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Abstract: The norm of elastic constant tensor and the norms 
of the irreducible parts of the elastic constants of Copper, 
Silver and Gold metals and Copper-Gold and Silver-Gold 
alloys at different percentages of Gold are calculated. The 
relation of the scalar parts norm and the other parts norms 
and the anisotropy of these metals and their alloys are 
presented. The norm ratios are used to study anisotropy of 
these metals and their alloys.    
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I. ELASTIC CONSTANT TENSOR DECOMPOSITION 

   The constitutive relation characterizing linear 
anisotropic solids is the generalized Hook’s law [1]: 

klijklij C   , klijklij S                   (1) 

Where ij  and kl are the symmetric second rank 

stress and strain tensors, respectively ijklC is the 

fourth-rank elastic stiffness tensor (here after we call 
it elastic constant tensor) and ijklS  is the elastic 

compliance tensor. 

There are three index symmetry restrictions on these 
tensors. These conditions are: 

jiklijkl CC  , ijlkijkl CC  , klijijkl CC                     (2) 

Which the first equality comes from the symmetry 
of stress tensor, the second one from the symmetry 
of strain tensor, and the third one is due to the 
presence of a deformation potential. In general, a 
fourth-rank tensor has 81 elements. The index 
symmetry conditions (2) reduce this number to 81. 
Consequently, for most asymmetric materials 
(triclinic symmetry) the elastic constant tensor has 
21 independent components.  

Elastic compliance tensor ijklS  possesses the same 

symmetry properties as the elastic constant tensor 

ijklC  and their connection is given by [2,3,4,5]: 

klmnijkl SC =  jminjnim  
2

1
                                  (3) 
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Where ij  is the Kronecker delta. The Einstein 

summation convention over repeated indices is used 
and indices run from 1 to 3 unless otherwise stated.  

By applying the symmetry conditions (2) to the 
decomposition results obtained for a general fourth-
rank tensor, the following reduction spectrum for the 
elastic constant tensor is obtained. It contains two 
scalars, two deviators, and one-nonor parts: 

     1;22;01;0
ijklijklijklijkl CCCC     

                                                      1;42;2
ijklijkl CC          (4)                    

Where: 

 
ppqqklijijkl CC 

9

11;0  ,                                (5) 

   klijjkiljlikijklC  233
90

12;0   

                                                       ppqqpqpq CC 3    (6) 

   ipkpjljpkpiliplpjkjplpikijkl CCCCC  
5

11;2  

                            pqpqjkiljlik C 
15

2
              (7) 

     ipjpijppklkplpklppijijkl CCCCC 45
7

1
45

7

12;2  

 

      ipkpikppjljplpjlppik CCCC 45
35

2
45

35

2
   

      iplpilppjkiplpjkppil CCCC 45
35

2
45

35

2
   

                              klijjlikiljk  522
105

2
  

                                           pqpqppqq CC 45               (8) 

  )(
3

11;4
iljkikjlijklijkl CCCC   

             jplpjlppikkplpklppij CCCC 22
21

1
   



                    iplpilppjkjpkpjkppil CCCC 22    

              ipkpikppjl CC 2   ipjpijppkl CC 2 ] 

   pqpqppqqjkiljlikklij CC 2
105

1
  (9) 

 

These parts are orthonormal to each other. Using 
Voigt’s notation [1] for ijklC , can be expressed in 6 

by 6 reduced matrix notation, where the matrix 
coefficients c are connected with the tensor 

components ijklC  by the recalculation rules: 

ijklCc  ;      )6,....,1,6,....,1(   klij  

That is: 

111 , 222  , 333 , 43223 
51331  , 62112  . 

II. THE NORM CONCEPT 

Generalizing the concept of the modulus of a vector, 
norm of a Cartesian tensor (or the modulus of a 
tensor) is defined as the square root of the contracted 
product over all indices with itself: 

                                      

  2/1
..................... ijklijkl TTTN   

Denoting rank-n Cartesian ..........ijklT , by nT , the 

square of the norm is expressed as [5]: 

 
     

 
 
 

  
  
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n
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qj TTTTTTN
,,

,;2

,

;22  

This definition is consistent with the reduction of the 
tensor in tensor in Cartesian formulation when all 
the irreducible parts are embedded in the original 
rank-n tensor space. 

Since the norm of a Cartesian tensor is an invariant 
quantity, we suggest the following: 

Rule1. The norm of a Cartesian tensor may be used 
as a criterion for representing and comparing the 
overall effect of a certain property of the same or 
different symmetry. The larger the norm value, the 
more effective the property is. 

It is known that the anisotropy of the materials, i.e., 
the symmetry group of the material and the 
anisotropy of the measured property depicted in the 

same materials may be quite different. Obviously, 
the property, tensor must show, at least, the 
symmetry of the material. For example, a property, 
which is measured in a material, can almost be 

isotropic but the material symmetry group itself may 
have very few symmetry elements. We know that, 
for isotropic materials, the elastic compliance tensor 
has two irreducible parts, i.e., two scalar parts, so 
the norm of the elastic compliance tensor for 
isotropic materials depends only on the norm of the 

scalar parts, i.e. sNN  , Hence, the ratio 1
N

Ns  

for isotropic materials. For anisotropic materials, the 
elastic constant tensor additionally contains two 
deviator parts and one nonor part, so we can define 

N

Nd  for the deviator irreducible parts and 
N

Nn  for 

nonor parts. Generalizing this to irreducible tensors 
up to rank four, we can define the following norm 

ratios: 
N

Ns  for scalar parts, 
N

Nv for vector parts, 

N

Nd  for deviator parts, 
N

Nsc  for septor parts, and 

N

Nn  for nonor parts. Norm ratios of different 

irreducible parts represent the anisotropy of that 
particular irreducible part they can also be used to 

asses the anisotropy degree of a material property as 
a whole, we suggest the following two more rules: 

Rule 2. When sN  is dominating among norms of 

irreducible parts: the closer the norm ratio 
N

Ns  is  

to one, the closer the material property is isotropic. 

Rule3. When sN  is not dominating or not present, 

norms of the other irreducible parts can be used as a 
criterion. But in this case the situation is reverse; the  

larger the norm ratio value we have, the more 
anisotropic the material property is. 

The square of the norm of the elastic stiffness tensor 
(elastic constant tensor) mnC  is: 

      
mn mn

mnmn CCN
22;021;02

 

                22;221;22;01;0 .2   mn
mn

mn
mn

mnmn CCCC  

             21;42;21;2 .2  
mn

mn
mn

mnmn CCC                    (10) 

Let us consider the irreducible decompositions of 
the elastic stiffness tensor (elastic constant tensor) in 
the following elements and alloys: 

  



By using table1, table 2, and table 3 and the 
decomposition of the elastic constant tensor, we 
have calculated the norms and the norm ratios as is 
shown in table 4, table 5 and in table 6. 

 

 

Table 1, Elastic Constants (GPa), [2]  

Element, Cubic System 
11c  44c  12c  

Gold, Au 190 42.3 161 

Silver, Ag 122.2 46.1 91.8 

Copper, Cu 169 75.3 122 

Table 2, Elastic Constants (GPa) [2] 

Alloy, Cubic System Copper -Gold, 
Cu-Au,At % Gold 11c  44c  12c  

0.23 170.0 74.2 123.3 

2.8 169.2 73.9 123.9 

10 174.7 73.1 131.0 

50 188.3 41.5 150.3 

80 191.3 47.5 156.3 

 

Table 3, Elastic Constants (GPa) [2] 

Alloy, Cubic System Silver-Gold, 
Ag-Au,At % Gold 11c  44c  12c  

2 123.7 46.9 93.0 

4 124.1 47.3 92.8 

25 138.5 48.7 104.5 

50 147.7 50.8 113.0 

75 166.5 48.6 132.5 

  

 

Table 4, the norms and norm ratios 

Element sN  dN  nN  N  
N

N s  
N

N d  
N

N n  

Gold, Au 522.339 0 50.958 524.819 0.9953 0 0.0971 

Silver, Ag 326.352 0 54.624 330.892 0.9863 0 0.1651 

Copper, Cu 450.929 0 94.951 460.818 0.9785 0 0.2061 

 

Table 4, the norms and norm ratios 

Element sN  dN  nN  N  
N

N s
 

N

N d
 

N

N n
 

Gold, Au 522.339 0 50.958 524.819 0.9953 0 0.0971 

Silver, Ag 326.352 0 54.624 330.892 0.9863 0 0.1651 

Copper, Cu 450.929 0 94.951 460.818 0.9785 0 0.2061 

Table 5, the norms and norm ratios 

Alloy, Cubic System 
Copper -Gold, Cu-Au,At 
% Gold 

sN  dN  nN  N  
N

N s
 

N

N d
 

N

N n
 

0.23 453.283 0 93.210 462.767 0.9795 0 0.2014 

2.8 453.052 0 93.943 462.689 0.9792 0 0.2030 

10 470.257 0 93.943 479.548 0.9806 0 0.1959 

50 500.642 0 41.243 502.337 0.9966 0 0.0821 

80 517.473 0 54.991 520.386 0.9944 0 0.1057 



Table 6, the norms and norm ratios 

Alloy, Cubic System 
Silver-Gold, Ag-Au,At % 
Gold 

sN  dN  nN  N  
N

N s
 

N

Nd
 

N

Nn
 

2 329.910 0 57.832 334.940 0.9850 0 0.1727 

4 330.323 0 58.015 335.379 0.9849 0 0.1730 

25 367.462 0 58.107 372.028 0.9877 0 0.1562 

50 393.77 0 61.315 398.515 0.9881 0 0.1539 

75 447.679 0 57.924 451.411 0.9917 0 0.1283 

 

 

III. CONCLUSION 

We can conclude from table 4, by considering the 

ratio 
N

Ns  that Gold, is more isotropic than Silver, 

and Silver is more isotropic than Copper and by 
considering the value of N we found that this value 
is more high for Gold than Copper and this value for 
Copper is more high than Silver so we can say that 
Gold elastically is more strong than Copper, and 
Copper elastically is more strong than Silver.  

 And we can conclude  from table 5 by considering 

the ratio 
N

Ns  that in the Alloy Cu-Au as the 

percentage of Au increases (from 0.23% to 2.8%) 
the anisotropy of the alloy increases, but as the 
percentage of Au  increases (from 2.8% tom %50) 
the anisotropy decreases and as the percentage of Au 
(from 50% to 80%) the anisotropy increases, and by 
considering the value of N  as the percentage of Au 
increases (from 2.8 % to 80%), the value of  
N increases so we can say that the alloy becomes 
elastically more strongest.  

  And we can conclude from table 6 by considering 

the ratio 
N

Ns  that in the Alloy Ag-Au as the 

percentage of Au increases (from 2%  

and 4% to 75%) the anisotropy of the alloy 
decreases , and by considering the value of N  as 
the percentage of Au increases (from 2% to 75%), 
the value of  N increases so we can say that the 
alloy becomes elastically more strongest.  
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