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Abstract—The equilibrium is derived in a real options game
on the basis of a multidimensional state variable. In the game,
firms optimize both investment time and project choice in
projects that have not been chosen by the leading competitors.
We demonstrate how the equilibrium changes with the number
of firms, the number of projects, and the correlation between
project values. Consistent with previous findings, an increase in
the number of firms and a decrease in the number of projects
reduce the option value in equilibrium. A new finding suggests
that the option value decreases when the numbers of both firms
and projects increase by the same amount. Most interestingly, a
high correlation between project values plays a positive role in
mitigating preemptive competition, unlike in a monopoly. The
results complement the literature of both real options games
and max-options, and entails new empirical implications.

Index Terms—financial engineering, real options game, op-
tions on multiple assets, optimal stopping game, max-option

I. I NTRODUCTION

T HIS paper investigates the nature of a real options game
based on multiple assets. The real options approach, in

which option pricing theory is applied to capital budgeting
decisions, better enables us to find an optimal investment
strategy and project valuation involving uncertainty and
flexibility, than the conventional Net Present Value (NPV)
method could (see [1]). Although the early literature on real
options focuses on a monopolist’s investment, many papers
have recently investigated real options games, in which game
theory, combined with option pricing theory, is applied to
strategic interactions among firms competing in the same
market.

Studies such as [2], [3], and [4] derive the equilibrium
in a duopoly under the preemption game (non-zero-sum
optimal stopping game1) framework, while [6], [7], and [8]
derive the equilibrium in a oligopoly under the Cournot–
Nash framework. The competitive equilibrium has been
investigated in [1] and [9].2 The main result of these studies
is that competition among firms reduces option value and
accelerates the exercise of real options. This prediction has
been supported by empirical tests in [12] and [13].

The previous studies on real options games assume one-
dimensional Geometric Brownian Motion (GBM) to be the
stochastic process (the state variable) that represents the
future cash flow from a project. This is because explicit
results are more appealing due to the difficulty of model
calibration in many real options models; although such
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1Most of the literature of real options games models competition among
rival firms into a non-zero-sum game, while the game options literature,
provoked by [5], tends to focus on a zero-sum game for a buyer and a seller.
This is a main difference between real options games and game options.

2In contrast, [10] and [11] investigate the agency problem in a single firm
under the mechanism design framework.

simplification could be justified for a problem concerning
a single investment project, a problem involving several
projects should be modeled by a multidimensional state
variable. In fact, several papers have investigated a mo-
nopolist’s investment decision involving two projects using
a model with a bidimensional state variable. For example,
[14] investigates land development timing with an alternative
land use choice and [15] investigates timing in switching
methods of nuclear waste disposal. The former studies a
sort of American max-option, while the latter deals with an
American spread option.3

However, there have been few studies investigating a real
options game based on a multidimensional state variable.4

The contribution of this paper is to derive the equilibrium in a
duopoly and oligopoly, taking into account multiple projects
of which value follows a multidimensional state variable.
We consider the game where firms optimize both investment
time and project choice among projects that have not been
chosen by leading competitors. In the game, we reveal how
the investment strategy and the option value in equilibrium
are affected by the number of firms, the number of projects,
and the correlation between project values.

In equilibrium, consistent with the main result of real
options games, the option value decreases and investment
takes place earlier as the number of firms increases. In
addition, the option value increases with the number of
projects. This result can be considered an extension of previ-
ous results regarding max-options. Thus, this paper links the
studies on real options games and max-options. Furthermore,
this paper reveals how the equilibrium changes when the
numbers of both firms and projects change; we show that
the option value decreases and investment is hastened when
the numbers of both firms and projects increase by the
same amount. Although our model exogenously provides the
number of firms and the number of projects, in the real world,
the number of firms tends to increase with the number of
alternatives in the market. Our result enforces the robustness
of the main result of real options games.

Another new finding is that a high correlation between
the values of alternatives plays a positive role in moderating
competition among firms. This is in sharp contrast with the
previous findings in a monopoly where, as pointed out in the
max-option literature, the high correlation reduces the value
of project choice and accelerates investment. In a duopoly
and an oligopoly, the high correlation leads to the opposite
effects of moderating the competition (positive effect) and
reducing the value of project choice (negative effect). The
tradeoff determines the sensitivity of the correlation with

3Refer to [16] and [17] for details of American options on multiple assets.
4Although in several papers a problem with a bidimensional state variable

is reduced to a one-dimensional case by homogeneity, such cases are very
restrictive. A noted exception is [18] who investigate the Cournot-Nash
equilibrium in the R&D competition with both demand and cost shocks.
Due to the model complexity, their results are mainly derived from the
numerical examples.



respect to the option value in equilibrium. In particular, when
there is an equal number of projects and firms, the high cor-
relation increases the option value. This paper complements
the literature of real options games by revealing the effects of
the correlation and complementing the max-option literature
in terms of the strategic interactions.

Although the new prediction has yet to be empirically
investigated, it has the potential to account for the non-
monotonicity pointed out by [13]. Their empirical work finds
that, investment in medium-concentration industries takes
place earlier than in not only high-concentration industries
but also in low-concentration industries. Our results highlight
the significance of the correlation between project values in
addition to industry concentration.

Finally, we address real-world cases to which the model
applies. The model could potentially account for competition
in mergers and acquisitions. For instance, in the pharmaceu-
tical industry, large corporations strategically acquire venture
businesses that develop new drugs. In a large-scale case,
a firm must choose between several targets due to budget
constraint. Because many mergers and acquisitions take place
by private negotiation rather than through a public bidding
process, preemptive competition occurs among the acquiring
firms. When a firm is preempted by its rival, it will choose
an alternative venture business (plan B). The model is also
closely related to strategic interactions among real estate
developers. As documented in [14], a developer has several
options of land uses. The value of each land use is greatly
affected by land development that is done by other developers
in the same area. Some developers that are preempted by its
rivals are obliged to develop land for an alternative use (plan
B).

II. PRELIMINARIES

Consider a firm that has an option to invest in a project.
Consider two kinds of projects denoted byi = 1, 2. When
a firm conducts projecti at time t, it receives temporary
project valueXi(t).5 The investment in projecti requires
an irreversible capital expenditure ofIi(> 0). Assume that
project valueXi(t) follows a nonnegative diffusion process
under the risk-neutral measure:

dXi(t) = µi(Xi(t), t)dt+ σi(Xi(t), t)dBi(t), (1)

where (B1(t), B2(t)) is a bidimensional Brownian Motion
(BM) with correlation coefficientρ. Mathematically, the
model is built on the filtered probability space(Ω,F , P ;Ft)
generated by(B1(t), B2(t)). The setFt means the available
information set to timet, and a firm optimizes its investment
strategy under this information. Letr(> 0) and T (> 0)
denote the constant risk-free rate and maturity of the option,
respectively.

A. Valuation in a monopoly with a single project

As a benchmark, we consider a firm that has a monopolis-
tic option to invest in a single projecti. This option can be
regarded as an American call option. At timet(< T ) with

5This is regarded as the discounted cash flow during the lifetime of project
i.

the state variableXi(t) = xi, the option value is equal to
the value function of the optimal stopping problem:6

V 1
i (xi, t) := sup

τ∈Tt

Exi
t [e−r(τ−t)(Xi(τ)− Ii)1{τ≤T}], (2)

whereTt denotes the set of all stopping timesτ satisfying
τ ≥ t andExi

t [·] is the expectation conditional onXi(t) =
xi. Throughout the paper, the superscript and the subscript
onV 1

i represent the number of firms and available project(s),
respectively; that is,V 1

i in (2) means the value function in
a monopoly with a single projecti.

We restrict our attention to a diffusion processX(t)
satisfying the following assumptions:
Assumption (i) The value function V 1

i (xi, t) is con-
tinuous and strictly increasing with respect toxi and
limxi↓0 V

1
i (xi, t) = 0.

Assumption (ii) There exists a finite thresholdx1
i (t) such

that the optimal stopping timeτ1i (t) for problem (2) is
written as

τ1i (t) = inf{s ≥ t | Xi(s) ∈ [x1
i (s),∞)}. (3)

Define S1
1(s) := [x1

1(s),∞) × R+ and S1
2(s) := R+ ×

[x1
2(s),∞). Then, the optimal investment timeτi(t) is written

as inf{s ≥ t | X(s) ∈ S1
i (s)}. The assumptions are not

restrictive. Indeed, we can take a wide range of diffusion
processes including a GBM, i.e.,µi(Xi(t), t) = µiXi(t)
andσi(Xi(t), t) = σiXi(t) whereµi(< r) andσi(> 0) are
constant, and a process with a mean-reverting growth rate,
i.e.,µi(Xi(t), t) = η(m−Xi(t)) andσi(Xi(t), t) = σiXi(t)
whereη,m andσi are positive constants.

WhenX(t) follows a GBM and the maturity is infinite,
V 1
i (xi, t) is explicitly derived independently from timet. In

fact, the option valueV 1
i (xi) is expressed as

V 1
i (xi) =


(
xi

x1
i

)βi

(x1
i − Ii) (0 ≤ xi < x1

i )

xi − Ii (xi ≥ x1
i ).

(4)

The constant thresholdx1
i is defined by

x1
i =

βi

βi − 1
Ii, (5)

whereβi := 1/2 − µi/σ
2
i +

√
(µi/σ2

i − 1/2)2 + 2r/σ2
i (>

1). Similarly, whenX(t) follows a process with a mean-
reverting process and the maturity is infinite, the option value
is explicit and independent of timet. For details, refer to [1].

B. Valuation in a duopoly with a single project

This subsection considers two identical firms that compete
for a single projecti. Throughout the paper, we assume a
winner-take-all game as follows:
Assumption (iii) A firm cannot invest in the project in which
the other firm has already invested.

Suppose timet with Xi(t) = xi ≤ Ii for i = 1, 2. The
duopoly game is solved backward. We begin by supposing
that one of the firms (the leader) has first invested at time
s ∈ [t, T ], and we find the optimal decision of the other
(the follower). Because the follower’s opportunity to invest
is removed, the follower’s value is zero. On the other hand,

6When the maturity is infinite, we have only to replace1{τ≤T} with
1{τ<∞}.



the leader’s value isXi(s)− Ii at the time of investment. In
the situation where neither firm has invested, firms attempt
to preempt each other in order to obtain the leader’s project
value if Xi(s)− Ii > 0. DefineS2

1(s) := [I1,∞)×R+ and
S2
2(s) := R+ × [I2,∞). In equilibrium, both firms attempt

to invest at

τ2i (t) := inf{s ≥ t | X(s) ∈ S2
i (s)} (6)

and hence the option value becomes

V 2
i (xi, t) := 0, (7)

where the superscript2 and the subscripti represent a
duopoly with a single projecti. In other words, the pre-
emptive competition completely removes the value of option
to invest in projecti.

Strictly speaking, both firms’ investment strategy at (6)
proves to be a Nash equilibrium in the optimal stopping
game under the assumption that if two firms choose the
same timing, one of the firms is chosen as the leader with
probability1/2. Most studies, including [2] and [3], are built
on this assumption. Then, the equilibrium means that one of
the firms invests in projecti at time (6), while the other
cannot undertake the project. The value of the leader, who is
selected randomly, is zero because of investing too early. This
is the well-known preemptive equilibrium in a real options
game. For details of real options games, refer to [19].

C. Valuation in a monopoly with two projects

This subsection considers a firm that has a monopolistic
option to invest in a single project between projects1, 2.
The model applies not only to a case in which two projects
are mutually exclusive (e.g., alternative land use) but also to
a case where a firm must choose between projects due to
budget constraint (e.g., large merger and acquisition trans-
action). This type of option is classified as American max-
options. European max-options have been studied in [20]
and [21], while American max-options have been studied
in [14], [16], and [17]. Although a max-option commonly
has a multidimensional state variable, [22] studies a max-
option that is written on a one-dimensional state variable,
i.e., ρ = 1, x1 ̸= x2, and I1 ̸= I2, in order to investigate
investment timing with an alternative scale choice.

At time t(< T ) with X(t) = x, the option value is equal
to the value function of the optimal stopping problem as
follows:

V 1
1,2(x, t) := sup

τ∈Tt

Ex
t [e

−r(τ−t) max
i=1,2

(Xi(τ)− Ii)︸ ︷︷ ︸
project choice

1{τ≤T}].

(8)
Recall that V 1

1,2 in (8) means the value function in a
monopoly with projects1, 2. The optimal stopping timeτ11,2
for problem (8) is written as

τ11,2(t) = inf{s ≥ t | X(s) ∈ S1
1,2(s)}, (9)

where the stopping regionS1
1,2(s) is defined by

S1
1,2(s) := {x ∈ R2

+ | V 1
1,2(x, s) = max

i=1,2
(xi − Ii)}. (10)

The stopping regionS1
1,2(s) proves to be the union of two

disjoint convex sets corresponding to the immediate exercise

region of each project, whenX(t) follows a GBM. For
details, refer to [14], [17].

Let us now focus on two symmetric projects, i.e.,x1 =
x2, µ1(·, ·) = µ2(·, ·), σ1(·, ·) = σ2(·, ·), and I1 = I2. In
this case, the larger the correlation coefficientρ, the more
likely it is that the project valuesX1(t) andX2(t) take close
values. The option valueV 1

1,2 decreases and the stopping
region S1

1,2 enlarges withρ, because the higherρ reduces
the value of project choice. In particular, in the case of the
perfect correlation, i.e.,ρ = 1, the option valueV 1

1,2 and the
investment timeτ11,2, agree with those in a monopoly with
a single project, i.e.,V 1

i and τ1i , respectively. The effects
of the correlation will be compared in detail with that of a
duopoly with two projects in Section 3.

The following section is the main contribution of the paper.
Although the results can be readily extended to the case of
a oligopoly with multiple projects, we present the details of
a duopoly with two projects in order to avoid unnecessary
confusion.

III. M AIN RESULTS

This section investigates two identical firms that compete
for two projects1, 2.7 Recall Assumption (iii). When one of
the firms (the leader) undertakes a project, the other (the
follower) is deprived of the opportunity to invest in that
project. Firms attempt to preempt each other in order to
gain the first-mover’s advantage in project choice. Assume
that the first mover cannot invest in the remaining project.
Otherwise, as in Section 2.B, both firms compete for the
remaining project and gain no value from the project. Then, it
follows from backward reasoning that the equilibrium value
becomes zero in the situation where neither firm has invested.
As mentioned in Section 1, the model can be applied to
strategic interactions in acquisitions and land development.

Consider timet(< T ) with Xi(t) = xi ≤ Ii for i = 1, 2.
As in Section 2.B, the problem is solved backward. Supposed
that one of the firms (the leader) has first invested in the better
project i(s) at time s ∈ [t, T ], where the functioni(s)8 is
defined by

i(s) := arg max
i=1,2

(Xi(s)− Ii), (11)

we find the optimal response of the other firm (follower).
Because the follower has the monopolistic option to invest
in a single projecti ̸= i(s), the option value and the optimal
investment time coincide withV 1

i and τ1i (cf. (2) and (3)).
On the other hand, the leader’s project value is equal to
maxi=1,2(Xi(s)− Ii).

Let us return to the situation where neither firm has
invested. Intuitively, in equilibrium the leader’s advantage in
project choice is offset by too early and inefficient investment
timing. Define the regionS2F

1,2(s) where the leader’s value
dominates that of the follower as follows:

S2F
1,2(s) := {x ∈ R2

+ | x1 − I1 ≥ V 1
2 (x2, s)}

∪{x ∈ R2
+ | x2 − I2 ≥ V 1

1 (x1, t)}.
7For simplicity, this paper concentrates on the identical firms. Although

similar (but messy) results follow from the same logic in the asymmetric
case, interesting insights can be better observed in the symmetric case.

8We do not have to be concerned about the value ofi(s) whenX1(s)−
I1 = X2(s)− I2.



Each firmattempts to preempt the competitor whenX(s) ∈
S2F
1,2(s). In addition, one of the firms is forced to invest for

X(s) ∈ S1
1(s) ∪ S1

2(s), if it knows that the other waits until

τ2F1,2 (t) := inf{s ≥ t | X(s) ∈ S2F
1,2(s)}. (12)

This is because forX(s) ∈ S1
1(s) ∪ S1

2(s) the immediate
exercise yields a higher value than the option value to wait
until τ2F1,2 . Note that, in this equilibrium, the follower’s value
is higher than that of the leader. For details, refer to the
proof of Proposition 1. Therefore, the preemptive investment
regionS2

1,2(s) becomes

S2
1,2(s) := S2F

1,2(s) ∪ S1
1(s) ∪ S1

2(s). (13)

The preemptive investment takes place at time

τ21,2(t) := inf{s ≥ t | X(s) ∈ S2
1,2(s)}. (14)

It is easily checked that the boundary ofS2
1,2(s) can be

expressed as

∂S2
1,2(s)

= {x ∈ R2
+ | xi ≤ x1

i′(s)− Ii′ + Ii, xi − Ii = V 1
i′ (xi′ , s)}︸ ︷︷ ︸

(a)

∪{x ∈ R2
+ | xi′ ≤ x1

i′(s), xi′ − Ii′ = V 1
i (xi, s)}︸ ︷︷ ︸

(b)

∪{x ∈ R2
+ | xi′ = x1

i′(s),︸ ︷︷ ︸
(c)

(V 1
i )

−1(x1
i′(s)− Ii′) ≤ xi ≤ x1

i′(s)− Ii′ + Ii}︸ ︷︷ ︸
(c)

, (15)

wherei and i′(̸= i) (which maydepend ons) satisfy

x1
i (s)− Ii ≥ x1

i′(s)− Ii′ . (16)

Throughout the paper, we denote byi′ for i′ ̸= i. In (16),
(V 1

i )
−1(·) (which may depend ons) denotes the inverse

function forV 1
i (·, s). Note that this function is well defined

by Assumption (i).
Figure 1 illustrates the preemptive investment boundary

∂S2
1,2(s). The part (a) is the region where the leader’s

investment in projecti generates the same value as the
follower’s option value to invest in projecti′. Similarly, the
part (b) is the region where the leader’s investment in project
i′ generates the same value as the follower’s option value to
invest in projecti. In the part (c), both firms prefer to be
the follower with projecti to being the leader with projecti′

due toX(s) /∈ S2F
1,2(s). In equilibrium, as will be proved in

Proposition 1, one of the firms invests whenX(s) hits the
part (c). We see from (15) that, unlikeS1

1,2 in a monopoly,
the preemptive investment regionS2

1,2 is independent of the
correlation coefficientρ.

At time t(< T ) with X(t) = x, the option value of the
leader is written as

V 2
1,2(x, t) := Ex

t [e
−r(τ2

1,2(t)−t) max
i=1,2

(Xi(τ
2
1,2(t))− Ii)

×1{τ2
1,2(t)≤T}]. (17)

This value is lower than that of the follower if and only if
the processX(t) hits the part (c).

So far, we intuitively explain the equilibrium. More pre-
cisely, we need to formulate the following optimal stopping

(a)

(b)

(c)

Fig. 1. The preemptive investment boundary∂S2
1,2(s)

game for two identical firmsj = 1, 2. The set of actions is
defined by

A(t) := {(τ, i) | τ ∈ Tt, i : Fτmeasurable random

variable taking values in{0, 1}}.

For firm 1’s action (τ1, i1) ∈ A(t) and firm 2’s action
(τ2, i2) ∈ A(t), the payoff of firm1 is defined by

π1(τ1, i1, τ2, i2)

:= Ex
t [e

−r(τ1−t)(Xi1(τ1)− Ii1)︸ ︷︷ ︸
leader’svalue

1{τ1<τ2}∩{τ1≤T}

+e−r(τ2−t)V 1
i′2
(Xi′2

(τ2), τ2)︸ ︷︷ ︸
follower’s value

1{τ1>τ2}∩{τ2≤T}

+
e−r(τ1−t)

2
(Xi1(τ1)− Ii1 + V 1

i′2
(Xi′2

(τ2), τ2))︸ ︷︷ ︸
average of leader’s and follower’s value

×1{τ1=τ2}∩{τ1≤T}].

The last term corresponds to the assumption that if two
firms choose the same timing, one of the firms is chosen
as the leader with probability1/2. The payoff of firm
2 (denoted byπ2(τ1, i1, τ2, i2)) is defined symmetrically.
A Nash equilibrium (τ̃1, ĩ1, τ̃2, ĩ2) ∈ A(t) × A(t) of the
stopping game satisfies both

π1(τ̃1, ĩ1, τ̃2, ĩ2) = max
(τ1,i1)∈A(t)

π1(τ1, i1, τ̃2, ĩ2), (18)

and

π2(τ̃1, ĩ1, τ̃2, ĩ2) = max
(τ2,i2)∈A(t)

π2(τ̃1, ĩ1, τ2, i2). (19)

We assume that for (17) the diffusion processX(t) satis-
fies9

Assumption (iv)

max
i=1,2

(xi − Ii) ≤ V 2
1,2(x, t) (x /∈ S2

1,2(t)).

9We have not established any proof, but the assumption is satisfied in
many cases as far as we can judge from a wide range of computations.



The following proposition shows that the pair of actions
(τ212(t), i(τ

2
12(t)), τ

2F
12 (t), i(τ2F12 (t))) ∈ A(t)×A(t) is a Nash

equilibrium of the stopping game, where the stopping times
τ212(t), τ

2F
12 (t) are defined by (14),(12), and the functions

i(τ212(t)), i(τ
2F
12 (t)) are defined by (11), respectively.

Proposition 1 (τ212(t), i(τ
2
12(t)), τ

2F
12 (t), i(τ2F12 (t))) is a

Nash equilibrium of the stopping game.

Proposition 1 includes the equilibrium in a duopoly with
a single project. Indeed, forxi > xi′ = 0, the equilibrium in
Proposition 1 agrees with that of Section 2.B. Accordingly,
Proposition 1 extends the previous results to a more general
case in which there are two opportunities to invest in. For
most of the diffusion processXi(t), a higher volatilityσi

leads to a higher option valueV 1
i and a later investment

time τ1i . If this is the case, by (15) the preemptive investment
regionS2

1,2 decreases, which leads to a higher option value
V 2
1,2 and a later investment timeτ21,2 in equilibrium. Then,

the effects of volatilityσi in a duopoly remain unchanged
from a monopoly.

If X(t) follows a GBM andT = ∞, we have an explicit
form of the time homogeneous investment boundary∂S2

1,2

by (4), (5) and (15) .

Corollary 1 Assume thatT = ∞, µi(Xi(t), t) = µiXi(t),
andσi(Xi(t), t) = σiXi(t), whereµi(< r) andσi(> 0) are
constant fori = 1, 2. The preemptive investment boundary
is equal to

∂S2
1,2

=

{
xi ≤ x1

i′ − I ′i + Ii, xi − Ii =

(
xi′

x1
i′

)βi′

(x1
i′ − Ii′)

}

∪

{
xi′ ≤ x1

i′ , xi′ − Ii′ =

(
xi

x1
i

)βi

(x1
i − Ii)

}
∪
{
xi′ = x1

i′ , (V
1
i )

−1(x1
i′ − Ii′) ≤ xi ≤ x1

i′ − Ii′ + Ii
}
,

wherei (which does not depend ons) satisfies (16).

The explicit form of the investment boundary∂S2
1,2 would

be useful for applications of the model. The option valueV 2
1,2

(cf. (17)) can be expressed as the solution of the correspond-
ing partial differential equation with the boundary∂S2

1,2.
Then, we can computeS2

1,2 andV 2
1,2 without difficulty.

For a general diffusion processX(t) we can show the
following properties of the preemptive investment region
S2
1,2(s), the timingτ21,2(t), and the option valueV 2

1,2(x, t).

Proposition 2 The following relationships hold for alli =
1, 2:
Investment region

S1
1,2(s) ⊂ S1

1(s) ∪ S1
2(s) ⊂ S2

1,2(s) ⊂ S2
1(s) ∪ S2

2(s), (20)

Investment timing

min(τ21 (t), τ
2
2 (t)) ≤ τ21,2(t) ≤ min(τ11 (t), τ

1
2 (t)) ≤ τ11,2(t),

(21)
Option value

0 = V 2
i (xi, t) ≤ V 2

1,2(x, t) ≤ V 1
i (xi, t) ≤ V 1

1,2(x, t). (22)

Proposition 2 reveals that the option value decreases
and investment takes place earlier as the number of firms
increases. This is in line with both theoretical and empirical
results in real options games (e.g., [2], [6], [12], and [13]).
The inequalityV 2

i (xi, t) ≤ V 2
1,2(x, t) means that the option

value increases with the number of projects in a duopoly.
This result extends the previous result for American max-
options in a monopoly (e.g., [14], [16], and [17]) into that
of a duopoly. Thus, we bridge the gap between the studies
on real options games and those on American max-options.

In addition, Proposition 2 reveals how the equilibrium
changes when the numbers of both firms and projects change.
Indeed, the inequalities,V 2

1,2(x, t) ≤ V 1
i (x, t), τ

2
1,2(t) ≤

min(τ11 (t), τ
1
2 (t)), demonstrate that the option value de-

creases and investment is hastened when the numbers of both
firms and projects increase by the same amount. While we
exogenously provide the numbers of both firms and opportu-
nities, in reality, the number of firms tends to increase with
the number of opportunities. Taking this into consideration,
our new result can be positioned as an extension of the
previous works into a more practical setting.

We now consider two symmetric projects, i.e.,x1 = x2,
µ1(·, ·) = µ2(·, ·), σ1(·, ·) = σ2(·, ·), and I1 = I2. In the
sensitivity analysis, we focus on the correlation coefficientρ
because the previous strategic models with a one-dimensional
state variable cannot reveal the comparative statics with re-
spect toρ. For instance, [23] investigates a duopoly with two
projects, but they cannot capture the effects of the correlation
between project values due to the one-dimensional model. By
Proposition 2, we can easily show the following corollary.

Corollary 2 Consider the symmetric projectsi = 1, 2. The
following equalities hold for the correlation coefficientρ:

max
ρ∈[−1,1]

V 2
1,2(x, t) = V 1

i (xi, t) = min
ρ∈[−1,1]

V 1
1,2(x, t), (23)

whereρ = 1 maximizesV 2
1,2(x, t) and minimizesV 1

1,2(x, t).

Corollary 2 highlights a difference between max-options
in a monopoly and in a duopoly. In a monopoly, as is noted
in the max-option literature, the high correlation reduces the
value of project choice. Conversely, the high correlation in a
duopoly plays a positive role in mitigating preemptive com-
petition and increasing the option value. Note that the high
correlation reduces the first-mover’s advantage in project
choice. This finding complements the max-option literature
by demonstrating the positive effect of the high correlation
in combination with strategic interactions.

In addition, this result may account for the non-
monotonicity in the investment speed with respect to in-
dustry concentration. [13] finds that investment in medium-
concentration industries takes place earlier than in not only
high-concentration industries but also in low-concentration
industries. One firm is more likely to benefit from the failure
of a specific rival in higher-concentration industries than in
lower-concentration industries with numerous firms. Taking
account of industry-wide uncertainty, the correlation among
firm values tends to be high in low-concentration industries.
This high correlation could mitigate preemptive competition
and delay investment later than in medium-concentration
industries. In our view, the option value depends not only



on the numbers of both firms and projects but also on the
correlation between project values.

We compare the option valueV 2
1,2 in a duopoly with that

of American min-option in a monopoly. The exercise of the
min-option at timeτ , unlike the max-option, yields the payoff
mini=1,2(Xi(τ)− Ii). At time t(≤ T ) with Xi(t) = xi, the
option value of American min-option is the value function
of the optimal stopping problem as follows:

V 1
min(x, t) := sup

τ∈Tt

Ex
t [e

−r(τ−t) min
i=1,2

(Xi(τ)− Ii)1{τ≤T}].

(24)
This type of option is investigated in [24] and [17]. We
can show thatV 1

min(x, t) ≤ V 2
1,2(x, t), where the equality

holds for the symmetric projects withρ = 1, as follows. Let
S1
min(s) be the stopping region for problem (24). Consider

the boundary ofS2
1,2(s) ∪ S1

min(s). For x ∈ ∂S2
1,2(s) \

S1
min(s), V 2

1,2(x, s) is either V 1
1 (x, s) or V 1

2 (x, s) which
is lager thanV 1

min(x, s). For x ∈ ∂S1
min(s) \ S2

1,2(s),
V 1
min(x, s) is equal tomini=1,2(xi − Ii) which is smaller

than V 2
1,2(x, s) under Assumption (iv). Then, we have

V 1
min(x, s) ≤ V 2

1,2(x, s) on the boundary. For the hitting time
τ̃ to the boundary, we have

V 1
min(x, t) = Ex

t [e
−r(τ̃−t)V 1

min(X(τ̃), τ̃)1{τ̃≤T}]

≤ Ex
t [e

−r(τ̃−t)V 2
1,2(X(τ̃), τ̃)1{τ̃≤T}]

= V 2
1,2(x, t).

Then, the option valueV 2
1,2 in a duopoly is higher than the

min-option valueV 1
min.
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