
 

 
Abstract—In the present paper, multivariable and 

multiaxial fatigue life assessment of multidirectional 
composite laminates of polymeric-based composites was 
investigated using neural networks (NN) model. NN with non-
linear auto-regressive exogenous inputs (NARX) structure 
was employed for the problem considered and the training 
algorithm of Levenberg-Marquardt with Bayesian 
regularization was chosen. The task of fatigue life assessment 
was  accomplished  in  such  a  way  that  it  was  realized  as  one-
step ahead prediction with respect to each stress level-S 
corresponding to stress ratio values-R. In addition, by sliding 
over one-step to one-step of the stress levels, the prediction 
dynamically covered all the corresponding spectrum loadings 
including multiaxial orientations examined. As a result, 
fatigue life assessment of the composite materials can be 
fashioned for a wide spectrum of loading in an efficient 
manner based upon solely the training data as the basis of the 
NARX regressor, thus developed multivariable and multiaxial 
fatigue analysis.  
 

Index Terms—composite materials, multiaxial and 
multivariable fatigue life assessment, NARX, neural networks 
 

I. INTRODUCTION 
odeling of composite fatigue life under complex and 
spectrum loading conditions remains a challenge to 

researchers in this field. Many considerations that must be 
taken into account, namely among others, fiber and matrix 
types, lay-up, anticipated failure modes, fatigue states 
governed by loading conditions of stress ratios-R or on-
axis/off-axis orientations, making such a modeling task 
becomes complicated because so many factors should be 
included and anticipated in the model [1, 2]. On the other 
hand, the model development is frequently impeded by a 
large amount of fatigue testing data needed, which is thus 
very costly and time consuming.  

Growing with the requirement for speeding up time 
frame from research stage to market place and also cutting 
down the associated cost, in recent years there has been 
increasingly interest in pursuing and utilizing alternative 
approach based upon soft-computing framework, in 
particular neural networks (NN), to develop efficient and 
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robust predictive model for fatigue life assessment of 
composite materials. 

Following Lee and Almond [3],  Al-Assaf and El-Kadi 
[4], and El-Kadi and Al-Assaf [5] performed fatigue life 
assessment of unidirectional glass fiber/epoxy laminate 
using several NN paradigms, namely feed-forward (FF), 
modular (MN), radial basis function (RBF) and principal 
component analysis (PCA) networks. The works have 
presented comprehensive analysis and discussion about the 
utilization of different NN models in predicting fatigue life 
of unidirectional composite laminate. Freire  Junior  et  al. 
[6, 7] noticed the  potential  of  NN  models of feed-forward 
and modular on  building  constant  life diagrams (CLD) 
using only three S-N curves for predicting fatigue lives of 
multidirectional composite. Comparative study between NN 
models and conventional equations in the analysis of 
fatigue failure of GFRP has been also presented by the 
authors [8], where NN outperformed conventional 
equations in the analysis of fatigue failure of GFRP. 
Vassilopoulos et al. [9] showed that using only randomly 
selected 40 – 50 % of the experimental data were sufficient 
to produce reliable CLD using NN, emphasizing the NN 
convenience in performing fatigue life prediction of 
composite materials. Hidayat et al. [10] introduced the 
utilization of NN with non-linear auto-regressive exogenous 
inputs (NARX) structure and showed the robustness of the 
NN model for fatigue life prediction of composite materials 
under multivariable amplitude loading, based upon fatigue 
data from only two stress ratios. Improvements in term of 
mean squared error (MSE) values of NN prediction results 
were further obtained when the problem considered was 
examined by using RBFNN-NARX model [11]. 

 
In the previous papers, investigations were only focused 

on the utilization of NN for fatigue life assessment of 
composite materials under multivariable amplitude loading 
with respect to different stress ratio values-R. No further 
attempt, however, so far has been devoted to the utilization 
of NN for fatigue life assessment of composite materials 
under both multiaxial and multivariable loading conditions, 
in which factors of stress ratios and on-axis/off-axis 
orientations are taken into account and treated in 
simultaneously. With this respect, the corresponding fatigue 
life assessment is handled in such a way that fatigue lives of 
different stress ratio and on-axis/off-axis orientation values 
are predicted based upon fatigue data from, if possible just 
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limited, particular stress ratio(s) and on-axis/off-axis 
orientation(s) which are utilized as basis training data. It 
has been shown in [10] that there was suitable NN model, 
namely NN-NARX model to implement the way for 
efficient fatigue life assessment of composite materials 
under multivariable amplitude loading based upon limited 
fatigue data.  

In the present paper, multivariable and multiaxial fatigue 
life assessment is investigated and examined using NN 
model, which is the main motivation and objective in the 
present study. NN-NARX model was employed and two 
stress ratio values together with the corresponding on-
axis/off-axis orientations served as a basis for training data 
employed for dynamically predicting fatigue lives of other 
stress ratios and orientations. It is important to note that the 
study is mainly related to the previous works of [9, 10]. 

The remainder of the paper is organized as follows: 
section II presents briefly the NN with NARX structure 
employed. Section III presents the materials examined and 
methods chosen for the NN configuration. Fatigue life 
assessment results using the NN configuration and related 
discussion are presented in section IV, followed by 
conclusion casted through the simulation study along with 
future research direction in section V. 

II.   NEURAL NETWORKS WITH NARX STRUCTURE 

   NN with NARX structure has the signal vector applied to 
the NN input layer consisting of a data window made up by 
present and past values of exogenous (independent) inputs 
and by delayed values of the outputs. The NN model 
belongs to a class of recurrent neural networks (RNN) with 
one feed-back loop from the NN output layer to the input 
layer. Moreover, the presence of the feed-back loop has 
enabled such a configuration to acquire state 
representations. It also provides a unified representation for 
a wide class of discrete-time nonlinear systems [12, 13].  
  Mathematically, a NARX model can be represented as: 
 

y(n+1) = f[y(n); u(n)] 
 y(n+1) = f[y(n),…,y(n-dy+1); u(n),u(n-1),…,u(n-du+1)]   

(1)  
 
where u(n) and y(n), respectively, state the input and output 
of the model at discrete time n; u(n), y(n)  . Moreover, 
dy and du are the output-memory and input-memory orders. 
dy represents the number  of  lagged  output  values, which 
is   often  referred   to   as   the   order   of   the   model,  du 
represents the number of lagged input values (du, dy  1 and 
du  dy). The vectors y(n) and u(n), therefore, form the 
output and input regressors, respectively.  
   The NARX model is commonly trained using two basic 
modes, namely: 
 
1. Parallel (P) Mode 
Using this mode, the output regressor utilized the estimated 
outputs which are fed back to the regressor. 

^
y (n+1) = 

^
f [

^
y (n),…,

^
y (n-dy+1); u(n),u(n-1),…,u(n-

du+1)] (2) 
 

2. Series-Parallel (SP) Mode 
Using this mode, the output regressor utilized the actual 
output values. 

^
y (n+1) = 

^
f [ y (n),…, y (n-dy+1); u(n),u(n-1),…,u(n-

du+1)]  (3)  

   It is worth to note that, although NARX with SP mode 
acts as one-step ahead predictor, standard feed-forward 
architecture trained with back-propagation (BP) technique 
can be used directly in the mode. In addition, various 
learning algorithms are also widely applicable. A form of 
regularization may also be employed because the additive 
measurement errors, n, which are zero-mean Gaussian 
variables with Var[ n] = 2,  can  be  also  present  in  the  
model. Fig. 1 illustrates the NARX with input and output 
tapped delay lines, in parallel and series-parallel 
architectures [14].    

 
Fig. 1. The NARX architecture with tapped delay lines: (a) parallel 

architecture, and (b) series-parallel architecture 
 

III.   MATERIAL AND METHODS 

A.    Materials   
The investigated materials were multidirectional 

laminates of E-glass/polyester and E-glass fabrics/epoxy, 
typical materials used in wind turbine blade applications 
[15, 16]. The corresponding lay-ups were [0/(±45)2/0]T and 
[±45/04/±45/], respectively. The materials were cut by 
diamond saw wheel at on-axis (0°) and off-axis 
orientations. For E-glass/polyester material, the 
corresponding off-axis orientations were 15°, 30°, 45°, 60°, 
75° and 90° [15], while for E-glass fabrics/epoxy material, 
the only off-axis orientation was 90° [16].  

In addition, the corresponding database containing 
fatigue data of various stress ratio values and the 
corresponding on-axis/off-axis orientations of R = 0.1:  = 
0°, 15°, 45°, 75° and 90°; R = 0.5:  = 0° and 45°; R = -1: 
 = 0°, 30°, 45°, 60° and 90°; and R = 10:  = 0°, 30°, 45°, 

60° and 90° for E-glass/polyester, and of R =  0.1:  =  0°  
and 90°; R = 0.5:  = 0° and 90°; R = -0.5:  = 0° and 90°; 
R = -1:  = 0° and 90°; R = -2:  = 0° and 90°; and R = 10: 
 = 0° and 90° for E-glass fabrics/epoxy. The database 

comprised, respectively, 85 and 96 fatigue data, making the 
database suitable for the study purpose. Note that number of 
stress levels in each stress ratio value employed were 5 and 
8 for E-glass/polyester and E-glass fabrics/epoxy, 
respectively.   

From the fatigue data, stress ratio (R), on-axis/off-axis 
orientation ( ) and maximum stress (Smax) values were used 
as input set and the output was the corresponding fatigue 
cycles (log N) for the input set. For each particular R value, 
mean fatigue life values were used. Also, all the data were 
normalized in range of -1 to 1.  



 

   Table 1 summarizes the materials examined together with 
the training and testing sets employed. Note that for the 
assessment task, stress ratio values-R were  arranged  in  
CCW direction according to the CLD, moving across from 
tensile-tensile sector to compressive-compressive sector. In 
addition, fatigue data as training set of R = 0.1 and 10 were 
chosen because the best relative positions of the R values in 
the CLD [10, 11]. The corresponding  value chosen for 
both the stress ratios was 0°. With the training and testing 
data, the NN model will develop multivariable and 
multiaxial fatigue life assessment analysis.  
 

TABLE I 
MATERIALS EXAMINED TOGETHER WITH THE TRAINING AND TESTING SETS 

EMPLOYED 

Material 
Fatigue Data as 
Training Set:  

R and  values 

Fatigue Data as Testing Set:  
R and  values 

E-
glass/polyester 
[0/(±45)2/0]T 

R = 0.1:   = 0° 
 

R = 10:   = 0° 

R = 0.5:  = 0° 
R = -1:  = 0° 

R = 0.1:  = 15° 
R = -1:  = 30° 
R = 10:  = 30° 
R = 0.1:  = 45° 
R = 0.5:  = 45° 
R = -1:  = 45° 
R = 10:  = 45° 
R = -1:  = 60° 
R = 10:  = 60° 
R = 0.1:  = 75° 
R = 0.1:  = 90° 
R = -1:  = 90° 
R = 10:  = 90° 

E-glass 
fabrics/epoxy 
[±45/04/±45/] 

R = 0.1:   = 0° 
 

R = 10:   = 0° 

R = 0.5:  = 0° 
R = -0.5:  = 0° 
R = -1:  = 0° 
R = -2:  = 0° 

R = 0.1:  = 90° 
R = 0.5:  = 90° 
R = -0.5:  = 90° 
R = -1:  = 90° 
R = -2:  = 90° 
R = 10:  = 90° 

 
 
B.    Methods 
   In the present study, the training algorithm of Levenberg-
Marquardt was chosen and utilized to result in fast and 
efficient NN model [17]. Moreover, to accommodate the 
noise may be present in the target data in the model and 
also to deal with limited training data employed, that may 
lead to an ill-posed problem, Bayesian regularization 
technique was incorporated [18]. Utilizing the 
regularization, the objective function of NN, E(w), was 
modified into: 
 

W

i
i

Q

q
qq w;f̂ t)(

1

2
2

1
wpw               (4) 

 
where:  is a weight decay parameter,  is an inverse noise 
variance parameter, tq is the target data, the estimate 
f̂ realized by the NN, p is the vector of input sets, w is the 

vector of weights (and biases), Q is the number of training 
examples and W is the total number of weights. 
   Furthermore, fatigue life assessment of the materials is 
performed and realized as one-step ahead prediction with 
respect to each stress level-S corresponding to stress ratio 
values-R, which is arranged in such a way that transition 
took place from a fatigue region to another one in the CLD 
as previously mentioned. It is then clear that the NARX-SP 
architecture is being currently employed and sliding over 
one-step to one-step of stress level, the prediction will be 
dynamically covering all the spectrum loadings of the 
testing sets including multiaxial orientations examined. As 
a result, material lifetime assessment can be fashioned for a 
wide spectrum of loading with multiaxial orientations in an 
efficient manner based upon solely the training data as the 
basis of the NARX regressor, thus developed multivariable 
and multiaxial fatigue analysis.  

Fig. 2 describes the lifetime assessment process in the 
study using the NN-NARX model. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 2. Multivariable fatigue life prediction made up by one-step ahead 
prediction using NN with NARX-SP structure 

 

IV.   SIMULATION RESULTS AND DISCUSSION 
  Using the methods described previously, all simulation 
results of fatigue life assessment of the materials considered 
are presented in this section. It is important to note also that 
the number of hidden nodes employed for the NN with 
NARX model was 10. Also, as shown in Table I, there were 
15 and 10 testing sets to be predicted for E-glass/polyester 
and E-glass fabrics/epoxy, respectively. Note that the 
arrangement of fatigue data as training set and fatigue data 
as testing set, in particular those of R and  values in Table 
I. The NN simulation results and the related discussion will 
be referred to what Table I has been describing.  
   Figs. 3 and 4 present respectively multivariable and 
multiaxial fatigue life predictions of E-glass/polyester and 
E-glass fabrics/epoxy materials at the testing sets examined.     

In general, it can be seen that the NN-NARX model 
prediction results were consistent with the experimental 
data, thus showing the applicability of the NN model to the 
problem considered in this study. The NN model also shows 
its ability to dynamically predict the fatigue lives from the 
testing sets examined by sliding over each stress level in a 
fashion of spectrum loading and multiaxial orientations, 
made up by several R and  values. 

In addition, it is important to note again that only one 
information value of axial orientation-  was utilized in the 



 

training set employed, while two values of stress ratio-R 
were employed. It was shown in Figs. 3 and 4 that with 
such a selection of training set, the NN simulation results 
were adequately agree with the experimental data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Multivariable and multiaxial fatigue life prediction of the NN-NARX 

model for several R and  values of the testing sets examined of E-
glass/polyester (left to right sequence) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Multivariable and multiaxial fatigue life prediction of the NN-NARX 
model for several R and  values of the testing sets examined of E-glass 

fabrics/epoxy (left to right sequence) 
 
The accuracy of the NN-NARX model prediction can be 

also checked by noting the produced mean squared errors 
(MSE) of 0.123 and 0.27 for E-glass/polyester and E-glass 
fabrics/epoxy, respectively. Note that the training sets 
employed were a very small number of fatigue data.  

It should be pointed out, however, that large enough or 
noticeable discrepancies between fatigue lives predicted by 
the NN-NARX model and those of experimental data were 
also observed. For E-glass/polyester, such discrepancies, in 
particular, belong to R = -1, namely fatigue lives of R = -1: 
 = 0°, 60° and 90°, respectively. For E-glass fabrics/epoxy, 

the noticeable discrepancies belong to R = -2:  = 90°. The 
largest discrepancies will also later be shown in the related 
S-N curves.  
   To further measure the closeness between fatigue lives 
predicted by the NN-NARX model and those of 
experimental data, the NN simulation results were also 
presented in the corresponding S-N curves, with the 

corresponding coefficient of determination (R2) between the 
NN fatigue life prediction results and the experimental 
data. 
   Figs. 5 and 6 show the S-N curves of E-glass/polyester 
obtained by the NN-NARX model and the experimental 
data for stress ratios R = -1:  = 90° and R = 10:  = 30°, 
respectively. Furthermore, Figs. 7 and 8 show the S-N 
curves of E-glass fabrics/epoxy obtained by the NN-NARX 
model and the experimental data for stress ratios R = -2:  
= 90° and R = 0.5:  = 90°, respectively. Note that the NN 
simulation results were selected and presented because the 
results respectively corresponded to the lowest and the 
highest of R2 values produced, representing the “goodness” 
of the NN-NARX model in modeling fatigue lives for the 
problem considered. 
 

 
 

 
 
 
 
 
 
 
 

 
 

Fig. 5. S-N curves obtained by the NN-NARX model and the 
experimental data for R = -1:  = 90° 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 6. S-N curves obtained by the NN-NARX model and the 
experimental data for R = 10:  = 30° 

 
   
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. S-N curves obtained by the NN-NARX model and the 
experimental data for R = -2:  = 90° 

 

 

 

 

 



 

 
  
 
 
 
 
 
 
 
 
 

 
Fig. 8. S-N curves obtained by the NN-NARX model and the 

experimental data for R = 0.5:  = 90° 
 

 
In the form of S-N curves, in general it can be seen again 

that for the discrepancies observed, fatigue lives predicted 
by the NN-NARX model were not excessively far from 
those of experimental data. Thus, the coefficient of 
determination (R2) of fatigue life prediction produced can 
be considered high for the materials examined with the 
NN-NARX model. The values of R2 ranged from 0.7445 to 
0.9504 for E-glass/polyester material, while those of E-
glass fabrics/epoxy ranged from 0.8737 to 0.9788. 
Moreover, it can be also seen that the highest R2 values for 
the materials examined were coming from fatigue data of 
the non-on-axis orientations, namely  = 30° and  = 90° 
for E-glass/polyester and E-glass fabrics/epoxy, 
respectively. This emphasized again the applicability and 
the feasibility of the NN-NARX model and the procedure 
developed in the study for multivariable and multiaxial 
fatigue life assessment of the composite materials.  

V.   FURTHER DISCUSSIONS 

   The idea for analyzing multivariable and multiaxial 
fatigue life assessment using NN, in particular NN-NARX 
model came while the present author was accomplishing 
the research works of multivariable fatigue life assessment 
with NN-NARX models [10, 11]. With the utilization of the 
NN models, several interesting and relevant discussions 
thus emerge. 
   Firstly, because fatigue life assessment is realized as one-
step ahead prediction with respect to each stress level-S 
corresponding to the related R and  values, thus the 
accuracy of the NN prediction results will depend on the 
accuracy of the NN prediction result on each stress level-S 
examined. The obtained NN fatigue life prediction for a 
stress level will affect that of the next stress level. With 
respect to this matter, two aspects may be considered that 
the change in the selection of training fatigue data will also 
change the NN fatigue life prediction results. Also, the 
sequence of fatigue data of the testing sets examined can 
affect the NN fatigue life prediction results obtained. To be 
consistent, in the present study, stress ratio-R values were 
arranged according to their positions and transitions in the 
CLD, while on-axis/off-axis orientation-  values were 
arranged based on the magnitude value from longitudinal to 
transverse direction, as shown in Table I. 
   Secondly, only one value of  was employed in the 
training set, namely  = 0°, as previously pointed out. It is 

intended to employ such a selection to examine the 
feasibility of the approach offered and used in this study. 
Looking at the NN prediction results obtained, it appears 
that the NN-NARX model was able to perform the fatigue 
life prediction of the material fairly well using the starting 
point of training fatigue data. Moreover, different values of 

, say  = 0° and 90°, can be of course selected and 
employed in the training set, thus the training set could 
consist of, for example, fatigue data from R = 0.1:  = 0° 
and R = 10:  = 90°. Using the selection, the training data 
will be based upon two different values of R and . It is 
clear that multivariable and multiaxial aspects are 
emphasized.   

Thirdly, the discrepancies observed between fatigue lives 
predicted by the NN-NARX model and those of 
experimental data may be reduced by using different 
selection of training fatigue data. It is hoped that using the 
different training data, as previously pointed out, NN would 
give better prediction results of fatigue lives, indicated by 
improvement in the corresponding MSE values. Related to 
this, the improvement of the MSE prediction values may 
also be produced with respect to the variation of the hidden 
nodes number in a sensitivity analysis, which is still not 
further considered in the present study and left as further 
study. Nevertheless, in the present study the author would 
like to also point out that to further and better describe the 
produced discrepancies in fatigue lives, the informative 
bounds of NN prediction would be also important to 
develop. With such information, the noticeable 
discrepancies in fatigue lives can be better described and 
the obtained NN fatigue life prediction will be strongly 
supported by comprehensive information of fatigue lives, 
which will further support any subsequent product design 
decisions. For example: the noticeable discrepancies as 
shown in Fig. 5. Also, the produced NN-NARX model’s 
fatigue lives were all non-conservative with respect to those 
of experimental data. The work is being currently 
accomplished by the author for another presentation. 

Finally, it is important to note here that the NN-NARX 
model is first applied for the problem considered in the 
present study. The applications have considered and taken 
into account multivariable and multiaxial aspects in fatigue 
life assessment of composite materials, which have been 
shown here its applicability and feasibility. NARX model 
has been known previously in many fields of applications, 
among others, [19, 20]. Now, its application has been 
extended to multivariable and multiaxial fatigue analysis. 

VI.   CONCLUSIONS 

   Multivariable and multiaxial fatigue life assessment of 
composite materials using neural networks has been 
investigated and presented in the paper. 
 NN-NARX model has been employed in the study. It has 
been shown that the NN model simulation results were 
adequately agree with the experimental data for several R 
and  values  examined,  with  the  produced  MSE  values  of  
0.123 and 0.27 for E-glass/polyester and E-glass 
fabrics/epoxy, respectively, thus showing the applicability 
and the feasibility of the NN-NARX model for the problem 
considered.  

 



 

Further sensitivity analysis with respect to the variation 
of the hidden nodes number as well as further applications 
to other materials widely are recommended as further 
research and study. 
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