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Abstract—This paper focuses on a new Stackelberg location
problem on a tree network with demands whose quantities are
given uncertainly and vaguely. By representing their quantities
as fuzzy random variables on the tree network, the optimal lo-
cation problem can be formulated as a fuzzy random program-
ming problem for finding Stackelberg equilibrium. By using
both their α-level sets for fuzziness and their satisfaction level
for a given probability for randomness, it can be reformulated
as a version of conventional Stackelberg location problem on
the tree network. Theorems for its complexity are shown based
upon the characteristics of the facility location.

Index Terms—facility location, competitiveness, Stackelberg
equilibrium, fuzzy random variables.

I. I NTRODUCTION

A. Former Studies of Stackelberg Location Problems

COMPETITIVE facility location problem (CFLP) is one
of optimal location problems for commercial facilities,

e.g. shops and stores, and an objective of most CFLPs is
to obtain as many buying powers (BPs) from customers as
possible. Mathematical studies on the CFLPs were origi-
nated by Hotelling [7]. He considered the CFLP under the
conditions that (i) customers are uniformly distributed on a
line segment, (ii) each of decision makers (DMs) will locate
her/his own facility on the line segment that there are no
facilities, and (iii) all customers only use the nearest facility.
Then, his CFLP can be represented as an optimal location
problem for finding Nash equilibrium, called Nash location
problem (NLP). As an extension of Hotelling’s NLP, Wendell
and McKelvey [22] assumed that there exist customers on a
finite number of points, called demand points (DPs), and
considered an NLP on a tree network whose vertices are
DPs.

On the other hand, based upon the NLP by Wendell and
McKelvey [22], Hakimi [5] considered the CFLP with two
types of DMs; the upper DM, who first locates her/his facil-
ities, and the lower DM, who next locates her/his facilities.
Then, his CFLP for the upper DM can be represented as
an optimal location problem for finding Stackelberg equilib-
rium, called Stackelberg location problem (SLP). For details
of Hakimi’s SLP and their applications, the readers can refer
to the book of Miller et al. [11]. As an extension of Hakimi’s
SLP, SLPs on a plane are considered by Drezner [3], Uno et
al. [17], [18], etc. Another type of SLP based on maximal
covering is considered by Plastria and Vanhaverbeke [13].
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In the above studies of CFLPs, the demands of customers
for facilities are represented as definite values. We consider
some uncertainty and vagueness with demand for facilities.
For the uncertainty, facility location model with random
demands in a noncompetitive environment is considered by
Wagnera et al. [20]; for the details of location models with
random demands, the reader can refer to the study of Berman
and Krass [2]. For CFLPs with random demands, Shiode and
Drezner [15] considered an SLP on a tree network, and Uno
et al. [17] considered a CFLP on a plane. On the other hand,
for the vagueness, facility location model with fuzziness
in a noncompetitive environment is considered by Moreno
Pérez et al. [12], which represented the demands as fuzzy
numbers proposed by Dubois and Prade [4]. Recently, the
decision-making problems in environments including both
uncertainty and vagueness are studied. Kwakernaak [10] pro-
posed the fuzzy random variable representing both fuzziness
and randomness. For the details of fuzzy random variable,
the reader can refer to the book of Kruse and Meyer [9].
Fuzzy random programming and its distribution problems are
considered by Wang and Qiao [21] and Qiao and Wang [14].
For the recent studies of fuzzy random programming prob-
lems, Katagiri et al. [8] considered multiobjective fuzzy
random linear programming, and Ammar [1] considered
fuzzy random multiobjective quadratic programming. Uno
et al. [18] considered CFLPs with fuzzy random demands,
whose quantities are represented as fuzzy random numbers.
Uno et al. [19] considered SLPs with fuzzy random demands
on a tree network, whose sites are represented as fuzzy
random variables.

B. An Outline of Our study

In this paper, we propose a new SLP on a tree network
by introducing the above fuzzy random quantities demanded.
We represent their quantities as fuzzy random variables on
vertices in the tree network. Then, we can formulate the
SLP by representing the randomness as scenarios for each
demand. For solving the SLP, we first transform it to an
SLP with random quantities demands by using the definition
of α-level sets for fuzziness. Next, we use the satisfaction
level for a given probability for randomness. Then, we can
reformulate it to a version of conventional SLP on a tree
network, and can show theorems for its complexity based
upon the characteristics of the facility location.

The remaining structure of this article is organized as
follows: The next section devotes to introducing the defi-
nition of fuzzy random variables. In Section 3, we formulate
the SLP on a tree network with quantities demanded which
are given uncertainly and vaguely as an SLP with fuzzy
random variables. By usingα-level sets and satisfaction level
for a given probability, we reformulate it the problem to a



Fig. 1. An Example of Fuzzy Numbers and itsα-Level Set

Fig. 2. An Example of Fuzzy Random Variables

version of conventional SLP on a tree network in Section 4.
Section 5 shows theorems for its complexity based upon the
characteristics of the facility location. We extend the SLP to
that on a general network in Section 6. Finally, conclusions
and future studies are summarized in Section 7.

II. FUZZY RANDOM VARIABLE

Let Ã be fuzzy number andµÃ : R → [0, 1] be
membership function ofÃ, where R is the set of real
numbers. Forα ∈ (0, 1], theα-level set ofÃ is represented
as the following equation:

Ãα ≡ {x| µÃ(z) ≥ α} (1)

Fig. 1 illustrates an example of fuzzy numbers and itsα-level
set.

In this paper, we use the following definition of fuzzy
random variable, suggested by Kruse and Meyer [9]:

Definition 2.1: Let (Ω, B, P ) be a probability space,
where Ω, B, and P are a sample space,σ-algebra, and
a probability measure function, respectively. LetF(R) be
the set of fuzzy numbers with compact supports, andΞ a
measurable mappingΩ → F(R). ThenΞ is a fuzzy random
variable if and only if givenω ∈ Ω, its α-level setΞα(ω) is
a random interval for anyα ∈ (0, 1].

Fig. 2 illustrates an example of fuzzy random variables for
representing BP per day for weather, whose randomness is
represented by weather and whose fuzziness is included in
the BP for each case of weather.

Fig. 3. An Example of Tree Networks for SLP

III. F ORMULATION OF SLP WITH FUZZY RANDOM

QUANTITY DEMANDED

We consider the SLP on a weighted treeT = (V,E),
which is a simple graph, whereV and E are the sets of
vertices and edges, respectively. For each vertexv ∈ V
and edgee ∈ E, we associate weightsw(v), l(e) ≥ 0,
respectively, wherew(v) means the BP of the demand on
v for facilities andl(e) the length ofe. Fig. 3 illustrates an
example of tree networks for the SLP.

In the treeT , we consider the case that eachw(v), v ∈ V
is given as the following fuzzy random variable:

• Its randomness is given byγ scenarios, whose proba-
bilities are denoted byp1, p2, . . . , pγ > 0.

• For each scenarios = 1, 2, . . . , γ, its fuzziness is given
as fuzzy numberws(v) ∈ F(R) whose membership
function is denoted byµws(v)(z), whereµws(v)(z) = 0
for any z < 0 and its α-level set is closed for any
α ∈ (0, 1].

An example of fuzzy random quantities demanded is shown
in Fig. 2.

Let q andr be the given numbers of facilities located by
the upper and lower DMs, respectively. Letx1, x2, . . . , xq ∈
T be the sites of the upper DM’s facilities andXq =
{x1, x2, . . . , xq}. Similarly, let y1, y2, . . . , yr ∈ T be the
sites of the lower DM’s facilities andYr = {y1, y2, . . . , yr}.
We assume that each of demands only use the nearest facility,
and the facility used by a demand onv can obtainsw(v) from
v ∈ V . If two or more facilities are the same distances to a
demand, one of the upper DM’s facilities can obtain its BP.

Let WFR(Xq, Yr) be the sum of obtaining BPs of
the upper DM’s facilities from the demands. Note that
WFR(Xq, Yr) is represented as a fuzzy random number.
The objective of each DM is defined to maximize her/his
obtaining BPs. Since the sum of obtaining BPs of all facilities
is constant, the objective of the lower DM can be represented
as minimizing the sum of the upper DM’s obtaining BPs.
For given locationXq ∈ T q = T × · · · × T , the optimal
location problem for the lower DM, called(Xq|r)-medianoid
problem, can be formulated as follows:

minimize WFR(Xq, Yr)
subject to Yr ∈ T r.

}
(2)

Let Y ∗
r (Xq) be the optimal solution of(Xq|r)-medianoid

problem. Then, the proposed SLP, called(q|r)-centroid prob-



lem, can be formulated as follows:

maximize WFR(Xq, Y
∗
r (Xq))

subject to Xq ∈ T q.

}
(3)

IV. REFORMULATION TO A VERSION OF CONVENTIONAL

SLP

For (2) and (3), their objective functions values are repre-
sented as fuzzy random numbers. Then, we need to define
an order between fuzzy random numbers. In this paper,
we reformulate (2) and (3) to a version of conventional
medianoid and centroid problems, respectively.

We first transform (2) and (3) to the following stochastic
programming problems by using theα-level set (1). For a
given α ∈ (0, 1], we assume that the lower DM can decide
the variable in each ofα-level sets for minimizing the upper
DM’s objective function value. Then, we can represent the
lower DM’s objective function value as

Wα
R(Xq, Yr) = min{(WFR(Xq, Yr))α} (4)

BecauseWα
R(Xq, Yr) is a random value, (2) can be trans-

formed as the following stochastic programming problem:

minimize Wα
R(Xq, Yr)

subject to Yr ∈ T r.

}
(5)

Let Y α
r (Xq) be the optimal solution of (5). Then, (3) can be

reformulated as follows:

maximize Wα
R(Xq, Y

α
r (Xq))

subject to Xq ∈ T q.

}
(6)

Next, by using the satisfaction level for a given probability
for their randomness, we reformulate (5) and (6) to determin-
istic programming problems. For probability1/2 < β < 1
given by the upper DM, we use the following constraint for
the lower DM suggested by Shiode and Drezner [15]:

Pr{Wα
R(Xq, Yr) ≤ σ} ≥ β, (7)

whereσ means a satisfaction level for the upper DM. Then,
(5) can be reformulated as follows:

minimize σ
subject to Pr{Wα

R(Xq, Yr) ≤ σ} ≥ β,
Yr ∈ Y r.

 (8)

Let Y (α,β)
r (Xq) be the optimal solution of (8). Contrary to

(7), the upper DM would like to increase her/his satisfaction
level for a given probabilityβ. Then, the constraint for the
upper DM can be represented as

Pr{Wα
R(Xq, Y

(α,β)
r (Xq)) ≥ σ} ≥ β. (9)

Hence (6) can be reformulated as follows:

maximize σ

subject to Pr{Wα
R(Xq, Y

(α,β)
r (Xq)) ≥ σ}

≥ β,
Xq ∈ T q.

 (10)

Because (10) include constraint (9), (10) is not a conven-
tional SLP but a version of conventional SLP.

V. COMPLEXITY AND SOLUTION METHOD OF THESLP

For cases that the tree network does not include any fuzzy
random quality demanded, (2) and (3) can be reduced to
conventional medianoid and centroid problems, respectively,
which are NP-hard ifq ≥ 2 proven by Hakimi [6] and
Spoerhase and Wirth [16]. Therefore, the following theorems
are apparently satisfied:

Lemma 5.1:For anyXq ∈ T q with q ≥ 2, (8) is NP-hard.

Theorem 5.2:For anyq ≥ 2, (10) is NP-hard.

Then, we consider (8) and (10) for the caseq = 1. We
first show the following two lemmas for solving (8).

Lemma 5.3:If X1 is on any vertexv ∈ V , then one of
Y

(α,σ)
r (X1) can be given by locating allr facilities on the

opposite vertices of the edges adjacent tov.
Proof: Note that any tree can be cut to several trees by

removing any one non-leaf vertex or edge. A lower DM’s
facility can obtain all BPs on the tree that is cut at a point
between her/his facility and the upper DM’s facility and
includes her/his facility. The best location of the lower DM
is clearly so as not to put any nodes between her/his facilities
andv. This means that one ofY (α,β)

r (X1) can be represented
by locating her/hisr facilities on the set of the above points.

Similarly to the above proof, the following lemma can be
shown.

Lemma 5.4:If X1 is on pointz in any edgee ∈ E, then
one of Y (α,σ)

r (X1) is to locate facilities on both vertices
adjacent toe if r ≥ 2, or either vertex ifr = 1.

Next we consider (10) for the caseq = 1.

Theorem 5.5:The optimal solution for (10) withq = 1 is
to locate it on one of the vertices.

Proof: We show the proof of the theorem by the
reduction to absurdity. We assume the upper DM locates on
any edgee ∈ E. If r ≤ 2, the lower DM can reduce the
objective function value of (10) to zero by locating her/his
two facilities at both points adjacent toe. On the other hand,
if r = 1, the optimal location of the lower DM can be
found by Lemma 5.4 and its candidates are only two points.
Whichever is optimal for the lower DM, the upper DM can
obtain more BPs by locating at the vertex than that one.
These contradict the optimality of (10).

Note that we can show the proofs of Lemmas 5.3, 5.4, and
Theorem 5.5 in a similar way of those of the conventional
medianoid and centroid problems.

Finally, we consider the complexity for (10) for the case
q = 1. From Theorem 5.5, we can find an optimal solution
of (10) by examining all vertices. For the case that the upper
DM locates her/his one facility on each vertexv ∈ V , we
need to solve (8). From Lemma 5.3, (8) for each location
can be solved by examining all the opposite vertices of the
edges adjacent tov. Let |E| denote the number of edges.
Then, for all locations of the upper DM, the total number of
the examination is2|E|. This means that (10) can be solved
in polynomial time.



Fig. 4. A Difficulty of the SLP on the general network

VI. EXTENSION OF THESLP TO THAT ON A GENERAL

NETWORK

In this section, we consider the SLP on a general network
N , that is, the following problems:

minimize σ
subject to Pr{Wα

R(Xq, Yr) ≤ σ} ≥ β,
Yr ∈ Nr,

 (11)

and

maximize σ

subject to Pr{Wα
R(Xq, Y

(α,β)
r (Xq)) ≥ σ}

≥ β,
Xq ∈ Nq,

 (12)

whereY (α,β)
r (Xq) is an optimal solution of (11). Note that

(11) and (12) are usually difficult to solve than (8) and (10).
We show such a difficulty by illustrating a simple example
of the SLP.

In Fig. 4, we consider the SLP that each of both DMs
locates only one facility on the triangle network, three of
whose nodes has the same BPs, and three of whose edges
has the same length. We consider the case that the upper
DM locates her/his facility on one of the nodes. If the lower
DM also locates her/his facility on another node, she/he only
obtain BPs from one node. However, if she/he locates it
on the edge not adjacent to the node with the upper DM’s
facility, she/he can obtain BPs from two nodes. This means
that Lemmas 5.3 and 5.4 are not satisfied, and then Theorem
5.5 is not satisfied for the SLP on the general network.

However, for cases that the general network does not
include any fuzzy random quality demanded, (11) and (12)
can be reduced to conventional medianoid and centroid prob-
lems, respectively, both of whose complexities are shown
by Hakimi [5]. From the discussion of the previous section,
the following theorems of (11) and (12) can be shown in a
similar way of those of conventional medianoid and centroid
problems.

Lemma 6.1:For anyXq ∈ T q with q ≥ 2, (11) is NP-
hard.

Theorem 6.2:For anyq ≥ 2, (12) is NP-hard.

Lemma 6.3:For anyXq ∈ T q with q = 2, (11) can be
solved in polynomial time.

Theorem 6.4:For any q = 1, (12) can be solved in
polynomial time.

VII. C ONCLUSIONS AND FUTURE STUDIES

In this paper, we have proposed a new Stackelberg lo-
cation problem on a network with quantities demanded
which are given uncertainly and vaguely. For formulating
the Stackelberg location problem with the fuzzy random
variables, by using theirα-level sets and satisfaction level, we
have reformulated as a version of conventional Stackelberg
location problem on a network. Its complexity have been
shown based upon the characteristics of the facility location.

This paper shows that (8), (10), (11), and (12) withq ≥ 2
are NP-hard. To propose an efficient solution method for
these problems are an important future study.
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