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Fuzzy Approaches for Multiobjective Fuzzy
Random Linear Programming Problems Through a
Probability Maximization Model

Hitoshi Yano and Kota Matsui

Abstract—In this paper, two kinds of fuzzy approaches are proposed [5]. Especially, Sakawa et al. [13] proposed an
proposed for not only multiobjective stochastic linear program-  interactive method for multiobjective fuzzy linear program-
ming problems, but also multiobjective fuzzy random linear \ing proplem with random variable coefficients. Katagiri

programming problems through a probability maximization . . L
model. In a probability maximization model, it is necessary for et al. [7] proposed an interactive method for multiobjective

the decision maker to specify permissible values of objective linear programming problem with fuzzy random variable
functions in advance, which have a great influence on the coefficients. They also adopted a probability maximization
corresponding distribution function values. In our proposed model to transform stochastic programming problems into
methods, the decision maker does not specify permissible Valueswell-defined mathematical programming ones. However, us-

of objective functions, but sets his/her membership functions for . babilit imizati del it i that
permissible values. By assuming that the decision maker adopts!ng a proballiity maximizaton model, It IS necessary that,

the fuzzy decision as an aggregation operator of fuzzy goals for in advance, the decision maker specifies permissible levels
the original objective functions and distribution functions, a for objective functions in his/her subjective manner. It seems
satisfactory solution of the decision maker is easily obtained to be very difficult to specify such values in advance,
based on linear programming technique. because there exist conflicts among permissible levels and
Index Terms—multiobjective stochastic linear programming, the corresponding distribution function values.
multiobjective fuzzy random linear programming, fuzzy deci- From such a point of view, in this paper, assuming that
sion, a probability maximization model. the decision maker adopts the fuzzy decision to integrate
membership functions, two types of fuzzy approaches are
|. INTRODUCTION proposed for both multiobjective fuzzy linear programming
roblem with random variable coefficients and fuzzy random
ariable coefficients. In section 2, a fuzzy approach is pro-
sed for multiobjective fuzzy linear programming problem
vith random variable coefficients. In section 3, a fuzzy
roach is proposed for multiobjective fuzzy linear pro-
mming problem with fuzzy random variable coefficients.
fction 4 provides a numerical example to demonstrate the
qoposed fuzzy approach for multiobjective fuzzy linear pro-

th?y were extended to multiobjective stoc_hastic progra ramming problem with fuzzy random variable coefficients.
ming problems [11],[14]. In fuzzy programming approache inally, in section 5, we conclude this paper.
various types of fuzzy programming problems have been

formulated and investigated [8],[10],[17]. As a natural ex-

In the real world decision making situations, we ofte
have to make a decision under uncertainty. In order to d
with decision problems involving uncertainty, stochastic pr
gramming approaches and fuzzy programming approac
have been developed. In stochastic programming approac
two stage problems [3] and chance constrained programm
models [1] have been investigated in various ways, al

tension, multiobjective fuzzy programming technique first |- A FUZZY APPROACH FORMULTIOBJECTIVE
proposed bu Zimmermann [16], and many methods have STOCHASTICLINEAR PROGRAMMING PROBLEMS
been proposed [12],[17]. In this section, we focus on multiobjective programming

From a different point of view, mathematical programmingroblem involving random variable coefficients in objective
problems with fuzzy random variables have been proposkghctions. Such a problem can be formally formulated as
[6],[9],[15], whose concept includes both probabilistic unfollows.
certainty and fuzzy one simultaneously. Since such fuzfyOSP1]
random programming problems are usually ill-defined, it min Z(x) = (Z(x), - -, Zx(x)) (1)
is necessary to utilize not only stochastic programming Trex
techni.qpe but a!so fuzzy programming technique to constryghora .. — (z1,Za, - J”)T is ann dimensional decision
a decision making model. _ o _ variable column vector;;(x) = €& + @;,i = 1,---, k, are

Recently, in order to deal with probabilistic uncertaintyyiective functions involving random variable coefficients,
and fuzzy one simultaneously, the hybrid approaches §fis 5, dimensional random variable row vector expressed
stochastic programming and fuzzy programming have begp G = ¢! +1;c2, where?; is a random variableg; is a
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Since MOSP1 contains random variable coefficients [MOP2]
objective functions, mathematical programming techniques max k(pl(w,fl),--~7pk(:c,fk),—f1,---7—fk)

can not be directly applied. In order to deal with such LEX,fii=l,, (4)

multiobjective stochastic programming problems, we make considering the imprecise nature of the decision maker’s
use of a probability maximization model, which aims tq,qgment, it is natural to assume that the decision maker
maximize the probability that each objective functiofiz) haye fuzzy goals for each objective function in MOP2. In this
is less than or equal to a certain permissible objective lev@letion, it is assumed that such fuzzy goals can be quantified
fi- Such a probability; (x, f;) can be defined as follows. 1y gjiciting the corresponding membership functions. Let
def _ . us denote a membership function of probability function
pil@, fi) = Priw|Z(@w) < fi)i =1,k (2) pi(x, fi) as u,, (pi(x, f;)), and a membership function of
where Pr(-) denotes a probability measure, is an event, permissible objective levef; as .y, (f;) respectively. Then,
andz;(x,w) is a realization of the random objective functiolMOP2 can be transformed as the following multiobjective
z;(x) under the occurrence of each elementary everithe programming problem.
decision maker subjectively specifies a certain permissifdOP3]
objective levelf; for each objective functiorz;(x,w). Let (o (91 (@, f1)), - - (pe(, 1))
us denote ak dimensional vector of certain permissible @ex. f, o1, k Hp \PIRE: J1) ) w5 Hpw PR T )
objective levels ag = (f1, -, fx)- wr, (F1)s s g (fr) (5)
Then, MOSP1 can be transformed into the traditional mul- _ . _
tiobjective programming problem MOPE), where probabil- Throughout this section, we make the assumptions that

ity functionsp;(x, f;),i = 1,---,k are adopted as objective“fid(fi)’i. = 1, ’hk are strictly rgonotone decrga_sing
functions instead of; (, w), and each of them is maximized.2nd continuous with respect g, and (pi(, fi)),1 =
[MOP1(£)] 1,---,k are strictly monotone increasing and continuous
max(pi (2. f1). . pi(@. fy)) (3) Wihrespect toi(@. ). .
Tex For example, we can define the domainiof (p;(x, f;))
Under the assumption thafz + a2 > 0,i = 1,---, k for as follows. Considering the individual minimum and maxi-

mum of E(z;(x)), the decision maker subjectively specifies
the sufficiently satisfactory maximum valug,,;, and the
acceptable minimum valu€f; .. Then, the domain of
iy, (fi) is defined as:

any x € X, using distribution functiong;(-),i = 1,---,k
we can rewrite the objective functign(x, f;) as the follow-
ing form.

pi(z, fi) = Pr(w]|zi(z,w)<f)

Fi - [fiminv fimax]~ (6)
= Pr(w|c(w)z+ai(w) < fi)
fi — (clz + al) Corresponding to the domaitt;, denote the domain of
= Pr<w | ti(w) < 2z + o > tp; (pi(z, f;)) as:
_ T (fi —(clz + a%)) Pi(F;) = [pimin; Pimax]- (7
ciw + of pimax Can be obtained by solving the following problem.

In order to deal with MOP{f), we consider the feasible
regionP(f) = {(pl(wv f1)7"'7pk(537fk) € RF | T € X}
In the feasible regionP(f), we can define Pareto optimaljt should be noted here that the above problem is equivalent
solution to MOPLf). to the following linear fractional programming problem

Definition 1. [2] because distribution functioff’(-) is strictly monotone
x* € X is said to be a Pareto optimal solution to M@}, increasing and continuous.

if and only if there does not exist anotherc X such that 1 1
pi(z, f;) > pi(z*, f;), i = 1,--- k, with strict inequality max <fimax _ (ciw;rai)> )
holding for at least one. Tex Cx+

Sakawa et al. [13] formulated a probability maximizatio®n the other hand, in order to obtajin,.;,, we first solve
model for MOSP1, and proposed an interactive method i@axzc x p;(x, fimin), @nd denote the corresponding optimal

Pimax = %Ea)}(( Di (1137 fimax) (8)

obtain the satisfactory solution of the decision maker. Isolution asz;. Using the optimal solutions;,i =1,---,k,
their interactive method, after the decision maker specifigs,;, can be obtained as follows.

permissible objective levelg;,i = 1,---,k for each ob- .

jective functionz;(x,w), the candidate of the satisfactory Pimin =, _ TR ;P i(@e; fimin) (10)

solution is obtained from among M-Pareto optimal solution |¢ha decision maker adopts the fuzzy decision as aggrega-

set which IS Pareto optimal so_lu_t|0ns in membership spagg,, operator for MOP3, the satisfactory solution is obtained
However, in general, the decision maker seems to prew solving the following maxmin problem

not only the less value of permissible objective leyg) [MAXMINL]
but also the larger value of probability functign(x, f;).

- i - max (11)
Since these values conflict with each other, the less values TeX, fieF;i=1,,k Xe[0,1]
of permissible objective levej; results in the less value of gypject to
probability functionp; (x, f;). From such a point of view, we
consider the following multiobjective programming problem tp: (P, fi)) = ANi=1,--k 12)
which can be regarded as a natural extension of M@P1 pe(fs) > MNi=1,---k (13)
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According to the assumption far,,. (p;(x, f;)) andc?z+ which contradicts the fact thdtc*, \*) is a unique optimal

a? > 0, the constraints (12) can be transformed as: solution of MAXMINZ2.
pp: (Pi(, i) = A, 1. A Fuzzy APPROACH FORMULTIOBJECTIVE Fuzzy
< pi(x, fi) > u;}(A), RANDOM LINEAR PROGRAMMING PROBLEMS
fi — (clz +a}) 1 In this section, we focus on multiobjective programming
cix +a problems involving fuzzy random variable coefficients in
& fi—(clz+al)> Tfl(/i;.l(k)) (S + a?), objective fL_mctions called multiobjective fuzzy random linear
‘ (14) programming problem (MOFRLP).
[MOFRLP] ~
where - 1(-) and7; ' (-) are pseudo-inverse functions with min Cx = (¢, - -, k) (18)
respect tou,, (-) andT;(-) respectively. Moreover, from the rex
constraints (13) and the assumption for (f;), it holds that wherex = (zy,2»,---,2,)" is ann dimensional decision
fi < u;il(/\). Therefore, the constraint (14) can be reducecariable column vectorX is a linear constraint set with
to the following inequality where a permissible objectiveespect tox. ¢; = (Gi1,---,Cin),t = 1,---,k, are coeffi-
level f; is removed. cient vector of objective functio@,;z, whose elements are
fuzzy random variables (The symbdls' and™ mean

1 1 1 —1/ -1 2 2
py, A = (e +a7) 2 T (ny, (V) - (iz +07) (15)  randomness and fuzziness respectively, and the concept of
Then, MAXMIN1 is equivalently transformed into the fol-fuzzy random variable in this section is defined precisely

lowing problem. i~n [7]). Under the occurrence of each elemen~tary event
[MAXMINZ2] ¢;;(w) is a realization of the fuzzy random varialale, which
max A (16) is a fuzzy number whose membership function is defined as
TEX,AE0,1] follows.
subject to L (dgiﬁjézlf)s) (5 < dij(w) Yw),
i = (el tal) = TR ) (e tad) 0= e dis(w) v
i=1,-k (17) (@) (5> dij(w) V),

It should be noted here that the constraints (17) can lere the functionZ(t) < max{0,1(¢)} is a real-valued

reduced to a set of linear inequalities for some fixed value continuous function frono, oo) to [0, 1], andi(t)is a strictly

This means that an optimal soluti¢gm*, \*) of MAXMIN2  decreasing continuous function satisfyif@) = 1. Also,

is obtained by combined use of the bisection method Wiyg(t) def max{0, r(t)} satisfies the same conditions. Let us

respect to) < A < 1 and the first-phase of the two-phasgssume that the parameteis, @;;, 3,; are random variables

simplex method of linear programming. expressed ag;; = d.. +E»d2. T = al + 502, B, =
The relationship between the optimal soluti@er, \*) of Y etively whork, ic 4 2 mriablo

) ) ﬁ,}j +ﬂﬂ§j respectively, where; is a random variable whose
MAXMINZ and Pareto optimal solutions to MORE) can istripution functiorlZ(-) is continuous and strictly monotone
be characterized by the following theorem.

increasing, and;, o, 8;, { = 1,2 are constants. It should
Theorem 1.

Yij> ig>
- . . . be noted thaty;; (w), B, are positive for anw because of
If (x*, \*) is a unique optimal solution of MAXMINZ2, then 3(@), By () P W
x* € X is a Pareto optimal solution to MOPA"), where

a property of spread parameters of LR-type fuzzy numbers.
_ - Therefore, let us give the assumptions th%t-‘r ti(w)a?: >
* Tryxy oo, 1y - 4 17
{Pr;m%‘fl (A7) Hpy (A))- O,B}j + ti(w)ﬂfj > 0, for any w.

As shown in [7], the realizationg;(w)x becomes a

Slnce_ an optimal solutioriz™*, \*) satisfies the cons:tramts:]cuZZy number characterized by the following membership
(17), it holds that functions

) = (efx* + of d d
Ky, (_1 ) 71( i 21,) , L (d(“)mv> (y < di(w)x Yw),
> 17y (X)) - (e + o), - - e
4 Pi ? ¢ NE (w):]l‘(y) - ’ a T —
i R <1/_1(“’)> (y > dz(w)il: V(U)7

—1 * 1% 1
py, (A7) = (ciz” + a;) . 1y
& ﬂ(ﬁ o = pi(a*, 17 (V) B
cixt + o ‘ - . . -
Similar to the previous section, it is assumed that the
> up_il(A*)J =1k decision maker has fuzzy goals for the objective functions
Assume thatz* € X is not a Pareto optimal solution? MOFRLP, whose membership functionsgy (y), i =

1,---,k are continuous and strictly monotone decreasing.

to MOPY(f*), where f* = (u;'(A\*),---,u3 (A7), then

there existse € X such that By using a concept of possibility measure [4], the degree of

possibility that the objective function valugx satisfies the
pi(a, i (N)) = pala®, pp (A)) = (N, fuzzy goalG; is expressed as follows.

i=1,--- k. def

I (G = supmin{yig (1), g, ()} (19)

Then there exista: € X such that
Using the above possibility measure, MOFRLP can be trans-

pr (N = (cjz+ai) = T (pp (X)) - (Fe +0f), formed to the following multiobjective stochastic program-
i=1,---,k, ming problem MOSP2.
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[MOSP2] _ B pi(x, hy) > pi(x* hy), i = 1,--- k, with strict inequality
max(Il=  (Gq),---, 1= (Gg)) (20) holding for at least one.

o BeX aX o Katagiri et al. [7] proposed an interactive method to obtain
~ Katagiri et al. [7] first formulated MOFRLP as the follow-5 gatisfactory solution from among Pareto optimal solution
ing multiobjective programming problem through a probabiket to MOPER), where permissible values of possibility
ity maximization model. measureh = (hy,---,h;) must be set in advance by the
[MOP4(h)] decision maker in his/her subjective manner. However, in

max (Pr(w | = (G1) > hy),- -+, general, the decision maker seems to prefer not only the

TeX G)T larger value of permissible value of possibility measkre
w)m(Gk) > hy)) (21) but also the larger value of probability functign(z, k;).

From such a point of view, we consider the following

whereh = (hi,- -, hy) are permissible degrees of possibily, iohjective programming problem which can be regarded
ity measure specified by the decision maker. In MOD4 oo 4 natural extension of MOHS).

the constraintll~ (G;) > h; can be transformed as[MOP6]

i (W

Pr(w | 1=
Cr(

follows. _
- weX,hierﬂ)?dl}](,i:L---,k(pl(w7hl)’ vpk(xvhk)vhlv ahk)
supmin{pz o (¥): 1, (W)} = hi, (24)
v ’ Similar to the previous section, we assume that the de-
& e ”E(w)m(y) > his g (y) = hi, cision maker has fuzzy goals far(x, h;),i = 1.---,k,
d; _ —d and such fuzzy goals can be quantified by eliciting the
& Ty L( iw()j)a; Yy > hnR(w) > hi,  corresponding membership functions, (p;(z, h;)). Then
! Bi(w)x MOP®6 can be replaced by the following form.
ke, (y) > hi, [MOP7]
& Jy:(di(w) — L (h)aw)x <
y*( ( ) -1 ( 2 ) y71 max (M])l(pl(wahl))7“'a:u[)k<pk(mahk))a
< (di(w) + R (h)B)a,y < p="(h), EX hiEl0,1]i=1, 1k
_ Gi hi,---, h) (25)
& (dij(w) — L7 h)a(w)e < p="(h)

) . _ _ Throughout this section, we assume that(p;(x, h;)),i =
whereL™'(-) andR~*(-) are pseudo-inverse function corre- ... k are strictly monotone increasing and continuous
sponding tal.(-) andR(-). Using a distribution functiofli(-)  with respect top; (x, h;).

of Z;, each objective function of MORA) is transformed as  For example, we can define the domain.of (p; (z, h;))

below. as follows. Considering the individual minimum and maxi-
Pr(w | Il (éi) > hy) mum Of_E(di)w, the decision maker subjectively specifies
Ci(w)x the sufficiently satisfactory maximum value and the accept-
— Pr (w | (di(w) — LY (h)a (w)z < uil(hi)) able minimum value for the original objective functions in
i ) G MOFRLP, and defines membership functieg (y). For the
= Pr(w]|(dj +#i(w)d)z possibility measure (19) based pg (y), the decision maker
_L—l(

(

hi)(af +ti(w)a?)x < lfl(hi)) subjectively specifies the sufficiently satisfactory maximum
L value h; .« and the acceptable minimum valtg,;,. Then,

( the interval for permissible valuk; is defined as:

+ﬁl(w>(d12w o L_l(hl>a12w) S 'U/TGVT (hl)) Hz' = [himirn himax]- (26)
—1 1 —1
— e < aret (hi) = (djz — L™ (hi) ;) Corresponding to the interval;, let us denote the domain
B T d’z — L-'(h;)a2x of pup, (pi(x, hi)) as:

Mél(hz) o (dZICIJ _ L‘l(hz)a}:c) Pz(Hz) = [pimimpimax]- (27)
= T ] d’x — L' (h)alx Pimax Can be obtained by solving the following problem.
d;f pi(-’B, hz) (22) Pimax = glea?pl (iB, himin) (28)

where(d? — L71(0)a?)z > 0,i=1,--- ,kforanyz ¢ X. In order to obtain pin,, we first solve
Usingp;(x, hi),i = 1,-- -, k, MOP4h) can be expressed asmaXzex Pi(®, himax), ¢ = 1,---,k, and denote the
the following simple form. optimal solution asz;. Using the optimal solutions
[MOP5(h)] x;,i=1,---,k, we can obtaim;.,;, as follows.

:rcng%( (pr(x, he),-- -, pr(x, hy)) (23) Dimin = /:11.141.1113 pﬂ_pz‘ (@, Pimax) (29)

In order to deal with MOP&), we define Pareto op-
timal solutions in the feasible seP(h) = {(pi(x,h1),
"'7pk(xahk) € [07 1]k | T < X}

If the decision maker adopts the fuzzy decision as an
aggregation operator for MOP7, a satisfactory solution is
obtained by solving the following maxmin problem.

Definition 2.
x* € X is said to be a Pareto optimal solution to MGR}, [MAXMINS] ) (30)
if and only if there does not exist anotherc X such that xex,hieH;?if...7k7Ae[o7l]
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. TABLE | _
subject to PARAMETERS OF FUZZY RANDOM NUMBERS;
/J'Pi(pi<w7hi)) > Ai=1,-k (31)
hy > MNi=1,---,k (32) 711 2 3]511 2 3
, , _ N i, [2 1 3[& 13 11 12
Since there exist pseudo-inverse functioms'(-) and a7 7 9,11 12 11
T;7'(-) with respect tau,, () andT;(-), the constraints (31) 1,[05 04 05a2,[0.05 0.04 0.0¢
can be transformed as: a}. |03 05 04a2 1005 0.04 0.03
BI]0:6 05 0.6 32, [0.06 0.05 0.06
pp: (Pi(@; hi)) = A, Bl [04 05 073, [0.06 0.06 0.0
& pi(,hi) > py (N,
pzt(hi) — (dix — L™ (hy)ajx)
- > () : . : :
! d’x — L1 (h;) 02w = Ppa V0 f (2%, A*) is a unique optimal solution of MAXMIN4, then
) ) ) ) x* € Xis a Pareto optimal solution of MOP%"), where
& pZt(h) > (dlw — L7 (h)alw) X = (A, ).
17 (1, (V) - (d — L7 (h)ee) (Proot) — | y |
1 1 1, N Since an optimal solutiofz*, \*) satisfies the constraints
& pg (h) = (diz + T (1, (V) djz) (36), it holds that

7

—L7H (hi) (e + T (! (V) e ) (33)

On the other hand, because of the constraint (32), it holds
that ug(hi) < Hévl(/\): L=Y(h;) < L7()\). Since it is

guaranteed tha(ta%c;: + T H(py L (N) a?a) > 0, the right

p=' ) > (dlat — L7 (V)ade?)
T iy X)) - (d2e — L (A)ada)
p=' (V) — (dizt — L7 (V)ala”

hand side of the constraint (33) can be transformed as the e T df:c* — L 1(\)o2a
following form. .
1 -1/, -1 2 = pi(z", A7)
(diz+ T (1, (N)dix) 2#;1()\*)71':1,"',76

—L7H(hi) (e + T, (V) )

1 1, 1 2\ Assume thatz* € X is not a Pareto optimal solution of
(diiJr T f“pi (Az)ldi ai)l ) MOP5A*), whereA™ = (A*,---, \*), then there existg €
—L7 (Mg + T (py, (A))ogx) X such that
= (djz— L7 '(Nejz)

1 (i, (V) - (diz — L (V)edz)  (34)

From the inequalities (33) and (34), the following inequalit)Then there exists: € X such that

Y

can be easily obtained. IO > (dle - LY (V)ada)
—1 —1/p 1., r-1 1 i 1 1 1
ng, (A 2 pg (hi) 2 (diz — L7 (Ne; @) I (g (V) - (d2a — L1 (A)ala),
+T; (i, (V) - (df — L™ (Vo) i=1-k
As aresult, MAXMIN3 can be transformed into MAXMIN4 which contradicts the fact thdtc*, A*) is a unique optimal
where permissible degrees of possibility meastfei = gglution of MAXMINA.
1,---, k have disappeared.
[MAXMIN4]
max A (35)
TEX,0<A<1 IV. NUMERICAL EXAMPLE
subject to In this section, in order to demonstrate the feasibility of
p=t(A) > (dlz—L7'(Nalx) our proposed method, we consider the following multiobjec-
Gi o ) . ) tive fuzzy random linear programming problem (MOFRLP)
+15 (pp, (V) - (die — L™ (N ogz), which was formulated by Katagiri et al. [7].
i=1,---,k (36) [MOFRLP]
It should be noted here that the constraints (36) can be min T = E1121 + Ciols + Ci3
reduced to a set of linear inequalities for some fixed value rex _ B B
This means that an optimal solutidm*, \*) of MAXMIN4 min CoT = C2171 + Ca2%2 + C23%3

is obtained by combined use of the bisection method with pex

respect to0 < A < 1 and the first-phase of the two-phasevhere X = {x = (z1,22,23) | 2z1 + 622 + 323 <

simplex method of linear programming. 150,621 + 3z2 + 5x3 < 175,521 + 4o + 223 < 160, 221 +
The relationship between the optimal soluti@e®, A\*) of  2z5 4+ 3z3 > 90}, the parameters of fuzzy random number

MAXMIN4 and Pareto optimal solutions to MOPR) can aj,z‘ = 1,2,57 = 1,2,3 are given in Table 1, and;,i =

be characterized by the following theorem. 1,2 are Gaussian random variabldg0, 1). By calculating
Theorem 2. mingex E(d;)x,i = 1,2 and maxgex E(d;)x,i = 1,2,
IMECS 2011
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the hypothetical decision maker sets his/her linear membgermissible levels are not known for the decision maker
ship functions of fuzzy goal&s;,7 = 1,2 for the original in advance. In order to resolve such a problem, we have
objective functions in MOFRLP as follows. proposed fuzzy approaches for both multiobjective stochas-
tic linear programming problems and multiobjective fuzzy

96.42857 —
Ha, (1) = m random linear programming problems under the assumption
' (—285) — that the decision maker adopts the fuzzy decision as an
ng, (y2) = (C285) — (—332.143) aggregation operator of fuzzy goals.

For the elicited membership functions; (y;),i = 1,2,

the hypothetical decision maker sets the intervals =
[Pimin, Pimax), ¢ = 1,2 as]0.4,0.75] and [0.4,0.75] respec-
tively in his/her subjective manner. Then, using (28) and (29)2]
the corresponding domain3 (H;) = [Pimin; Pimax), ¢ = 1,2

are calculated. The corresponding linear membership fungs
tions of fuzzy goals fomp;(x, h;),i = 1,2 in MOP5(h) are
obtained as follows.

(pr(@, 1)) p1(x, h1) — 0.401066 5]
He\PLEE D)= 10 714968 — 0.401066)
p2(x, hy) — 0.213304 6]

tips (P2(2, ha)) (0.812859 — 0.213304)

For these membership functlop% (Yi), top, (pi(, hy)) i

1,2, MAXMIN4 is formulated and solved by comblned
use of the bisection method with respect Glo< A <

1 and the first-phase of the two-phase simplex metho%
of linear programming. The optimal solution is obtained
as(zt, x5, x5, \*) = (6.88984,13.3390, 18.7288, 0.564271).
Since two constraints for (36) are active at the optim
solution, we can get the following optimal values of the

(7]

El

corresponding membership function. [11]
tpy (p1(2™, A7) = 0.564271
tpy (P2(™,N7)) = 0.564271

12

ug () = 0564271 (2l

ne,(5) = 0564271 (13]

wherey; < (dla* — L7 (A )ala®) + T (1 (V) -
(d2z* — L~'(\*)aZz*),i = 1,2. At the optimal solu- *4I

tion, the proper balance between the membership functions
tp (pi(x, A)),i = 1,2 and uz (y;),i = 1,2 in a probability
maximization model is attalned through the fuzzy decisior*

V. CONCLUSION [16]

In this paper, two kinds of fuzzy approaches are propos d
to obtain a satisfactory solution of the decision maker, where
the first one is for multiobjective stochastic linear program-
ming problems, and the second one is for multiobjective
fuzzy random linear programming problems. Both of them
are formulated on the basis of a probability maximization
model. In our proposed methods for such two kinds of
multiobjective programming problems, it is not necessary
that the decision maker specifies permissible levels in a
probability maximization model. Instead of that, by adopting
the fuzzy decision as an aggregation operator of fuzzy
goals for both permissible levels and distribution functions,
a satisfactory solution of the decision maker is easily ob-
tained based on linear programming technique. Although a
probability maximization model is one of the most efficient
tool to transform stochastic programming problems into
well-defined mathematical programming ones, appropriate

17]

ISBN: 978-988-19251-2-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

0] Rommelfanger, H.:

5] Wang, G.-Y. and Qiao, Z.:

REFERENCES

1] Charnes,A. and Cooper,W.W.: “Chance Constrained Programming,”

Management Sciencé, pp.73-79, (1959).

Charnes,A. and Cooper,W.W.: “Programming with Linear Fractional
Functions,” Naval Research Logistic Quarterlypp.181-186, \Vol.9,
(1962).

Danzig, G.B.: “Linear Programming under Uncertainfyfanagement
Science 1, pp.197-206, (1955).

] Dubois, D. and Prade, H.Fuzzy Sets and Systetm&cademic Press,

(1980).

Hulsurkar, S. Biswal, M.P. and Shinha, S.B.: “Fuzzy Programming Ap-
proach to Multi-Objective Stochastic Linear Programming Problems,”
Fuzzy Sets and Systen88, pp.173-181, (1997).

Katagiri, H., Ishii, H. and Itoh, T.: “Fuzzy Random Linear Pro-
gramming Problem,” inProceedings of Second European Workshop
on Fuzzy Decision Analysis and Neural Networks for Management,
Planning and Optimizationpp.107-115, (1997).

Katagiri, H., Sakawa, M., Kato, K. and Nishizaki, I.: “Interactive
Multiobjective Fuzzy Random Linear Programming: Maximization
of Possibility and Probability,”"European Journal of Operational
Research188, pp.530-539, (2008).

Lai, Y.J. and Hwang, C.L.: Fuzzy Mathematical Programmirig
Springer, Berlin (1992).

Luhandjula, M.K. and Gupta, M.M.: “On Fuzzy Stochastic Optimiza-
tion,” Fuzzy Sets and Systen8d, pp.47-55, (1996).

“Fuzzy Linear Programming and Applications,”
European Journal of Operational Reseay@®, pp.512-527, (1997).
Stancu-Minasian,l.M.: “Overview of Different Approaches for Solving
Stochastic Programming Problems with Multiple Objective Functions,”
Stochastic Versus Fuzzy Approaches to Multiobjective Mathematical
Programming under Uncertainty, Slowinski R. and Teghem J.(Eds.)
Kluwer Academic Publishers, pp.71-101, (1990).

Sakawa, M.: Fuzzy Sets and Interactive Multiobjective Optimization
Plenum Press, (1993).

Sakawa,M., Kato,K. and Katagiri,H.: “An Interactive Fuzzy Satisfic-
ing Method for Multiobjective Linear Programming Problems with
Random Variable Coefficients Through a Probability Maximization
Model,” Fuzzy Sets and Systems6, pp.205-220, (2004).

Teghem, J. Dufrane, D. and Thauvoye, M.: “STRANGE: An In-
teractive Method for Multi-Objective Linear Programming Under
Uncertainty,” European Journal of Operational Reseay@6, pp.65-
82, (1986).

“Linear programming with Fuzzy Ran-
dom Variable Coefficients,Fuzzy Sets and Systendd, pp.295-311,
(1993).

Zimmermann, H.-J.: “Fuzzy Programming and linear programming
with several objective functionsFuzzy Sets and Systenis pp.45-
55, (1978).

Zimmermann, H.-J.: Fuzzy Sets, Decision-Making and Expert Sys-
tems’ Kluwer Academic Publishers, Boston (1987).

IMECS 2011





