
 
 

 

 
Abstract — Small bias and high robustness at optimal variable 

settings are desirable properties to all the responses involved in a 
multiresponse optimization problem. An approach that considers 
those properties and can be easily used by practitioners is presented. 
Its feasibility is illustrated through two examples from the literature 
and the results compared with those of other popular and effective 
methods. 
 

Index Terms — Compromise programming, Loss function, 
Robustness, RSM, Variance.  
 

I. INTRODUCTION 

PTIMIZATION of systems (processes and products) 
often involves incommensurate and conflicting quality 

characteristics (responses). Those responses must in some 
sense be optimized simultaneously because a separate 
analysis of them may result in incompatible solutions. For 
example, it is of common knowledge that as the dose of a 
drug increases, so do its efficacy and toxic side effects. 
However, in problems where both efficacy and toxicity 
responses are measured at each dose, the efficacy response is 
optimized at a higher dose level, whereas the toxicity 
response is minimized at a lower dose level. This makes 
difficult to identify the dose level of the drug that are optimal 
for both responses, because the objective must be to find the 
dose level that simultaneously maximize efficacy while 
minimizing toxicity [1]. 

Besides the optimization of multiple mean responses, the 
dual and multiple dual response problems, where the 
objective is to optimize the mean and variance of single and 
multiple responses, respectively, are also common in 
practice. Systems variability cannot be ignored, because it 
results in non-conforming product or poor process 
performance. Such as Kim and Lin [2] showed, unacceptable 
compromise solutions are achieved if the analyst focuses on 
mean and ignores the responses variability. 

Various approaches that consider the responses variance 
level and exploit the responses correlation information in 
addition to process economics (feasibility of assigning 
priorities to individual responses based on either technical 
and economic considerations or decision-maker’s 
preferences) have been used in the Response Surface 
Methodology (RSM) framework. The Capability Index [3], 
Goal Programming [4], Physical Programming [5], Neural 
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Networks [6], Probability-based [7] are examples of those 
approaches. All of them have their own merits. However, the 
lack of recommendations for proper use, unavailability of the 
algorithms employed, and inherent (mathematical/statistical) 
complexity of some existing approaches and methods are 
major reasons by which they are of little practical use or 
appealing to non-statistician practitioners.  

This article aims at achieving desirable response properties 
at variable settings, namely low bias and variance, using a 
compromise programming-based criterion along with 
optimization performance measures as alternative to other 
methods mathematically sound but less appealing to 
practitioners, namely to those who have limited mathematical 
or statistical background. The feasibility and effectiveness of 
the suggested approach is illustrated through examples from 
the literature and its results compared with those of several 
methods. 

The remainder of the article is organized as follows: 
Section II provides a review on the literature; the 
optimization criterion and measures suggested for evaluating 
the compromise solutions are introduced in Section III; 
Section IV includes the examples; results discussion is 
presented in Section V and conclusions in Section VI. 

 

II. LITERATURE REVIEW 

A strategy often used in the RSM framework for 
optimizing multiple responses consists of converting them 
into a single response by combining the individual responses 
into a composite function followed by its optimization. While 
desirability function and loss function approaches are the 
most popular among practitioners to determine the composite 
function, the desirability-based methods are, in general, 
easier to use and understand. Derringer and Suich’s method 
[8], or modifications of it [9], is the most popular 
desirability-based method and is available in many data 
analysis software packages. However, to use this method the 
analyst needs to specify values to four types of shape 
parameters when responses are of different types. This is not 
a simple task and it impacts on the optimal variable settings. 
Some authors, including Chiao and Hamada [10], criticize 
the method arguing that the composite function does not 
allow a clear interpretation except the principle that a higher 
value is preferred.  

In contrast to desirability-based methods, there are loss 
function-based methods that consider the responses variance 
level and exploit the responses correlation information, 
leading to solutions that, theoretically, are more realistic 
when the responses have significantly different variance 
levels or are highly correlated. The next sub-sections include 
a brief review on two methods that will be used for 
comparative purposes in this article: a multivariate loss 

Mean and Standard Deviation Optimization  
of Multiple Responses 

Nuno Costa, Zulema Lopes Pereira, and João Lourenço, Members IAENG 

O



 
 

 

function and a “maximin” desirability function. 

A. Multivariate loss function 

Arguing that little attention had been focused on multiple 
correlated responses with asymmetric loss function, Wu and 
Chyu [11] introduced a multivariate loss function-based 
method that considers responses bias (deviation from target) 
and robustness (sensitivity to uncontrollable factors). They 
proposed to minimize an expected loss function defined as 
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where iŷ  represents the estimated mean responses, 2ˆi  and 

ij̂  are estimated variance and covariance of the responses, 

and ic  and ijc  are loss coefficients.  

The minimization of expected loss functions is an 
appealing approach often used in practice to find the best 
design variables setting in multiresponse problems. The 
results are expressed in monetary units rather than in process- 
or product-specific units, which facilitates its interpretation, 
namely by engineering and management communities. Wu 
and Chyu (2004) provided formulae to calculate the loss 
coefficients based on the amount of quality loss but these 
values may be difficult to determine and conciliate with 
different scales, relative variabilities, and relative costs for 
multiple responses. Moreover, loss functions do not allow 
weighting the mean and variance of each response separately, 
their power is limited to a quadratic value, and assume that 
the target value for the standard deviation is equal to zero. 
These are not interesting features from a practical and 
theoretical point of view as they may rule out compromise 
solutions of interest [12]-[13].  

B. “Maximin” desirability function 

Kim and Lin [2] proposed a “maximin” formulation that 
considers the model’s predictive ability and is robust to the 
potential dependencies among responses. Their proposal is 
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d  are exponential desirability 

functions of the mean and standard deviation responses 
defined as 
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where t is a shape factor )(  t , and z is a standardized 

parameter representing the distance of the estimated response 
from its target in units of the maximum allowable deviation 
(see Kim and Lin article for details).  

This formulation only considers the response with 
maximum weighted distance or percentage of deviation from 
the target, which may lead to an unreasonable decision in 
some cases [2]. To accommodate specific needs of a given 

problem, these authors extended the above formulation to 
cope with the following situations: responses are alternatives 
rather than all being essential; models have significant 
differences in the level of predictive capability; assignment 
of different weights on mean and standard deviation; 
compensation of the “maximin” criterion. 

 

III. ALTERNATIVE APPROACH 

An objective function built on the Compromise 
Programming technique along with optimization 
performance measures that allows evaluating the desired 
response’s properties at optimal variable settings is proposed 
in this article. 

Compromise Programming is a mathematical 
programming technique that has proven to be extremely 
powerful in incorporating and resolving conflicting 
objectives concurrently by locating efficient solutions in 
convex and non-convex response surfaces [14]. It can be 
generalized into the metric 
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where u is the utopia (ideal) point, p is the parameter that 
defines the type of metric, and i represents priorities or the 
relative worth of the i-th response. As the root 1/p does not 
impact on the solutions, Costa and Pereira [15] proposed the 
criterion defined by (5) to optimize multiple mean responses. 
Here, we use the same criterion to optimize the mean and 
standard deviation of multiple responses, that is, 
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where i     ,  corresponds to the target value of the i-th 

estimated response )ˆ,ˆ(ˆ iy , ip  are user-specified 

parameters (response priorities, 0ip ), and iU  and iL  are 

specification limits assigned to responses (mean and standard 
deviation) that are available for process or product quality 
control. Note that 

i  is the target value of the mean response 

i̂  and 
i  is the target value of the standard deviation i̂ . 

As regards the weighting scheme, by setting 

iii LU  /1  less (subjective) information is required from 

the analysts. This is important, because simple and effective 
procedures for guiding the analyst in assigning values to 

i are not known to the best of our knowledge. Moreover, it 

makes possible the combination of responses which by nature 
have different measuring units, considers the existing 
differences in response properties, such as the scale and 
allowable range, and provides flexibility for testing different 
specification limits, if appropriate.  

According to Messac et al. [14] the presence of parameters 
that the analyst can use to manipulate the objective function’s 
curvature is vital to capture points on the Pareto frontier. In 
particular, these authors have proved that using exponents to 
assign priorities to responses is an effective practice to 
capture points in convex and non-convex part of response 



 
 

 

surfaces. Thus, changing the parameter pi in (5) will provide 
the required flexibility to explore trade-offs among responses 
and obtain a solution of interest in terms of bias and 
robustness.  

The modulus set in the numerator is another distinctive 
aspect of this criterion. It simplifies the mathematical 
formulation of the objective function designed to 
accommodate Nominal-The-Best (NTB - the value of the 
estimated response is expected to achieve a particular target 
value), Smaller-The-Better (STB - the value of the estimated 
response is expected to be smaller than an upper bound) and 
Larger-The-Better (LTB - the value of the estimated response 
is expected to be larger than a lower bound) response types 
and makes it appealing for practitioners who have to choose 
an approach or criterion for multiresponse optimization. As 
Izarbe et al. [16] noted, practitioners prefer techniques that 
are easy to understand and use. 

In (5) the target value for standard deviation is not, 
necessarily, set equal to zero, as it is typically considered in 
other methods. A target value for standard deviation up to a 
certain level is acceptable as it may be useful to explore 
trade-offs among responses.  

An ideal compromise solution in multiresponse problems 
is the one where all the responses are on-target and, 
simultaneously, have minimal variance. This is very difficult, 
if at all possible, to achieve in practice. The alternative is to 
identify the best compromise solution among the multiple 
responses. For this purpose we suggest the measures 
proposed by Costa et al. [17].  

A. Optimization Measures 

An endless number of solutions may exist for a 
multiresponse problem, and how good a solution is depends 
on either technical and economical issues or analyst’s 
preferences.  

In the RSM framework few authors have explicitly 
addressed the evaluation of response’s properties separately. 
In general they focus on the output value of the objective 
function. Costa et al. [17] and Ko et al. [18] are exceptions. 
Here the optimization measures proposed in [17] are used, 
because they do not depend on the weights assigned to 
responses. 

To assess compromise solutions in terms of bias, they 
suggested an optimization measure that considers the 
response types, response specification limits and response 
deviations from target. This measure, named cumulative bias 
(Bcum), is defined as 
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where *ˆ iy  represents the estimated response value at 

“optimal” variable settings, i  is the target value and Wi is a 

parameter that takes into account the specification limits and 
response type of the i-th response. This parameter is defined 
as follows:  LUW  /1  for STB and LTB-type responses; 

 LUW  /2  for NTB-type response. The cumulative bias 

gives an overall result of the optimization process instead of 
focusing on the value of a single response, which is 
reasonable in multiresponse problems. Nevertheless, the bias 
of each response can be easily obtained from (6). 

To assess the robustness, Costa et al. [17] proposed the 
following measure: 
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where  * )(y x  represents the variance-covariance matrix of 

the responses at “optimal” variable settings and   is a 

matrix whose diagonal and non-diagonal elements are 
2)/(1 iiii LU   and ri  , ))(/(1  rriiir LULU , respectively. 

Note that replications of the experimental runs are required 
for assessing the robustness and U and L represent the 
specification limits of the variance models. Although the 
replicates increase the time and cost of experimentation, they 
are expected to provide significant improvements in 
robustness that overbalance or at least compensate the time 
spent and the additional cost. 

As highlighted in [17], using Bcum and Rob do not exclude 
other measures from being also used. As concerns the results 
of Bcum and Rob, the lower their values are, the better the 
compromise solution is. In practice, Bcum and Rob take values 
greater than or equal to zero, but zero is the most favourable. 

 

IV. EXAMPLES 

Two examples from the literature are used to validate the 
feasibility of the suggested approach and evaluate the 
compromise solutions achieved from different approaches in 
terms of bias and robustness. The examples were selected in 
order to consider problems where different response-types, 
feasible regions, number of responses and variables exist. 

A. Example 1 

Kim and Lin [2] considered an example from the chemical 
engineering literature where the objective was to determine 
the effects of concentration of surfactant (x1), concentration 
of salt (x2), and time of stirring (x3) on the properties of the 
colloidal gas aphrons (micro bubbles of 10-100 µm in 
diameter), which are measured by three responses: the 
stability (y1), volumetric ratio (y2), and temperature (y3). The 
response models are as follows: 

 

1̂  = 4.95 + 0.82 1x  - 0.45 2x  + 0.00 3x  - 0.16 2
1x  + 0.27 2

2x  

+ 0.00 2
3x  - 0.11 21xx  +  0.07 31xx  + 0.00 32xx + 0.00 321 xxx

1̂  = 0.06 + 0.00 1x  + 0.11 2x  + 0.06 3x  + 0.12 2
1x  + 0.00 2

2x

+ 0.10 2
3x + 0.00 21xx  - 0.10 31xx  + 0.05 32xx + 0.00 321 xxx

2̂  = 0.46 + 0.13 1x  - 0.06 2x  + 0.05 3x  - 0.06 2
1x  + 0.00 2

2x  
 - 0.03 2

3x + 0.00 21xx  + 0.00 31xx  + 0.00 32xx  + 0.00 321 xxx

2̂  = 0.02 - 0.01 1x  + 0.01 2x  - 0.01 3x  + 0.00 2
1x  + 0.00 2

2x  
 + 0.02 2

3x  + 0.00 21xx  - 0.01 31xx  + 0.02 32xx  + 0.00 321 xxx

3̂  = 28.75 - 1.48 1x  + 0.00 2x  + 2.33 3x  - 0.78 2
1x  - 1.18 2

2x  

+ 0.00 2
3x  + 0.00 21xx  - 0.71 31xx  + 0.00 32xx  + 0.00 321 xxx

3̂  = 6.08 - 1.53 1x  + 0.49 2x  + 4.85 3x  + 0.00 2
1x  + 2.26 2

2x  

+ 0.00 2
3x  + 0.00 21xx  - 0.65 31xx  + 0.00 32xx  - 0.67 321 xxx  



 
 

 

 

The estimated mean responses, 1̂ , 2̂  and 3̂ , are of 

LTB-, STB-, and NTB-type, respectively; )3 2 1( ˆ ,,ii   are of 

STB-type. The constraints for the input variables are 
).3 ,2 1(  11 ,ixi   Table I shows the response 

specifications according to [2]. 
As regards the results displayed in Table II, the solution 

achieved from criterion (5), denoted by NC, is better than the 
solution KL1, which corresponds to the solution of the 
“maximin” criterion in the case of ( 0t ) linear desirability 

functions are used and standard deviation models are not 
considered in (3). Even when standard deviation models are 
considered, NC is slightly better in terms of Bcum and Rob 
than the solution yielded by “maximin” criterion, which is 
denoted by KL2. In fact, using the models above presented, 
the Bcum and Rob values are lower in the NC and KL2 

solutions than in KL1 due to the smaller value of 3̂ , which 

is outside of the specifications in KL1. As Kim and Lin 
(2006) point out, the existing methods may produce 
unacceptable solution since they just focus on the mean of the 
responses, and the variability of the responses is simply 

ignored. Moreover, note that 3̂  value is lower in NC than in 

KL2 and NC solution displayed in Table II is obtained 
keeping responses priorities unchanged, that is, with pi values 
equal to one to all responses. This solution is also, at least, in 
close agreement with those presented in [2] when variations 
to the integrated modelling approach to simultaneously 
optimize the location and dispersion effects of multiple 
responses are used.  

 
Table I 

Response specifications – Example 1 

Specifications 
Responses 

)ˆ,ˆ(1 y
 )ˆ,ˆ(2 y

 )ˆ,ˆ(3 y

Lower bound (3.00, 0.00) (0.10, 0.00) (15.00, 1.00) 
Target -- -- (30.00, -----) 

Upper bound (7.00, 0.10) (0.60, 0.10) (45.00, 2.00) 

 
 

Table II 
Results – Example 1 

Method KL1 KL2 NC 

ix  (-0.60, -1.00, -1.00) (-0.23, -0.38, -0.99) (0.001, -0.236, -1.00)

i̂  (5.10, 0.34, 25.41) (4.97, 0.37, 26.39) (5.08, 0.39, 26.35) 

i̂  (0.02, 0.06, 3.92) (0.06, 0.05, 1.64) (0.09, 0.04, 1.23) 

Bcum 4.98 3.05 2.91 
Rob 15.76 3.34 2.55 

 

B. Example 2 

A plasma enhanced chemical vapour deposition process 
study was reported in [19] and revisited in [11]. Eight 
parameters (x1-x8) were considered to optimize the mean and 
variance of two quality characteristics, namely, the 
deposition thickness (y1) and a refractive index (y2). The 
responses models presented in [11] are as follows: 
 

1̂Log  = 2.834 – 0.007 1x  + 0.010 2x  - 0.129 3x  - 0.000 4x  + 0.209 5x  

+ 0.083 6x  + 0.069 7x  - 0.210 8x  - 0.021 43xx  - 0.076 53xx  + 0.156 83xx

 - 0.019 54xx + 0.006 84xx - 0.035 85xx
 

2
1̂Log  = 4.660 – 0.002 1x + 0.859 2x - 2.051 3x - 1.234 4x + 1.621 5x  

+ 0.396 6x + 0.511 7x - 1.851 8x - 0.127 43xx - 0.273 53xx  + 1.404 83xx  

+ 0.092 54xx  + 0.344 84xx  - 0.808 85xx  

2̂Log  = 0.321 + 0.039 1x  - 0.068 2x  + 0.031 3x  + 0.083 4x  - 0.164 5x  

+ 0.016 6x  - 0.027 7x  + 0.062 8x  + 0.019 43xx  + 0.046 53xx  - 0.087 83xx

- 0.015 54xx - 0.014 84xx + 0.064 85xx  

2
2̂Log  = - 0.918 - 0.053 1x  + 0.215 2x  + 0.098 3x  - 2.273 4x  + 0.132 5x  

+ 0.212 6x + 0.015 7x  - 0.269 8x + 0.196 43xx  - 0.417 53xx + 0.212 83xx  

+ 0.580 54xx  + 0.289 84xx - 0.313 85xx
 

 
The estimated mean responses, 1̂  and 2̂ , are of 

NTB-type; )2 1( ˆ ,ii   is of STB-type. The responses 

specifications are presented in Table III where we assume 
that the upper bounds for i̂  correspond to the higher values 

obtained from the experimental runs. 
Considering that the region of control factors is 

measurable, with x1=(1, 2), x3=(1, 2, 3), and 3] ,1[  ix  for 

i=2, 4, …, 8, the criterion proposed by Costa and Pereira [15] 
yielded a solution with marginal differences to that of Wu 
and Chyu [11] displayed in Table IV, setting the weights to 
the estimated mean and standard deviation models for the 
responses 1 and 2 as follows:  0.1 ,0.2 ;5.1 ,5.1)( 2ˆLog,ˆLog2;1 p  

The alternative solution denoted by NC in Table IV is slightly 

worse in terms of bias, but presents a lower value for 2
2̂ . 

This solution was achieved with ).( 1 ,3 ;2 ,2)ˆ Log,ˆLog( 2
2;1 p  

If the region is discrete, with xi = 1 or xi = 3, keeping the 
responses weights (pi values) equal to one, Costa and Pereira 
criterion yielded a solution equal to that reported by Wu and 
Chyu [11]. It is important to point out that compromise 
solutions for the discrete region produced Bcum and Rob 
values higher than those obtained in the continuous region, 
which seems indicate that considering continuous regions 
may lead to better compromise solutions in terms of bias and 
variance. 

Table III 
Response specifications – Example 2 

Specifications 
Responses 

)ˆ,ˆ(1 y  )ˆ,ˆ(2 y

Lower bound (950.00, 0.00) (1.90, 0.00) 
Target (1000.00, -------) (2.00, -----) 

Upper bound (1050.00, 292.00) (2.10, 0.09) 

 
 

Table IV 
Results – Example 2 

Method Wu and Chyu NC 

ix  (1, 1, 2, 1, 2.54, 1.29, 3, 3) (1, 1.01, 2, 1, 2.60, 1.32, 3, 3) 

i̂  (1000.00, 2.00) (997.75, 2.03) 
2ˆ i  (484.27, 0.0003) (426.95, 0.0003) 

Bcum 1.72 2.04 
Rob 0.05 0.04 

 



 
 

 

These results are very interesting as Wu and Chyu [11] 
showed that their method outperforms others that have been 
used in practice. 

 

V. DISCUSSION 

Previous examples show that there are not significant 
differences among the results obtained from methods that 
differ in terms of their theoretical basis (optimization 
scheme) and statistical properties. This may help to 
understand why there is no widely-accepted method for 
optimizing multiple responses in spite of some methods are 
more appealing than others, in particular for users who have 
limited mathematical or statistical background. 

Ease of understanding and use are relevant aspects for 
practitioners when they choose a specific approach or 
criterion for multiresponse optimization, but the type and 
amount of information required from them is critical for 
achieving an effective compromise solution. To date, there is 
no procedure to guide the analyst in the selection of 
appropriate parameters/weights and starting points to the 
optimization routine. These tasks terminate, in general, by 
virtue of time constraints or satisfaction of the 
decision-maker with the solution(s). Moreover, the objective 
function results can vary significantly as the weighting 
coefficients change and very little is usually known about 
how to choose these coefficients. In practice, it is difficult, if 
at all possible, to determine beforehand the variations 
required in the weights so as to produce a solution of 
preference, that is, so as to know which response(s) will 
change and which is the direction and magnitude of that 
change.  

As Messac and Ismail-Yahaya [20] showed, aggregate 
objective functions must provide the flexibility of changing 
their curvature in order to be effective in practice. 
Nevertheless, this is not a simple task and becomes harder 
when the number of user-specified parameters, input 
variables and responses increase. In Costa and Pereira 
criterion the curvature of response surfaces can be 
manipulated easily and in some cases, like the examples 
show, minimum or no cognitive effort is required from the 
analyst. In particular, the solutions for examples 1 and 2 (for 
the discrete region) were obtained keeping the responses 
priorities unchanged (equal to one). In example 2, for the 
measurable region, the curvature of the objective function 
was adjusted to capture solution(s) of preference, keeping 
priority values assigned to responses are less than or equal to 
three ( 3ip ). This fact is relevant, because this guideline 

may facilitate the analyst task of identifying a solution of 
preference. This does not mean that using natural numbers 
( 3 ,2 ,1ip ), such as it was made in both examples, is always 

the best choice to achieve satisfactory solutions for problems 
similar to those revisited here. For example, to change the 
weights in steps of 0.5 units, or even in steps of 0.25 units, 
can provide improvements in responses values or in their 
properties.  

 

VI. CONCLUSIONS 

In this article the authors present an approach for 
simultaneous optimization of multiple responses in the RSM 

framework as alternative to methods statistically sound and 
often used in practice. The approach is easy to understand, 
easy to use, and can be employed in situations where it is 
critically important to obtain an effective compromise 
solution between mean and variance of multiple responses.  

The objective function is a variant of the compromise 
programming technique, and from a methodological 
viewpoint its relevant features are the following: 

- It allows accommodation of different response types 
and explicitly considers the response specifications; 

- It requires a number of weights just equal to the number 
of responses and the curvature of the aggregate function can 
be easily manipulated. 

Its effectiveness was illustrated through two examples 
from the literature and their results compared with those of 
other approaches, which help practitioners in evaluating their 
performance and making a better-informed choice among 
them. The selected examples do not cover all possible 
scenarios with respect to the number of responses and input 
variables, model’s form and response types. Nevertheless, 
the results provide evidence that the approach justifies its use 
in practice.  

To assess the properties of a compromise solution at 
variable settings, namely the response’s bias and robustness, 
optimization measures were used. They can be employed 
along with any method of practitioner’s interest, and are 
particularly useful if an optimization routine is used to 
generate a large number of compromise solutions, because 
they may serve to discard those ones with Bcum and Rob 
values less favourable. In fact, whereas a large number of 
solutions may provide insights into the trade-offs among the 
responses, some of them may have a small chance of being 
chosen as a solution of preference. Thus, they may be 
promptly identified and discarded. Considering that 
practitioners are increasingly taking advantage of 
multiresponse optimization methods, investigation on this 
topic is of interest and will be considered in future research. 
Another issue that remains an open research field is the 
intricate task of assigning priorities to responses. To specify 
limits for the weights range and effective steps to their 
change are issues that must be explored further. This 
information will be a useful guideline for the analyst, because 
it can reduce the number of weights values combination and 
by consequence the time for testing them. 
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