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Abstract—Effect of a non-uniform basic temperature gra-
dient and magnetic field on the onset of B́enard-Marangoni
convection in a horizontal micropolar fluid layer bounded below
by a rigid plate and above by non-deformable free surface
subjected to a constant heat flux is studied. The lower rigid
surface and the upper non-deformable surface are assumed to
be perfectly insulating. Six different non-uniform basic state
temperature profiles are considered. The resulting eigenvalue
problem is solved using the Rayleigh-Ritz technique, and the
influence of various parameters on the onset of convection is
discussed.

Index Terms—Bénard-Marangoni convection, magnetic field,
non-uniform temperature, micropolar fluid.

I. I NTRODUCTION

T HE theory and modelling of materials processing in
the microgravity environment has stirred a huge inter-

est recently. The introduction of micronsized magnetically-
inert suspended particles is the most popular thinking for
the past two decades. These micronsized magnetically-inert
suspended particles have identified themselves to the point
of camouflage which is with the magnetically responding
carrier fluids. These points are described to the applications
involving magneto convection. The micropolar fluid theory
which takes into account the inertial characteristics of the
substructure particles which are allowed to undergo rotation
has been proposed by Eringen[1] and was developed by
Eringen [2].

There has been several investigations dealing with thermal
instability of micropolar fluid heated from below. Siddheswar
and Pranesh [3] studied the effect of non-uniform tem-
perature gradient and magnetic field on Benard-Marangoni
convection in micropolar fluid and they found that the distur-
bance can be stabilized with a sufficiently strong magnetic
field. Effect of suction-injection-combination and magnetic
field on Benard convection in micropolar fluid has been
discussed in Pranesh [4]. The effects of non-uniform temper-
ature profiles on Marangoni convection in micropolar fluid
confined between an upper free, constant heat flux boundary,
and a lower rigid isothermal boundary is addressed by
Rudraiah and Siddheshwar [5]. They found that micropolar
fluid heated from below is more stable compared to the
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viscous fluid. Recently, the effect of non-uniform temperature
gradient and magnetic field on Marangoni convection in a
micropolar fluid layer with a prescribed heat flux at its lower
boundary has been discussed by Fu et al. [6].

The instabilities of B́enard-Marangoni convection have
been investigated in many previous works. However, little
research has been studied in the case of a constant heat flux
at lower boundary in which no perturbation in the heat flux
is allowed. Very recently, Isa et al. [7] and [8] have analyzed
the effect of non-uniform temperature and magnetic field on
Marangoni and B́enard-Marangoni convection in a horizontal
viscous fluid layer subject to a constant heat flux from below.
Motivated by these previous works, we aim to study the
effect of non-uniform temperature gradient and magnetic
field on B́enard-Marangoni convection in a micropolar fluid
subject to a constant heat flux at a lower boundary. The
linear stability theory is applied and the resulting eigenvalue
problem is solved using the single-term Galerkin expansion.

II. M ATHEMATICAL FORMULATION

We consider an infinite horizontal layer of Boussinesquian
electrically conducting micropolar fluid of thickness d. The
lower boundary is assumed to be rigid, while the upper
free surface which is in contact with air and subjected to
temperature-dependent surface tension forces is assumed to
be flat and nondeformable. We use Cartesian coordinates
with two horizontalx− andy− axis located at the lower solid
boundary and a positivez− axis is directed towards the free
surface. The magnetic field,H0 acts in thez− direction. Let
∆T be the temperature difference between lower and upper
boundaries of the fluid. The interface at the upper boundary
has a temperature dependent surface tensionσ(T ) given by

σ = σ0 − σ1(T − T0), (1)

where σ0 is the unperturbed value ofσ and σ1 =
− (dσ/dT )T0

.
We follow the governing equations presented by Siddhesh-

war and Pranesh [3]:
Continuity equation

∇ · q = 0. (2)

Conservation of linear momentum

ρ0

[
∂~q

∂t
+ (~q · ∇) ~q

]
= −∇P − ρ~gk̂ + (2ζ + η)∇2~q

+ ζ∇× ~ω + µm

(
~H · ∇

)
~H. (3)



Conservation of angular momentum

ρ0I

[
∂~ω

∂t
+ (~q · ∇) ~ω

]
=

(
λ
′
+ η

′)∇ (∇ · ~ω)

+ η
′∇2~ω + ζ (∇× ~q − 2~ω) . (4)

Conservation of energy

∂T

∂t
+

(
~q − β

ρ0Cν
∇× ~ω

)
· ∇T = χ∇2T. (5)

Equation of state

ρ = ρ0 [1− α (T − T0)] . (6)

Magnetic induction equation

∂ ~H

∂t
+ (~q · ∇) ~H =

(
~H · ∇

)
~q + γm∇2 ~H. (7)

where~q is the velocity,~ω is the spin,T is the temperature,
~H is the magnetic field,P = p + (µm/2)H2 is the
hydromagnetic pressure,ρ is the density,ρ0 is the density
of the fluid at a reference temperatureT = T0, ~g is
the acceleration due to gravity,ζ is the coupling viscosity
coefficient or vortex viscosity,η is the shear kinematic
viscosity coefficient,I is the moment of inertia,λ

′
and η

′

are the bulk and shear spin viscosity coefficient,β is the
micropolar heat conduction coefficient,Cν is the specific
heat,χ is the thermal conductivity,α is the coefficient of
thermal expansion andγm = 1/µmσm is the magnetic
viscosity (whereµm is the magnetic permeability andσm

is the electrical conductivity). We note that all material
coefficients are all positive quantities and restricted on the
assumption of the Clausius-Duhem inequality (Eringen [2]).

Equations (2) - (7) are solved subject to the boundary
conditions appropriate to a rigid and thermally perfect in-
sulating wall at the lower boundary and by a free surface at
the upper boundary of the micropolar fluid. The free surface
is subject to an adiabatic condition (constant heat flux).
Since the shear stress for micropolar fluid is no different
from that of viscous fluid, the boundary condition for the
flat free boundaries in respect of Newtonian fluids are also
appropriate for micropolar fluid. In addition, we assume the
spin-vanishing boundary condition at the boundaries.

The basic state is given by

~qb = 0, ~ωb = 0, ~Hb = H0k̂,

p = pb(z), ρ = ρb(z), − d

∆T

dTb

dz
= f(z). (8)

In equation (8), the non-uniformity inTb finds its origin
in transient heating or cooling at the boundaries of the
fluid layer (Rudraiah and Siddheshwar [5]). Nondimensional
temperature gradientf(z) must satisfy the condition

∫ 1

0

f(z)dz = 1.

To investigate the effect of the non-uniform temperature
gradient on the convection, six types of basic temperature
profile are chosen and these have been presented in Table I
as modeli = 1− 6 (see Rudraiah and Siddheshwar [5]).

We express the perturbation quantities as normal modes
in the form

[W, Ω, T, Hz] = [W (z, t), G(z, t), T (z, t), Hz(z, t)]
exp [i(lx + my)] , (9)

TABLE I
REFERENCE STEADY-STATE TEMPERATURE GRADIENT(δ =DIRAC

DELTA-FUNCTION, ε = TIME DEPENDENT THERMAL DEPTH

PARAMETER).

Model (i) Reference steady-state temperature gradientf(z)

1 Linear 1

2 Inverted parabola 2(1− z)

3 Parabola 2z

4 Step function δ(z − ε)

5 Piecewise linear (heated from below) ε−1 for 0 ≤ z < ε,
0 for ε < z ≤ 1.

6 Piecewise linear (cooled from above) 0 for 0 ≤ z < 1− ε,
ε−1 for 1− ε < z ≤ 1.

where l and m are horizontal components of the wave
number~a. The amplitudes of the perturbations of velocity,
spin and temperature defined to beW (z, t), G(z, t) and
T (z, t) respectively. This expression is used in the linearized
version of the basic equation. Then, we make the resulting
equations dimensionless by using the following definitions:

(x∗, y∗, z∗) =
(x, y, z)

d
, ~q ∗ =

~q
′

χ/d
,

~ω ∗ =
~ω
′

χ/d2
, T ∗ =

T
′

∆T
, ~H ∗ =

~H
′

H0
. (10)

We assume the principle of exchange of stability is valid
and our present analysis deals with stationary convection.
Then we yield

(1 + N1)
(
D2 − a2

)2
W + N1

(
D2 − a2

)
G− a2RT

−QD2W = 0, (11)

N1

(
D2 − a2

)
W −N3

(
D2 − a2

)
G + 2N1G = 0, (12)

(
D2 − a2

)
T + f(z) (W −N5G) = 0, (13)

whereD ≡ d/dz and the asterisks have been dropped for
simplicity. From (11) - (13), we have three non-dimensional
groups given by:
Coupling Parameter

N1 =
ζ

ζ + η
(0 ≤ N1 ≤ 1)

Couple Stress Parameter

N3 =
η
′

(ζ + η) d2
(0 ≤ N3 ≤ m)

Heat Conduction Parameter

N5 =
β

ρ0Cνd2
(0 ≤ N5 ≤ n)

wherem andn are finite, positive real numbers. The range of
values ofN1, N3 andN5 is guided by the Clausius-Duhem
inequality (Eringen [2]).

Equations (11) - (13) subject to

W = DW = DT = G = 0 at z = 0

W = D2W + a2MT = DT = G = 0 at z = 1 (14)



whereM = σT ∆Td/µχ is the Marangoni number. Equation
(14) refers to the case of rigid, adiabatic conditions at the
lower rigid boundary(z = 0), and constant heat flux at the
free surface(z = 1) of the micropolar fluid. The condition
on G is the spin-vanishing boundary condition.

To solve the problem, we use a single term Galerkin
technique to find the critical eigen value. Firstly, we multiply
equations (11), (12) and (13) byW , G, andT , respectively.
From the resulting equations, we perform the integration by
parts with respect toz from 0 to 1 and we use the boundary
conditions (14). Then, we takeW = AW1, G = BG1

and T = CT1 in which A, B and C are constants and
W1 = z2 − z3, G1 = z − z2 andT1 = 1 are trial functions.
The trial functions will be generally chosen in such a way
that they satisfy all the boundary conditions except the one
given byD2W +a2MT = 0 at z = 1, but the residual from
this is included in the residual from the differential equations.
Finally, we obtain the following equation for the eigen value:

M =
[
8b1 [(1 + N1) b2 + 14Q]− 7N2

1 b2
3

420 (1 + N1) b4

]
− R

12 (1 + N1)
,

(15)
where
b1 = N3b3 + 2N1,
b2 = 420 + 28a2 + a4,
b3 = 10 + a2,
b4 = 2b1

〈
f(z)

(
z2 − z3

)〉−N5N1b3

〈
f(z)

(
z − z2

)〉
.

In b4, 〈...〉 denotes integration with respect to z between
z = 0 andz = 1.

III. R ESULTS AND DISCUSSIONS

In this paper, we study the effect of six types of basic
temperature profiles (i = 1−6) and vertical magnetic field on
the onset of B́enard-Marangoni convection with non-slip and
adiabatic condition at the bottom boundary of the micropolar
fluid layer. The single Galerkin procedure provides a good
method for establishing this problem. Table II show the
critical Marangoni numberMc for different non-uniform
temperature profiles whenQ = 10. From Table II, it can
be seen that the increasing values of critical Marangoni
number is due to the increasing ofN1 and increase inN1

indicates the increase in the concentration of microelements,
and as a result coupling parameter stabilized the system. The
corresponding effect of the large magnetic field (Q = 1000)
and coupling parameter on the onset of convection may be
viewed in Table III. In Table III,Mc for step function,
piecewise linear (cooled from above) and parabola profiles
decrease monotonically with the increasing ofN1. So, it
prove that the criticalMc for micropolar will always less
than the Newtonian value for these 3 temperature profiles.

IV. CONCLUSION

In the present paper the problem on combined effect of
the non-uniform temperature gradient and magnetic field on
the onset of B́enard-Marangoni convection in a micropolar
fluid layer heated from below is investigated. We found
that the critical Marangoni number increases with increas-
ing Chandrasekhar number for all non-uniform temperature
considered. We can conclude that it is possible to delay
the onset of convection by the application of an inverted
parabola profile and imposed of magnetic field. As expected,

the electrically conducting micropolar fluid layer heated from
below is more stable compared to the Newtonian fluid.
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TABLE II
CRITICAL MARANGONI NUMBER Mc FOR VARIOUS VALUES OFN1 AND

R WHEN Q = 10, N3 = 2.0 AND N5 = 1.0.

Q N1 ac R (Mc)4 (Mc)6 (Mc)3 (Mc)5 (Mc)1 (Mc)2

10 0 0 0 36.000 46.390 53.333 60.750 64.000 80.000

200.000 19.334 29.723 36.667 44.083 47.333 63.333

432.000 0 10.390 17.333 24.750 28.000 44.000

556.679 0 6.943 14.360 17.610 33.610

640.000 0 7.417 10.667 27.000

729.000 0 3.250 19.250

768.000 0 16.000

960.000 0

0.5 0 40.115 51.703 60.908 73.709 76.896 104.266

200.000 29.004 40.592 49.796 62.598 65.785 93.154

722.074 0 11.588 20.792 33.594 36.781 64.150

930.650 0 9.205 22.007 25.193 52.563

1096.337 0 12.802 15.988 43.358

1326.770 0 3.186 30.556

1384.125 0 27.370

1876.780 0

1.0 0 47.587 61.349 74.817 99.648 102.250 161.447

200.000 39.254 53.016 66.484 91.314 93.917 153.114

1142.085 0 13.762 27.230 52.061 54.663 113.861

1472.377 0 13.468 38.299 40.901 100.098

1795.610 0 24.831 27.433 86.630

2391.546 0 2.602 61.800

2454.000 0 59.197

3874.737 0

TABLE III
CRITICAL MARANGONI NUMBER Mc FOR VARIOUS VALUES OFN1 AND

R WHEN Q = 1000, N3 = 2.0 AND N5 = 1.0.

Q N1 ac R (Mc)4 (Mc)6 (Mc)3 (Mc)5 (Mc)1 (Mc)2

103 0 0 0 927.001 1194.540 1373.333 1564.313 1648.000 2060.000

200.000 910.334 1177.873 1356.667 1547.646 1631.333 2043.333

11124.010 0 267.539 446.333 637.312 720.999 1132.999

14334.480 0 178.793 369.773 453.460 865.460

16480.000 0 190.979 274.667 686.667

18771.750 0 83.687 495.687

19776.000 0 412.000

24720.000 0

0.5 0 763.168 983.614 1158.729 1402.277 1462.896 1983.588

200.000 752.057 972.503 1147.618 1391.166 1451.785 1972.476

13737.020 0 220.446 395.562 639.109 699.728 1220.420

17705.050 0 175.116 418.663 479.282 999.974

20857.130 0 243.547 304.167 824.858

25240.980 0 60.619 581.311

26332.120 0 520.692

35704.580 0

1.0 0 723.344 932.535 1137.256 1514.695 1554.250 2454.079

200.000 715.010 924.202 1128.923 1506.361 1545.917 2445.746

17360.250 0 209.192 413.912 791.351 830.906 1730.735

22380.850 0 204.721 582.159 621.715 1521.544

27294.150 0 377.439 416.994 1316.823

36352.670 0 39.555 939.384

37302.000 0 899.829

58897.890 0




