
 

  
Abstract — Effective methods for solving the complex and 

noisy engineering problems using a finite sequence of 
instructions can be categorised into optimisation and meta-
heuristics algorithms. The latter might be defined as an 
iterative search process that efficiently performs the 
exploration and exploitation in the solution space aiming to 
efficiently find near optimal solutions. Various natural 
intelligences and inspirations have been adopted into the 
iterative process. In this work, two types of meta-heuristics 
called Bees and Firefly algorithms were adapted to find 
optimal solutions of noisy non-linear continuous mathematical 
models. Considering the solution space in a specified region, 
some models contain global optimum and multiple local 
optimums. Bees algorithm is an optimisation algorithm 
inspired by the natural foraging behaviour of honey bees. 
Firefly algorithm is used to produce a near optimal solution 
under a consideration of the flashing characteristics of fireflies. 
A series of computational experiments using each algorithm 
were conducted. Experimental results were analysed in terms 
of best solutions found so far, mean and standard deviation on 
both the actual yields and execution time to converge to the 
optimum. The Firefly algorithm seems to be better when the 
noise levels increase. The Bees algorithm provides the better 
levels of computation time and the speed of convergence. In 
summary, the Firefly algorithm is more suitable to exploit a 
search space by improving individuals’ experience and 
simultaneously obtaining a population of local optimal 
solutions. 
 

Index Terms — Meta-Heuristic, Bees Algorithm, Firefly 
Algorithm, Noisy Non-linear Optimisation 

I. INTRODUCTION 

The optimisation of systems and processes is very 
meaning to the efficiency and economics of many science 
and engineering domains. Optimisation problems are solved 
by using rigorous or approximate mathematical search 
techniques. Rigorous methods have employed linear 
programming, integer programming, dynamic programming 
or branch-and-bound techniques to approach the optimal 
solution for moderate-size problems. However, optimising 
real-life problems of the scale often encountered in 
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engineering practice is much more challenging because of 
the huge, complex and noisy solution space. Finding exact 
solutions to these problems turn out to be NP-hard. This 
kind of complex problem requires an exponential amount of 
computing power and time, as the number of decision 
variables increases. To overcome these problems, 
researchers have proposed approximate evolutionary-based 
or meta-heuristics algorithms as a means to search for near-
optimal solutions [1]. 

Generally, meta-heuristics work as follows: a population 
of individuals is randomly initialised where each individual 
represents a potential solution to the problem. The quality of 
each solution is then evaluated via a fitness function. A 
selection process is applied during the iteration of meta-
heuristics in order to form a new population. The searching 
process is biased toward the better individuals to increase 
their chances of being included in the new population. This 
procedure is repeated until convergence rules are reached. 

Learning from life system, people have developed many 
optimisation computation approaches to solve complicated 
problems in the recent decades. Researchers have developed 
computational systems that mimic the efficient behaviour of 
species such as ants, bees, birds and frogs, as a means to 
seek faster and more robust solutions to complex and noisy 
optimisation problems. The evolutionary based techniques 
introduced in the literature were Genetic Algorithm or GA 
[2], Memetics Algorithm or MAs [2], Shuffled Frog 
Leaping Algorithm or SFLA [2], Firefly Algorithm or FFA 
[3, 4, 5], Bees Algorithm or BEES [6, 7],Harmony Search 
Algorithm or HSA [8], Neural Network or NN [9], Ant 
Colony Optimisation or ACO [10], Evolutionary 
Programming or EP [11], Differential Evolution or DE [12] 
and Particle Swarm Optimisation or PSO [13]. Moreover, 
there are some with the socially-based inspiration, e.g. 
Taboo Search or TS [14] and the physically-based 
inspiration such as Simulated Annealing or SA [15]. These 
algorithms have been widely used in many industrial and 
social areas. These kinds of algorithms for scientific 
computation are called as ‘‘Artificial-Life Computation”. 

A relatively new branch of nature inspired meta-heuristics 
which are called as swarm intelligence is focused on insect 
behaviour in order to mimic insect’s problem solution 
abilities. Interaction between insects contributing to the 
collective intelligence of the social insect colonies is 
focused. A new population-based search algorithm called 
the Bees Algorithm (BEES) was then presented. The 
algorithm mimics the food foraging behaviour of swarms of 
honey bees. A colony of honey bees can extend itself over 
long distances (more than 10 kilometres) and in multiple 
directions simultaneously to exploit a large number of food 
sources. A colony prospers by deploying its foragers to good 
fields. One of the examples of such interactive behaviour is 
the waggle dance of honey bees during the food harvesting. 
By performing this at the dance floor, successful foragers 
share the useful information about the direction and distance 
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to patches of flower and the amount of nectar within this 
flower with their hive mates. This is a successful mechanism 
which foragers can recruit other bees in their colony to 
productive patches. Bee colony can efficiently and precisely 
adjust its searching pattern in time and space according to 
changing nectar sources. 

The other meta-heuristic algorithm, which idealises some 
of the flashing characteristics of fireflies, has been recently 
developed and named the Firefly algorithm (FFA). Nature-
inspired methodologies are currently among the most 
powerful algorithms for optimisation problems. FFA is a 
novel nature-inspired algorithm inspired by social behavior 
of fireflies. Fireflies are one of the most special, captivating 
and fascinating creature in the nature. There are about two 
thousand firefly species, and most fireflies produce short 
and rhythmic flashes. The rate and the rhythmic flash, and 
the amount of time form part of the signal system which 
brings both sexes together. Therefore, the main part of a 
firefly's flash is to act as a signal system to attract other 
fireflies. By idealising some of the flashing characteristics of 
fireflies, the firefly-inspired algorithm was presented by 
Xin-She Yang [3] 

The objective of this paper is to investigate the 
performance of Firefly and Bees algorithm to find optimal 
solutions of noisy unconstrained mathematical models with 
continuous design variables. Various standard benchmark 
engineering optimisation examples from the literature are 
also presented to demonstrate the effectiveness and 
robustness of the meta-heuristics. This paper is organised as 
follows. Section II describes the selected meta-heuristic of 
Bees algorithm including its pseudo code. Sections III 
describes the selected meta-heuristic of Firefly algorithm. 
Section IV and V are briefing about tested models and 
computational results and analyses, respectively. The 
conclusion is also summarised and it is followed by 
acknowledgment and references. 

II. BEES ALGORITHM (BEES) 

A. Bees in Nature 
A colony of honey bees can be seen as a diffuse creature 

which can extend itself over long distances in various 
directions in order to simultaneously exploit a large number 
of food sources [6, 7]. In principle, flower patches with 
plentiful amounts of nectar or pollen that can be collected 
with less effort should be visited by more bees, whereas 
patches with less nectar or pollen should receive fewer bees. 

The foraging process begins in a colony by scout bees 
being sent to survey for promising flower patches. Scout 
bees search randomly from one patch to another. A colony 
of honey bees can extend itself over long distances in 
multiple directions of a search space. During the harvesting 
season, a colony continues its exploration, keeping a 
percentage of the population as scout bees. When they 
return to the hive, those scout bees that found a patch which 
is rated above a certain threshold (measured as a 
combination of some constituents, such as sugar content) 
deposit their nectar or pollen and go to the “dance floor” to 
perform a dance known as the “waggle dance”.  

This dance is essential for colony communication, and 
contains three vital pieces of information regarding a flower 
patch: the direction in which it will be found, its distance 
from the hive or energy usage and its nectar quality rating 

(or fitness). This information helps the bees to find the 
flower patches precisely, without using guides or maps. 

Each individual’s knowledge of the outside environment 
is gleaned solely from the waggle dance. This dance enables 
the colony to evaluate the relative merit of different patches 
according to both the quality of the food they provide and 
the amount of energy needed to harvest it. After waggle 
dancing on the dance floor, the dancer bee (i.e. the scout 
bee) goes back to the flower patch with follower bees that 
were waiting inside the hive. The number of follower bees 
assigned to a patch depends on the overall quality of the 
patch.  

This allows the colony to gather food quickly and 
efficiently. While harvesting from a patch, the bees monitor 
its food level. This is necessary to decide upon the next 
waggle dance when they return to the hive. If the patch is 
still good enough as a food source, then it will be advertised 
in the waggle dance and more bees will be recruited to that 
source. 

B. Bees Algorithm 
Bees Algorithm is an optimisation algorithm inspired by 

the natural foraging behaviour of honey bees [3, 4]. Fig. 1 
shows the pseudo code for the algorithm in its simplest 
form. The algorithm requires various influential parameters 
to be preset, namely: the number of scout bees (n), the 
number of patches selected out of n visited points (m), the 
number of elite patches out of m selected patches (e), the 
number of bees recruited for the best e patches (nep), the 
number of bees recruited for the other (m-e) selected patches 
(nsp) and the size of patches (ngh) including stopping 
criterion.  

The algorithm starts with the n scout bees being randomly 
placed in the search space of feasible solutions. The 
fitnesses of the points visited by the scout bees are evaluated 
in the second step. Step 3, the scout bees are classified into 
various groups. In step 4, bees that have the highest fitnesses 
are designated as “selected bees” and sites visited by them 
are chosen for neighbourhood search. Then, in steps 5 and 6, 
the algorithm conducts searches in the neighbourhood of the 
selected bees, assigning more bees to search near to the best 
e bees.  

The bees can be chosen directly according to the fitnesses 
associated with the points they are visiting. Alternatively, 
the fitness values are used to determine the probability of 
the bees being selected. Searches in the neighbourhood of 
the best e bees which represent more promising solutions are 
made more detailed by recruiting more bees to follow them 
than the other selected bees. Together with scouting, this 
differential recruitment is a key operation of the Bees 
Algorithm. In step 6, for each site only the bee with the 
highest fitness will be selected to form the next bee 
population. In nature, there is no such a restriction. This 
constraint is introduced here to reduce the number of points 
to be explored. In step 7, the remaining bees in the 
population are assigned randomly around the search space 
scouting for new potential solutions. These steps are 
repeated until a stopping criterion is met. At the end in each 
iteration, the colony will have two parts to its new 
population – representatives from each selected patch and 
other scout bees assigned to conduct random searches. The 
Bee dance function to provide the related useful information 
for finding the food is followed: 
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The algorithm has been successfully applied to different 
problems including of neural network optimisations, training 
pattern recognition, scheduled jobs for a machine, data 
clustering and tuning the fuzzy logic controller. Fig. 1 shows 
the pseudo code for the BEES in its simplest form. 
 
Procedure BEES Meta-heuristic() 
Begin; 

Initialise algorithm parameters:  
 n:  the number of scout bees 

  m:  the number of sites selected out of n visited sites  
e:   the number of the best sites out of m selected sites 
nep: the number of bees recruited for the best e sites,  

   nsp: the number of bees recruited for the other m-e selected sites  
ngh: the initial size of patches 

Randomly initialise the bee population; 
Evaluate fitnesses of the bee population; 
While (stopping criterion not met)  

Form the new bee population; 
Select sites for neighbourhood search; 
Recruit bees for selected sites with more bees for better e sites; 
Evaluate the fitnesses; 

End while; 
End procedure; 

 
Fig. 1. Pseudo code of the BEES Meta-heuristic. 

III. FIREFLY ALGORITHM (FFA) 

A. Firefly in Nature 
Fireflies or glowworms are the creatures that can generate 

light inside of it. Light production in fireflies is due to a type 
of chemical reaction. This process occurs in specialised 
light-emitting organs, usually on a firefly's lower abdomen. 
It is thought that light in adult fireflies was originally used 
for similar warning purposes, but evolved for use in mate or 
sexual selection via a variety of ways to communicate with 
mates in courtships. Although they have many mechanisms, 
the interesting issues are what they do for any 
communication to find food and to protect themselves from 
enemy hunters including their successful reproduction.  

The pattern of flashes is often unique for a particular 
species of fireflies. The flashing light is generated by a 
chemical process of bioluminescence. However, two 
fundamental functions of such flashes are to attract mating 
partners or communication, and to attract potential victim. 
Additionally, flashing may also serve as a protective 
warning mechanism. Both sexes of fireflies are brought 
together via the rhythmic flash, the rate of flashing and the 
amount of time form part of the signal system. Females 
respond to a male’s unique pattern of flashing in the same 
species, while in some species, female fireflies can mimic 
the mating flashing pattern of other species so as to lure and 
eat the male fireflies who may mistake the flashes as a 
potential suitable mate.  

The light intensity at a particular distance from the light 
source follows the inverse square law. That is as the distance 
increases the light intensity decreases. Furthermore, the air 
absorbs light which becomes weaker and weaker as there is 
an increase of the distance. There are two combined factors 
that make most fireflies visible only to a limited distance 
that is usually good enough for fireflies to communicate 
each other. The flashing light can be formulated in such a 
way that it is associated with the objective function to be 
optimised. This makes it possible to formulate new meta-
heuristic algorithms.  

B. Firefly Algorithm 
The firefly algorithm (FFA) is a meta-heuristic algorithm, 

inspired by the flashing behaviour of fireflies. The primary 
purpose for a firefly's flash is to act as a signal system to 
attract other fireflies. Now this can idealise some of the 
flashing characteristics of fireflies so as to consequently 
develop firefly-inspired algorithms. For simplicity in 
describing our new Firefly Algorithm (FFA) [3, 4], there are 
the following three idealised rules.  

On the first rule, each firefly attracts all the other fireflies 
with weaker flashes [16]. All fireflies are unisex so that one 
firefly will be attracted to other fireflies regardless of their 
sex. Secondly, attractiveness is proportional to their 
brightness which is reverse proportional to their distances. 
For any two flashing fireflies, the less bright one will move 
towards the brighter one. The attractiveness is proportional 
to the brightness and they both decrease as their distance 
increases. If there is no brighter one than a particular firefly, 
it will move randomly. Finally, no firefly can attract the 
brightest firefly and it moves randomly.  

The brightness of a firefly is affected or determined by the 
landscape of the objective function. For a maximisation 
problem, the brightness can simply be proportional to the 
value of the objective function. Other forms of brightness 
can be defined in a similar way to the fitness function in 
genetic algorithms. Based on these three rules, the basic 
steps of the firefly algorithm (FFA) can be summarised as 
the pseudo code shown in Fig. 2.  

 
Procedure FFA Meta-heuristic() 
Begin; 

Initialise algorithm parameters:  
MaxGen:  the maximal number of generations 
γ:     the light absorption coefficient 
r:     the particular distance from the light source 
d:    the domain space 

Define the objective function of f(x), where x=(x1,........,xd)T 
Generate the initial population of fireflies or xi (i=1, 2 ,..., n) 
Determine the light intensity of Ii at xi via f(xi) 

     While (t<MaxGen) 
         For i = 1 to n (all n fireflies); 
               For j=1 to n (n fireflies) 
 if (Ij > Ii), move firefly i towards j; end if 
 Attractiveness varies with distance r via Exp [-γr2]; 
 Evaluate new solutions and update light intensity; 
               End for j; 
         End for i; 
      Rank the fireflies and find the current best; 
     End while; 
     Postprocess results and visualisation; 
End procedure; 
 

Fig. 2. Pseudo code of of the FFA Meta-heuristic. 
 

In the firefly algorithm there are two important issues of 
the variation of light intensity and the formulation of the 
attractiveness. For simplicity, it is assumed that the 
attractiveness of a firefly is determined by its brightness 
which in turn is associated with the encoded objective 
function of the optimisation problems. On the attractiveness 
of the FFA the main form of attractiveness function or β(r) 
can be any monotonically decreasing functions such as the 
following generalised form of  

0
mr(r) = e− γβ β , (m൒1), 

where r or rij is the distance between the ith and jth of two 
fireflies. β0 is the attractiveness at r = 0 and γ is a fixed light 
absorption coefficient. The distance between any two 



 

fireflies i and j at xi and xj is the Cartesian distance as 
follows:
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where xik  is the k-th component of the i-th firefly (xi). The 
movement of a firefly, i is attracted to another more 
attractive (brighter) firefly j, is determined by 

2

1 0 ( ) ( 0.5)ijr
i i j ix x e x x rand−γ
+ = + β − + α − ,  

where the second term is due to the attraction while the third 
term is the randomisation with α being the randomisation 
parameter. Rand is a random number generator uniformly 
distributed in the range of [0, 1]. For most cases in the 
implementation, 0β  = 1 and α ൌ [0, 1]. Furthermore, the 
randomisation term can easily be extended to a normal 
distribution N (0, 1) or other distributions.  

Additionally, if the scales vary significantly in different 
dimensions such as −105 to 105 in one dimension while, 
say, −0.001 to 0.01 along the other, it is a good idea to 
replace α by αSk where the scaling parameters Sk (k = 1, ..., 
d) in the d dimensions should be determined by the actual 
scales of the problem of interest. The parameter γ 
characterises the variation of the attractiveness, and its value 
is crucially important in determining the speed of the 
convergence and how the FFA behaves. In most 
applications, it typically varies from 0.01 to 100.  

IV. TESTED MODELS 
In this paper, the algorithms operate and analyse the 

results under various type of continuous mathematical 
functions with two variables. The comparison is made with 
the measurement noise, normally and independently 
distributed with zero mean and standard deviation of 0, 1, 2 
and 3, on the process yields. The typical three-dimensional 
response surfaces are shown in Figures A-H.  

The typical natures of selected surfaces to be used in this 
study are the single peak of parabolic function, the multi-
peak of Camelback, Rastrigin and Shekel functions and the 
curved ridge of Rosenbrock and Styblinski functions 
including the multi-peak with curved ridge of Branin 
Goldstein-Price functions. However, there is the limitation 
of merely 2-variable problems.  

 
A. Parabolic Function 
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B.  Branin Function 
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C. Camelback Function  
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D. Goldstein-Price Function 
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E. Styblinski Function 
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F. Rastrigin Function 
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G. Rosenbrock Function 
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H. Shekel Function 
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V. COMPUTATIONAL RESULTS AND ANALYSES 
In this work, for the computational procedures described 

above a computer simulation program was implemented in a 
Visual C#2008 computer program. A Laptop computer 
Aspire Z99Sseries ASUS was used for computational 
experiments throughout. A numerical comparison of the 
conventional procedures of the Bees and Firefly algorithms 
are determined in this section. These meta-heuristics were 
adapted to search optimal solutions of non-linear 
mathematical models without constraints. Considering the 
solution space in a specified region of response surfaces, 
some models contain global optimum and multiple local 
optimums as described above. 

FFA and BEES algorithms are optimisation algorithms 
inspired by the natural foraging behavior of honey bees and 
social behavior of fireflies and the phenomenon of 
bioluminescent communication, respectively. They are the 
meta-heuristics with the similar naturally-based inspiration 
which include Particle Swarm Optimisation (PSO) or 
Artificial Bee Colony (ABC) techniques. Experimental 
results involved a performance comparison of the FFA and 
BEES algorithms under a limitation of the 2-variable 
problems.  

Each algorithm has its own influential parameters that 
affect its performance in terms of solution quality and 
execution time. To achieve the most preferable parameter 
choices that suit the tested problems, a large number of 
experiments were conducted. For each algorithm, an initial 
setting of the parameters was established using values 
previously reported in the literature. Then, the parameter 
values were developed via the experimental designs and the 
results were monitored in terms of various solution quality 
measures. The final parameter values adopted in each 
algorithm are followed and will be applied for all 
optimisation problems presented in this paper. 

BEES parameters were set as follows: the number of 
scout bees (n) = 50, the number of sites selected out of n 
visited sites (m) = 10, the number of best sites out of m 
selected sites (e) = 5, the number of bees recruited for best e 
sites (nep) = 5, the number of bees recruited for the other m-
e selected site (nsp) = 10, the initial size of patches (ngh) = 
0.1. FFA parameters were set as follows: β0 = 1, α = [0, 1], 
γ = [0.01, 100] and the number of fireflies = 40. Both 
algorithms were executed with the same designed points of 
6000 realisations. There are fifteen trial runs in each 
problem and noise level. The performance of the different 
algorithms was compared using three criteria which 
comprise of the mean and standard deviation of actual 
process yields and the processing time to reach the optimum 
at the maximal preset design points. 

When there was no noise on the process yields, the 
performance of both algorithms of the BEES and FFA 
seems to be not different to approach to the optimum. The 
average and standard deviation (STD) of actual yields and 
the computation time (Tables I and II) including maximal 
and minimal actual yields achieved by the FFA tend to be 
better, especially on the multi-peak functions, when the 
standard deviation of noises (N) raise from 1 to 3 (Fig. 3). 
Moreover, the consistency of the FFA performs quite well 
that could be indicated by the standard deviation of yields 
from 15 replications.  

Complexity or difficulty of the functions had no effect to 
the FFA as expected except Camelback function. However, 
execute time in each replication is dramatically higher when 
compared, especially on the functions with curved ridge or 
mixed curved ridge and multi-peak natures. BEES seems to 
be better in terms of speed of convergence (Fig. 4 and 5). 
This might be the effect from generating the completely 
different random numbers to use in the iterative procedures 
of the algorithm.  
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Fig. 3. Graphical Results on Goldstein-Price and Styblinski Function. 
 

This implies that the FFA is more potentially powerful in 
solving noisy non-linear optimisation problems. The FFA 
seems to be a promising optimisation tool in part due to the 
effect of the attractiveness function which is a unique of 
firefly behaviour. The FFA has not only the self 
improvement process with the current space, but it also 
includes the improvement among its own space from the 
previous stages whereas the BEES provides only the 
procedure of bee dance improvement. As also appeared on 
the Particle Swarm Optimisation (PSO), this leads the 
proper level of convergence to the optimum. 
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TABLE I 

EXPERIMENTAL RESULTS OBTAINED FROM THE BEES ON EACH TESTED 
FUNCTION  

Tested Function N=0 Time N=1 Time 

Branin   Mean 5.40 281.21 4.80 281.10 
STD. 0.00 0.30 0.48 0.02 

Camelback Mean 12.89 281.13 11.10 281.09 
STD. 0.80 0.14 1.13 0.00 

Gold S.P. Mean 9.28 281.13 8.69 281.13 
STD. 0.27 0.13 0.70 0.11 

Parabolic Mean 12.00 281.12 11.90 281.09 
STD. 0.00 0.09 0.12 0.02 

Rastrigin Mean 99.35 281.17 98.63 281.12 
STD. 1.02 0.14 1.52 0.10 

Rosenbrock Mean 80.00 281.22 79.84 281.09 
STD. 0.00 0.37 0.12 0.02 

Shekel Mean 18.98 281.10 18.63 281.12 
STD. 0.00 0.01 0.27 0.12 

Styblinski Mean 353.32 281.14 352.65 281.12 
STD. 0.01 0.09 0.48 0.07 

Tested Function N=2 Time N=3 Time 

Branin   Mean 3.52 281.18 3.22 281.096 
STD. 0.52 0.12 0.58 0.002 

Camelback Mean 10.02 281.09 9.31 281.135 
STD. 1.51 0.01 0.87 0.151 

Gold S.P. Mean 8.06 281.11 7.27 281.095 
STD. 0.70 0.07 0.93 0.001 

Parabolic Mean 11.46 281.09 11.19 281.147 
STD. 0.53 0.00 0.55 0.200 

Rastrigin Mean 98.26 281.16 97.6 281.133 
STD. 1.87 0.29 1.95 0.144 

Rosenbrock Mean 79.71 281.13 79.72 281.095 
STD. 0.27 0.17 0.24 0.001 

Shekel Mean 18.08 281.11 17.71 281.096 
STD. 0.83 0.04 0.819 0.002 

Styblinski Mean 351.65 281.14 351.53 281.120 
STD. 1.36 0.08 1.346 0.094 

TABLE II 
EXPERIMENTAL RESULTS OBTAINED FROM THE FFA ON EACH TESTED 

FUNCTION  
Tested Function N=0 Time N=1 Time 

Branin   Mean 5.400 660.124 4.108 2282.105 
STD. 0.000 0.277 0.371 4388.727 

Camelback Mean 13.014 660.083 9.854 662.378 
STD. 0.285 0.126 1.049 4.808 

Gold S.P. Mean 9.492 660.089 6.161 662.008 
STD. 0.020 0.183 0.354 4.722 

Parabolic Mean 12.000 660.073 11.913 660.803 
STD. 0.000 0.106 0.011 1.934 

Rastrigin Mean 99.989 689.861 99.513 661.399 
STD. 0.010 115.386 1.062 3.718 

Rosenbrock Mean 80.000 660.053 79.931 660.879 
STD. 0.000 0.049 0.028 1.840 

Shekel Mean 18.980 689.829 18.976 660.285 
STD. 0.000 115.364 0.004 0.938 

Styblinski Mean 353.330 660.083 353.321 660.923 
STD. 0.002 0.112 0.009 2.347 

Tested Function N=2 Time N=3 Time 

Branin   Mean 3.902 1283.567 3.728 659.958 
STD. 0.812 2414.949 0.618 0.143 

Camelback Mean 8.414 660.028 7.994 659.952 
STD. 0.684 0.070 0.304 0.159 

Gold S.P. Mean 5.820 660.044 5.867 659.948 
STD. 0.370 0.094 0.435 0.167 

Parabolic Mean 11.915 660.040 11.896 659.973 
STD. 0.008 0.118 0.031 0.104 

Rastrigin Mean 95.724 1283.538 95.432 659.989 
STD. 0.268 2414.876 0.613 0.020 

Rosenbrock Mean 79.933 660.048 79.940 659.960 
STD. 0.014 0.134 0.004 0.188 

Shekel Mean 18.962 660.025 18.954 659.984 
STD. 0.014 0.054 0.020 0.002 

Styblinski Mean 353.301 660.040 353.280 659.966 
STD. 0.023 0.089 0.045 0.102 

 
 

 
Fig. 4. Speed of Convergence on Branin Function. 

 

 
Fig. 5. Speed of Convergence on Styblinski Function. 
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