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Abstract—In this paper, A Mixed Integer Non-linear Pro-
gramming Model (MINLP) is developed to simultaneously
generate an optimal sequence of jobs and WIP level in a
serial CONWIP production line in order to minimize the
overall completion time. Artificial bee colony algorithm , a
novel heuristic optimization approach, is proposed to solve this
model. Unlike many existing approaches, which are based on
deterministic search algorithms such as nonlinear programming
and mixed integer programming, the proposed method does not
use a linearized or simplified model of the system. A numerical
example is used to test the developed model and algorithm.
Computational results validate the modeling and computational
efficiency of the solution method.

Index Terms—Artificial bee colony, Mixed Integer Non-linear
Programming, CONWIP.

I. INTRODUCTION

FLOWING materials through the manufacturing system
is one of the most important decisions that manufactur-

ing companies are now facing to improve their excellence.
Material flow control is to address the problems of when
and how much to allow parts to be processed at each station
in order to achieve acceptable customers service level while
minimizes Work-In-Process.

The focus of this study is on CONWIP production control
systems. Similar to Kanban systems, CONWIP uses cards to
manage the number of WIPs. However, there is only one set
of cards flowing backward from the end of the production
line to its beginning in order to precisely monitor current
inventory level of the system under study. It is assumed that
as long as all required manufacturing modules are accessible,
the requested demands are taken into account for early
production. Inasmuch as no job can enter the system without
its related card, once completed in the last station, the card is
released and then sent back again to the first station, where it
is attached to the subsequent job to be processed. Obviously,
the system is identical to Kanban in that the production of the
first workstation is also activated by the demand. In contrast,
it differs from Kanban system in the sense that CONWIP is
only pulled between the last and the first workstation, so
it may be considered as a single-stage Kanban. Because of
this reason, as stated in [1], the implementation, modeling
and optimization for CONWIP is much easier than Kanban.
For more details about CONWIP systems and its differences
with Kanban see, e.g., [2], [3], [4], [5], [6] and [7].

In order to effectively set up a CONWIP system in a
specific manufacturing environment, some common issues
have to be addressed, most importantly are included fore-
casting the backlog list (which gives the sequence of orders
to be introduced into the line), determining the number of

cards, and sequencing the jobs in the system. Due to some
of its important merits, such as flexibility and robustness in
dynamic and uncertain environments, CONWIP production
control system has been applied not only to various manufac-
turing firms but also to different echelons of a supply chain
in recent years [8]. Different aspects of the CONWIP system
such as operation, applicability, and also comparisons of
CONWIP with other production systems can be found in the
literature, and are well classified by [9]. [10] use CONWIP
in a merging/assembly line and also make some comparisons
with the single Kanban system. It is shown there that, with
the use of both analytical and simulation models, CONWIP
surpasses single Kanban in case of variable processing times.
[3] propose a new method, namely statistical throughput
control (STC), which uses real-time data to adjust WIP
level under a make-to-order CONWIP protocol subject to
environmental changes. This study can be categorized as
card controlling [9], which deals with devising some rules
in order to maintain or change the current number of cards
with respect to certain events such as abrupt changes in the
demand.

[11] propose a mathematical model to address the op-
timal number of cards and job sequencing simultaneously
in a multi-cell, multi-family production environment with
different routes, and solve it via a simulated annealing
(SA) heuristic. Moreover, they compare two variations of
CONWIP control policies, the multi-loop CONWIP system
(in which containers are restricted to stay in given cells)
and the single-loop CONWIP system (in which containers
can circulate everywhere within the system), and show the
superiority of the latter in all scenarios through simulations.
[12] suggest a new procedure for card controlling which
can be applied both to make-to-stock and make-to-order
environments, and examine it on the CONWIP system. The
procedure deals with adding or subtracting extra cards along
with consistently monitoring throughput rate or service level.
In order to reach a target throughput rate, they use only two
parameters, namely, the initial Kanban cards of the CONWIP
system and the number of maximum (initial) extra cards.
They also demonstrate that their method is robust pertaining
to the values of the required parameters. In [13] a determin-
istic mathematical programming model is developed for a
multi-product CONWIP flowshop system in order to find the
optimal job order and schedule, given demand and forecasted
rate of throughput, via linear programming (LP). The goal
of this model is to minimize total cost function consisting
of finished goods holding cost, shortage cost, WIP holding
cost, and overtime cost. However, they do not consider lot
sizes and the effects of bottleneck machine on job orders, and



do not propose an algorithm to efficiently solve their model.
[14] study Sikorsky Aircraft, a single CONWIP job shop
production line, and develop a mathematical programming
model in order to minimize weighted penalties on tardiness
and earliness at a given WIP level. The model is partially
solved by dynamic programming (DP) and heuristic methods
with the help of Lagrangian relaxation.

[15] consider an assembly station feeding by two parallel
fabrication lines. The model is partially linearized and a
nonlinear mixed integer programming algorithm is proposed
in order to obtain simultaneously the optimal job sequencing
and lot sizes. However, WIP level and number of containers
are not discussed in their study. [16] formulate a multi-phase
multi-product CONWIP control system with continuous-
time Markov chain (CTMC) in a steady state mode. Their
approach can effectively estimate the probability distribution
of transient solution, number of WIP as a function of time
as well as some important performance measures such as
the average time in system, utilization percent, etc. [17]
uses simulation experiment to investigate the impact of
integration of Advance Demand Information (ADI) with pull
systems to improve operation efficiencies. It is shown that
the performance of underlying system is more responsive to
order cancellation and less sensitive to variability in demand
information lead times.

Considering the high complexity of production system
models, typically a simplified model is instead used to find
the optimal WIP level and job sequencing in a CONWIP
system. Linearizing the model, and considering a single
bottleneck machine to be able to model the unbalanced
workload constraints are a few examples of such simplifying
assumptions [18], [15], [13]. However, even the correspond-
ing optimization problem for the simplified models are often
NP-complete ([19]), and hence are intractable for close
to real world problems which deal with large number of
parts, machines, and production lines. Also less attention is
paid in the literature to simultaneously finding the optimal
WIP level and job sequencing due to this complexity. To
overcome these shortcomings, we apply the artificial bee
colony algorithm (ABC) [20], a novel heuristic optimization
approach, to simultaneously finding the optimal WIP level
and job sequencing to minimize the overall makespan time
in a multi-product multi-machine serial production line under
a CONWIP protocol. The highly nonlinear dynamics of the
system is modeled via a production line simulator imple-
mented on MATLAB, and is used to evaluate the candidate
solutions. Numerical examples validate the efficacy of the
proposed approach even for systems of large size.

The remainder of this paper is organized as follows. The
problem formulation and model development are introduced
in Section II. The artificial bee colony algorithm and its
application in solving the problem described in Section III.
The efficiency of the proposed method is verified via numer-
ical examples in Section IV. Finally, concluding remarks are
drawn in Section V.

II. PROBLEM FORMULATION

The CONWIP system considered in this section is a
single-stage production line with a number of machines in
a sequence in which each machine can process a certain
number of dissimilar part types.

There is a process time corresponding to each pair of
(machine, part type), which may differ from part to part for
a certain machine. Also, there is a set up time required to
change the line from processing one part type to another type.
It is also assumed that the line uses a CONWIP production
control strategy. There is also a demand list determining the
number of required parts of each type. Furthermore, the fol-
lowing assumptions are made in developing the mathematical
programming model for the given problem:
• There is no machine breakdown
• Set up times and process times are known and deter-

ministic
• Parts follow the same routing process at all machine and

are processed on each machine sequentially
The objective function of the mathematical programming

model is to minimize the total makespan time while at the
same time the WIP and job sequencing are determined. To
the best of the authors’ knowledge and as pointed out in
the Introduction section, card setting and job sequencing are
treated separately in the literature. However, it is beneficial
to consider these two problems at the same time since they
both affect the performance of the CONWIP system.

Known Parameters
n the number of different part types

Pi part type i, i = 1, . . . , n
m the number of machines in the line
di the number of required parts of type Pi in the demand

list, i = 1, . . . , n
Tij the setup time required to switch the line from process-

ing part type Pi to part type Pj , i, j = 1, . . . , n, and
i 6= j. Tij = 0 for i = j

Pij the processing time of machine i on part type Pj , i =
1, . . . , m and j = 1, . . . , n

Decision Variables

yij =
{

1, if Pi is followed by Pj , i, j = 1, . . . , n, and i 6= j
0, otherwise

The decision variables yij should satisfy following con-
straints:

n∑
j=1
j 6=i

yij = 1, i = 1, . . . , n (1)

n∑
i=1
i 6=j

yij = 1, j = 1, . . . , n (2)

Using these notations, the optimization problem can be
formulated as

min
n∑

i=1

n∑
j=1
j 6=i

yijTij (3)

The objective function in (3) corresponds to the setup time
required to switch from processing the current part type to
the next one for a specific job sequencing.

|Wk −Wk−1| < εk, k = 2, . . . , n (4)

where Wk and Wk−1 are the line workloads on the kth and
(k−1)th part batches. Calculating Wk is highly complicated
and depends on many parameters such as the part processing
times Pij , setup times Tij , WIP level, demand list, and



job sequencing. Deterministic search algorithms, such as
integer programming require simplified (and usually linear)
estimates for Wk. This can be done by assuming that the line
work load on a part batch is determined by the bottleneck
machine in the line, and there is only one bottleneck station.
Under these assumptions Wk can be estimated as

Wk =
n∑

i=1

xik(diP
b
i +

n∑
j=1
j 6=i

yijTij) (5)

where P b
i denotes the process time of part Pi by the

bottleneck machine and

xik =
{

1, if the kth part batch is of type Pi

0, otherwise (6)

However, heuristic search algorithms such as the one
employed in the present work, do not require such a sim-
plified formula and can easily handle problems involving
complicated nonlinear models. This is one of the advantages
of the present work over the existing approaches to CONWIP
production system.

III. ARTIFICIAL BEE COLONY

In an artificial bee colony algorithm, there are three groups
of bees: employed bees, onlooker bees, and scout bees. A
bee going to the food source which is visited by itself
in the last round is called an employed bee. An onlooker
bee, on the other hand, waits on the dance floor to gather
information about the positions and the nectar (fitness) of the
food sources from the employed bees and then chooses one
of them probabilistically. A bee doing a random search for
food sources is called a scout bee. Employed and onlooker
bees are responsible for exploitation part of the search while
the scout bees carry out the exploration part. The number
of food sources is equal to the number of employed bees;
in other words, for any food source there exists a unique
employed bee. The number of onlooker bees is assumed
to be the same as that of employed bees. An employed
bee corresponding to an exhausted food source becomes a
scout bee. A food source (i.e. a solution) is assumed to be
exhausted if its quality is not improved after a certain number
of cycles called limit. The employed and onlooker bees also
do a local search in the neighborhood of their food sources
and switch to them if they have more nectar (higher fitness).

The detailed steps taken in a typical artificial bee colony
algorithm are listed below:
• Initialize the population of the solutions xi

• Evaluate the population using the fitness function
• While the maximum cycle number is not reached
• Produce new random solutions vi in the neighborhood

of the existing solutions (xi) for the employed bees
• Replace xi with the newly generated solution vi if its

fitness is higher than xi

• Assign probabilities to the solutions xi according to
their finesses

• Assign a solution to each onlooker bee based on the
probabilities of xi’s, and produce random solutions vi

for the onlookers in the neighborhood of xi’s
• Replace xi in the memory of an onlooker bee with vi,

if its fitness is higher than xi

• Determine an abandoned solution and replace it with a
new randomly generated solution for the scout bee

• Memorize the best solution found so far
• End While
The probabilities using which the onlookers choose food

sources xi are calculated as

pi =
fit(xi)∑n

j=1 fit(xj)
(7)

where n is the size of the population and fit(xi) is the fitness
of solution xi.

To solve this problem using the artificial bee colony
algorithm, we fix the WIP level in each run and then we
use an artificial bee colony search to find the optimal job
sequencing. Each solution xi is a vector in which xi(j)
represents the jth part type to be processed in the production
line. Assuming the number of part types being n, the space
of possible solutions is of size n!, which makes the search in-
tractable using deterministic search methods for large values
of n. The function f(xi) to be minimized is the makespan
time corresponding to the job sequencing xi. We assign the
following fitness function fit(xi) to any solution xi

fit(xi) =
1

1 + f(xi)
(8)

This fitness function will be used in evaluating the population
and the associated probabilities for every solution according
to (7). A very important step in any ABC algorithm is how
to choose a random solution vi in the neighborhood of xi. In
the case where the search space for xi is continuous, this is
simply done by randomly choosing a solution xk and letting
vi to be a randomly selected point on the segment between xi

and xk. However, this method is not applicable to the discrete
search spaces, which makes the problem more challenging.
In this paper we employ the following algorithm to construct
vi from xi

• j = 1
• While (j ≤ n)
• Generate a random number p ∈ [0, 1]
• If p > pth or xi(j) ∈ {vi(1), . . . , vi(j −

1)}, then choose vi(j) randomly from
{1, . . . , n}\{vi(1), . . . , vi(j − 1)}, otherwise, set
vi(j) = xi(j)

• j = j + 1
• End While

In the above algorithm, pth is a threshold used to keep vi

close to xi. It is clear that to keep vi closer to xi, pth should
be chosen close enough to 1.

We run this algorithm for every possible WIP level varying
from 1 to the size of the demand list to find the optimal
job sequencing in each case. Finally we choose the job
sequencing with the minimum WIP level associated with the
minimum makespan time.

IV. NUMERICAL EXAMPLES

In this section, we consider a single serial CONWIP
production line with 3 machines, producing 6 part types.
All 6 part types are processed by 3 machines sequentially,
and it is assumed that all the assumptions mentioned in
Section II hold. Processing times on 3 machines for 6



TABLE I
PART PROCESSING TIMES

P1 P2 P3 P4 P5 P6

Machine1 12 15 12 13 12 18
Machine2 9 16 4 7 15 5
Machine3 19 6 7 12 5 17

TABLE II
SEQUENCE DEPENDENT SETUP TIMES

Tij j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 0 12 15 8 4 6
i = 2 13 0 11 5 12 18
i = 3 19 8 0 5 6 3
i = 4 15 6 14 0 13 7
i = 5 3 8 15 6 0 5
i = 6 12 9 4 6 10 0

TABLE III
DEMAND LIST

P1 P2 P3 P4 P5 P6

Demand 9 4 6 8 7 9

products are shown in Table I. Sequence dependent set up
times are also generated randomly with uniform distribution
over {1, . . . , 20}. These numbers are shown in Table II,
with Tij denoting the set up time required to change from
processing part type Pi to processing part type Pj (for
instance, T12 in this production line is 12 time units). Finally,
Table III shows the number of parts to be produced through
the production line.

For any WIP level, the search space for finding the optimal
job sequencing has 6! elements. The control parameters of
the ABC algorithm are chosen as follows. The colony size
is set to be 20. The maximum number of cycles is 1000 and
the limit value is 7. The threshold probability is chosen to
be pth = 0.6.

The optimal job sequencing and makespan time for various
WIP levels are shown in Table IV. As can be seen, up to some
point, any increase in the WIP level leads to a decrease in
the makespan time in the optimal job sequencing. However,
at some point, increasing WIP level will not improve the
makespan time of the system (WIP level equal to 9 in
this example). This is the best WIP level in the sense
that its corresponding optimal job sequencing results in the
minimum possible makespan time, and using a higher WIP
level cannot improve the performance of the system.

V. CONCLUSIONS

This paper considers a CONWIP-based multi-product
multi-machine serial production line. An artificial bee colony
approach is proposed to simultaneously find the optimal
WIP level and job sequencing to minimize the overall
makespan time for the developed mathematical model of
the system. Unlike many approaches in the literature, the
proposed method treats both WIP level optimization and
job sequencing at the same time. Moreover, it does not
use simplifying assumptions or linearized model of the

TABLE IV
MAKESPAN TIME AND OPTIMAL JOB SEQUENCING FOR VARIOUS WIP

LEVELS

WIP level Makespan Optimal job sequencing

1 1512 P1P5P3P6P4P2

2 787 P1P5P3P6P4P2

3 697 P5P1P2P4P6P3

4 666 P2P4P1P6P5P3

5 648 P1P6P4P2P5P3

6 639 P6P1P2P4P5P3

7 635 P6P5P1P2P4P3

8 632 P1P5P2P4P6P3

9 629 P2P4P6P1P5P3

10 629 P2P4P6P1P5P3

production system, and utilizes a production line simulator
developed on MATLAB to model the nonlinear complex
dynamics of the system and to calculate the fitness for
candidate solutions. The proposed method is also applicable
to real world problems involving large number of parts,
machines, and production lines, as illustrated by numerical
simulations.
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