
such methods of solving a CF problem are complicated and 
difficult especially for large scale problems. The facility 
planner has to pay more attention carefully to the huge 
incidence matrix, so these kinds of methods are not 
practical. 
 Many efficient methods to solve the CF problem are 
proposed for both mathematical methods and heuristic 
methods. The p-median presented by Kusiak (1987) is one 
of the familiar method [3], [7], [9]. This method can obtain 
the solution satisfyingly. However, using the p-median 
model requires two processes to solve part family problem 
and machine cell problem, respectively. So, it is quite 
inefficient method if the facility planner needs to solve both 
part family problem and machine cell problem at the same 
time. For heuristic methods [2], [7], efficient solutions of 
these methods are not guarantee. 

In this research, the concurrent cell formation method by 
Preemptive Fuzzy Goal Programming (P-FGP) has been 
proposed for solving the CF problem in the CMS. By the 
way of perfect grouping which diagonal matrix is preferred, 
the Exceptional Elements (EE) and the Void Elements (VE) 
are concerned in the multi-objective programming model. 
Additionally, setting the membership function for each goal 
makes flexibility for facility planner in selecting the 
preferred solution.  

 The remainder of this research is organized as follows. 
The cell formation problem is discussed in Section II. Then, 
the detail discussion of the exceptional elements and the 
void elements is followed in Section III. Next, mathematical 
formulation of the proposed model is illustrated in Section 
IV. In Section V, illustrative examples are shown. Finally, 
the conclusion of this research is provided in Section VI. 
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II. CELL FORMATION PROBLEM 

The Cell Formation (CF) problem concerns with 
designation of part families and machine cells in Cellular 
Manufacturing System (CMS) based on Group Technology 
(GT). The most important problems are classification of 
parts into families and grouping machines into cells [1], [4], 
as shown in Fig. 1. In part family formation, parts can be 
formed based on similar geometry, function, material or 
process requirement to take benefits of their similarities for 
designing and manufacturing purposes. Meanwhile, in 
machine cell formation, dissimilar machines are brought 
together and then dedicated to the involved part family [4]-
[6]. So the CF problem is seemly to decompose a 
manufacturing system into sub-systems [9].   

For solving such problem, the machine-part incidence 

matrix, ija is set in which rows and columns represent 

machines and parts, respectively. The zero-one matrix is 

considered that the (i,j)th element of  ija is 1 if the jth part 

needs to operate on the ith machine and is 0, otherwise. The 
result of part families and machine cells formations is 
obtained as diagonal block.  

As shown in Fig. 2. (a), the machine-part incidence 
matrix of five parts and four machines is created. Each 
column in Fig. 2. (a) represents a set of machines required to 
operate the specific part. For example, part 1 has to operate 
on machine number 2 and 4. After rearranging rows and 
columns, the result of part families and machine cells 
formation can be shown as in the Fig. 2. (b), which can be 
summarized in Table I.    

   

 
Fig. 1.  A cellular manufacturing system with two part families and two 
machine cells. 

 
          Parts                                          Parts
1 2 3 4 5                          1 3 2 4 5

1 1 1 1 1 1 2

1 1 2 1 1 1 4
 Machines    Machines

1 1 3 1 1 1 1

1 1 1 4 1 1 3

 . .
   
   
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   
   
   
                (a)            (b) 
Fig. 2.  The machine-part incidence matrix of five parts and four machines. 
  
 

TABLE I 
RESULTS OF FORMATION OF AN EXAMPLE 

Cell Parts Machines 

1 1,3 2,4 
2 2,4,5 1,3 

 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
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 
 
 
 
 
 
 
 
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 
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Fig. 3.  The perfect grouping. 
 

A perfect grouping of part families and machine cells 
formation is that all 1’s occupy in the diagonal sub-matrices 
and all 0’s are arranged in the off-diagonal sub-matrices as 
shown in Fig. 3 [1]. However, the solution of formation 
depends on the primary input data. Such perfect diagonal 
form may be not always obtained for a given data set or for 
the real-world formation problems. 

As mentioned in the former section, there are many 
existing methods to solve a CF problem. Some of those 
methods emphasize the mutuality in a group of parts or 
machines. Some methods attempt to create the block 
diagonalization of matrices. However, obtaining solutions 
from the existing methods are still inefficient when there are 
many parts and machines to be considered in the CMS. This 
research uses two aspects of the perfect grouping concept. 
Firstly, the optimal solutions of CF should have no any 
‘exceptional element’. Secondly, no ‘void element’ is 
preferred. These two aspects are the important performance 
measures of the perfect grouping. The details of these 
elements are explained in the following section.     

 

III. EXCEPTIONAL ELEMENTS AND VOID ELEMENTS 

Such mentioned previously, the exceptional elements and 
the void elements are considered in this research in order to 
obtain the efficient solution of cell formation by the 
viewpoint of the perfect grouping.   

A. Exceptional Elements 

Exceptional Elements (EE) are often contained in the cell 
formation. They indicate the discrepancies in the sub-
matrices. When the EE occurs, it means that the considered 
part operates on any machines outside the cell. So, the 
degree of interaction between cells can be evaluated by the 
EE. As shown in Fig. 2. (b), the EE is represented by 
element 45a (the element of part 5 that needs to operate on 

machine 4). This element does not belong to the same 
machine cell of the part 5’s family. This kind of interaction 
between cells makes disadvantages in CMS. The decision 
makers have to pay more attention in operations between 
cells. So, the number of EE is required to be minimized in 



 

the formation results. Definitely, the number of EE can be 
quantitatively calculated from (1). 

1 1 1

1

2

pn m

ij ik jk
k i j

EE a x y .
  

            (1) 

Where p parts, m machines and n cells are considered, ikx is 

1 if machine i is assigned to cell k and 0, otherwise. 
Whereas jky is 1 if part j is assigned to cell k and 0, 

otherwise.  

B. Void Elements 

Void Elements (VE) are used to evaluate the compactness 
of a formation within block sub-matrices. The VE can be 
observed easily when part j does not require machine i 
which is the machine in the machine cell of part j’s family. 
This phenomenon indicates that the ineffective solutions 
occur in the sub-matrices because there is a part which does 
not use all machines of the machine cell for example as 
shown in Fig. 2. (b). The element 35a (the element of part 5 

and machine 3) is the VE because part 5 does not require 
machine 3 that is one of the machine in the machine cell for 
part 5’s family. We can clearly see that cell formation will 
be better if part 5 requires machine 3 and it is assigned to 
that cell because that sub-matrix will be a perfect grouping. 
The number of VE can be defined as follow; 

 
1 1 1

1
pn m

ij ik jk
k i j

VE a x y .
  

             (2) 

Both of these elements are important in determining the 
formation results. The details of using these elements in the 
proposed model will be shown and described in the next 
section. 

 

IV. MATHEMATICAL FORMULATION  

In this section, we propose a fuzzy multi-objective 
programming model for concurrent formation of part 
families and machine cells for CMS. The following 
notations are used in the proposed model.  

Index sets: 
 i index for machine, for all i=1,2,…,m. 
 j index for part, for all j=1,2,…,p. 
   k index for cell, for all k=1,2,…,n. 
   g index for objective or goal, for all g=1,2,…,l. 
Decision variables: 

ikx is 1 if machine i is assigned to cell k and 0, otherwise.        

jky is 1 if part j is assigned to family k and 0, otherwise. 

Parameters: 
  ija is 1 if the jth part needs to operate on the ith machine 

and is 0, otherwise.   
 

A. Objective Functions 

This research aims to propose the method for solving the 
cell formation based on a perfect grouping. Two elements of 
a perfect grouping, EE and VE, are considered in the 
proposed model. These elements should not exist in the 
perfect resulting matrix as shown in Fig. 3. So, two 
objective functions can be constructed as follows:  

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1 1 0 0 0 0 0

0 0 0 1 1 1 1 0 1 0 0 0 0 1 0

0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
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Fig. 4.  The expansion of boundary of the sub-matrices. 
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Fig. 5.  The contraction of boundary of the sub-matrices. 

 
The First Objective Function is to Minimize the Number 

of the Exceptional Elements 

1
1 1 1

1
min 

2

pn m

ik jk ij ik jk
k i j

f ( x , y ) a x y .
  

        (3) 

This objective function is concerned in the proposed 
model in order to find the solutions of cell formation that 
have as less as possible of EE. By the idea of a perfect 
grouping, the boundary of each sub-matrix is expanded to 
cover as many as possible numbers of elements in the 
machine-part incidence matrix as illustrated in Fig. 4. Most 
of elements are assigned to sub-matrices which mean that 
less of EE is occurred. 

 
The Second Objective Function is to Minimize the 

Number of the Void Elements 

 2
1 1 1

min 1
pn m

ik jk ij ik jk
k i j

f ( x , y ) a x y .
  

           (4) 

Similarly, the second objective function is considered to 
find the solutions of cell formation that have as less as 
possible of VE. The boundary of each sub-matrix is 
retracted to cover as less as possible number of zero 
elements in each sub-matrix as shown in Fig. 5. Most of 
zero elements are not assigned to the sub-matrices which 
mean that less of VE is occurred. 
 

B. Preemptive Fuzzy Goal Programming 

In Multi-objective functions, several conflicting 
objectives are considered. Such kind of the problem is called 
Multiple Objective Decision Making (MODM) problem. 
Methods to solve this problem are fuzzy linear programming 
[10]-[11], compromise programming [12], [13], interactive 



 

approaches [13], etc. Furthermore, one of the most popular 
methods to solve MODM problems is Goal Programming 
(GP) [12]-[13].  

Generally, GP is concerned with conditions of achieving 
prospective targets or goals. Setting the quantity of goals or 
targets, and constraints are necessary. They are defined 
precisely in GP. But in fact, it is difficult for asking the 
Decision Maker (DM) what achievements are clearly 
desired for each targets or goals. So, the DM cannot 
precisely decide how much the value of targets or goals 
should be set. Appling fuzzy set theory into GP makes 
easiness of allowing vague aspirations of the DMs. Such 
vague target or goal can be defined using membership 
function which is discussed in the following subsections. 

In many MODM problems, some goals are extremely 
important than the others. So, it causes that the DM cannot 
simultaneously consider the attainments of all goals. 
Differentiating goals into different levels of importance, in 
which the high level goal must firstly be satisfied before the 
low level goals get consideration, is called preemptive or 
lexicographic ordering. The fuzzy goal programming with a 
priority structure for ordering goals is called “Preemptive 
Fuzzy Goal Programming (P-FGP)” [14], [15]. The P-FGP 
model can be shown as follows, 

lex max [p ,p ,...,p ],1 1 2 2 t t= f ( ) f ( ) f ( )        (5) 

subject to  

  * ,g g            for all g.       (6) 

  
δ δ =1,- +

g g g         for all g.       (7) 

  
Δ (δ δ ) ,- +

g g g g gf ( ) =  
  

for all g.       (8) 

 [0,1]g          for all g.       (9)
 

δ δ 0,- +
g g,  δ δ 0,- +

g g =     for all g.     (10) 

Where g is the satisfactory level of goal g. *
g is the 

acceptable satisfactory level of goal g. +
g and g

 are the 

positive and negative deviations of the satisfactory level of 
goal g.  

In the P-FGP, there exist T priority levels (each priority 
may include mg  goals for  g = 1,2,...,l ) that preemptive 

weights are p pt t+1 whereas tf ( ) is the satisfactory 

function of priority t. The problem is then partitioned into T 
sub-problems or T fuzzy goal programming. For easiness, 
the goals are ranked in agreement with the following rule: if
r s < , then the goal set rG (x)  has higher priority than the 

goal set sG (x) [15]. 

 

C. Membership Function 

In this research, fuzzy set is applied to each goal of 
objective function. Defining membership function of each 
goal is based on the Positive-Ideal Solution (PIS) and the 
Negative-Ideal Solution (NIS) [16]-[18]. The PIS is the best 
possible solution  *A  when each objective function is 

optimized. The NIS is the feasible and worst value  A of 

each objective function as shown in Fig. 6. Assume that a 
triangular membership functions is used for each goal.  

 
Fig. 6.  The PIS and NIS of the two-dimensional space. 
 

(z )g

zg

g

1

0
g g  

g g  

gg

 
Fig. 7.  The triangular membership function of gth goal. 

 
In the proposed model, the first goal is to minimize the 

number of EE to the most preferred value. Similarly, the 
second goal is to minimize the number of VE to the most 
preferred value. According to the DM’s viewpoint, PIS is 
used to set the most preferred value and has the satisfactory 
degree of 1. By the same way, the satisfactory degree of 0 is 
assigned to the NIS. Acceptable deviation from the goal can 
be calculated from the difference between PIS and NIS or it 
can be evaluated by DM. Then, the triangular membership 
function of the gth goal based on the DM’s preference can 
be shown as Fig. 7. Mathematical representation of the 
membership function can be represented by (11). 
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
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   (11) 

where (z )g is the membership function of the gth goal. g  

is the specified target for the gth goal, assigned by the PIS.
Δ PIS-NIS  g  is the acceptable deviation of the gth goal.  

 

D. The Proposed Formulation Model  

The proposed model has two fuzzy goals. The satisfactory 
level ( g ) of each goal needs to be satisfied consecutively. 

In this research, the first goal related to the number of EE is 
defined more important than the second goal related to the 
number of VE because it is inefficient if there are some of 



 

elements which are assigned outside the cells. But it is 
acceptable if there are some parts which do not require some 
machines in cells. So, EE is considered more crucial than 
VE. Then, two priority levels are constructed. However, 
designing the target of each goal is difficult. Then, the P-
FGP is applied to the proposed model to make easiness by 
allowing vague aspirations of the DM. Fuzzy goal equations 
can be derived as follows, 

Δ (δ δ ) ,- +
1 ik jk 1 1 1 1f (x , y ) =                 (12) 

Δ (δ δ )- +
2 ik jk 2 2 2 2f (x , y ) = .           (13) 

Finally, the Fuzzy Multi-objective Programming (FMOP) 
model for concurrent formation of part families and machine 
cells for CMS can be shown as, 

lex max [ , ],1 2=               (14) 

subject to  

  * ,g g         for all g.       (15) 

  (z ),g g       for all g.            (16) 

 
 

δ δ 1,- +
g g g      for all g.          (17) 

  
1

Δ (δ δ ) ,
2

pn m
- +

ij ik jk 1 1 1 1
k=1i=1 j=1

a x - y =       (18) 

 
 1 Δ (δ δ ) ,

pn m
- +

ij ik jk 2 2 2 2
k=1i=1 j=1

a x y =        (19)

1,
n

ik
k

x =      for all i.       (20) 

 
1,

n

jk
k

y =      for all j.       (21) 

  
, = 0 or 1,ik jkx y    for all i, j and k.    (22) 

  , 0,- +
g g        for all g.       (23) 

  0,- +
g g =       for all g.       (24) 

[0,1],g       for all g.       (25) 

Equations (15)-(17) are the satisfactory level of each goal. 
The fuzzy goal constraints are shown in (18) and (19). 
Equations (20)-(22) are added to ensure that each machine 
and each part will be assigned to only one cell. Non-
negative constraints are represented by (23) and (24). The 
satisfactory level of each goal is limited to values between 0 
and 1 as shown in (25). 

The efficient solutions of ‘concurrent formation’ can be 
obtained by the propose model. For explanation, the 
formation of part families and machine cells can be solved 
simultaneously by ikx and jky . Some of existing methods 

for solving these problems have to assign machines or parts 
into group before assigning another group [3], [7], [9], 
which are complicated and tedious. While some of them 
may not be able to obtain the efficient results [2], [7]. 

 

V. ILLUSTRATIVE EXAMPLES 

To demonstrate the capability of the proposed model, two 
numerical examples proposed in the literatures are used. The 
solutions obtained from the proposed model will be 
compared to one which gained from the conventional 
methods in the aspect of efficiency and easiness to apply.   

          Parts                                          Parts
1 2 3 4 5                          1 3 2 4 5

1 1 1 1 1 1 2

1 1 2 1 1 4
Machines    Machines

1 1 3 1 1

 .

1 1

1 1 4 1 1 3

.
   
   
   
   
   
   
                (a)            (b) 
Fig. 8.  The machine-part incidence matrix of the example I. 
 
Example I 

Consider a part families and machine cell formation 
problems with five parts, four machines, two cells and nine 
processes introduced by Kusiak (1987) [9]. The incidence 
matrix can be shown as in Fig. 8. (a). By using p-median 
model as mentioned in [9] to solve this problem, the optimal 
solution can be found as shown in Fig. 8. (b).  

In applying the proposed model to the problem, firstly we 
need to find the PIS and NIS of each objective for setting 
the goals as mentioned in Section IV. So the first goal is set 

to be zero of EE  01  and acceptable allowance of the 

first goal is 9  Δ 91  . Similarly, the second goal is set to 

be zero of VE  02  and acceptable allowance of the 

second goal is 11  Δ 112  . An acceptable satisfaction level 

of the first goal is set to 0.9  * 0.91  in this example. So, 

the expression of the proposed FMOP model for this 
problem can be shown as follows, 

lex max [ , ],1 2=                

subject to  
  0.9,1          

  
z 0

1 ,
9

1
1

     
 

              

   
z 0

1 ,
11
2

2
     

 
   

  δ δ 1,- +
1 1 1     

  δ δ 1,- +
2 2 2     

  
2 4 51

9(δ δ ) 0,
2

- +
ij ik jk 1 1

k=1i=1 j=1
a x - y =        

 
 

2 4 5
1 11(δ δ ) 0,- +

ij ik jk 2 2
k=1i=1 j=1

a x y =      
 

 
1,

2

ik
k

x =      for all i.        

 
1,

2

jk
k

y =      for all j.        

  
, = 0 or 1,ik jkx y    for all i, j and k.     

  , , , 0,- + - +
1 1 2 2      , 0,- + - +

1 1 2 2 =    , [0,1].1 2    
The result obtained from the proposed model is the same 

with the one that solved by p-median model as shown in 
Fig. 8. (b). However, by the p-median model, forming of 
part families and machine cells requires two steps of 
solving. Firstly, parts are assigned to each group. Secondly, 
machines are assigned into cells. In contrary, the proposed 
model can obtain the concurrent results which parts and 



 

machines are assigned into cells at the same time. It is easier 
than the p-median model. 

 
Example II 

For illustrating the larger scale of the problem, the cell 
formation problem with eleven parts, seven machines, three 
cells and twenty-seven processes are considered. This 
problem is modified from one which was presented in 
Boctor (1991) [7]. The incidence matrix can be shown as in 
Fig. 9. (a). 

By the same way, the result by heuristic method of Boctor 
(1991) obtains the solution as shown in Fig. 9. (b). By our 
proposed model (14)-(25) at a satisfaction level of 0.7 can 
obtain the efficient solution as presented in Fig. 9. (c). The 
solution clearly shows that more compact cells can be 
existed by the proposed model. The EE still be five by using 
both existing method and the proposed method as shown in 
Fig. 9. (b), but the VE are decreased from three to only two 
by using the proposed model. Comparing to the heuristic 
approach presented in [7], the proposed model is not only 
easy and efficient but also guarantees the optimal solution. 
But, the heuristic approach does not guarantee to obtain an 
efficient solution. Additionally by using the proposed 

model, planner can adjust *
g to find the preferred solution. 

 

VI. CONCLUSION 

In this research, a fuzzy multi-objective programming 
model for concurrent formation of part families and machine 
cells for a cellular manufacturing system is developed. This 
proposed model is applied for assigning parts into families 
and grouping machines into cells, simultaneously. 
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(c) 
Fig. 9.  The machine-part incidence matrix of the example II.   

Conventionally, p-median model is used. It requires two 
processes to solve part family problem and machine cell 
problem, respectively. Heuristic approaches are also used. 
However, an efficient solution is not guarantee. In the 
proposed model, two objective functions based on the 
perfect grouping; the exceptional elements and void 
elements, are set as fuzzy goals for increasing the capability 
and efficiency. Lexicographic fuzzy goal programming are 
applied to formulate this efficient model for solving the cell 
formation problem, which is better than the solution from p-
median and the heuristic approach because of it is easy to 
use and efficient solution can be obtained. Cell formation of 
the proposed method can increase machine utilization due to 
reducing of void elements and can reduce unassignable 
processes by reducing exceptional elements. 

 For further studies, the other viewpoint of perfect 
grouping will be considered to enhance the performance of 
the formation method. 
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