

Abstract — Effective methods for solving the complex and

noisy engineering problems using a finite sequence of
instructions can be categorised into optimisation and meta-
heuristics algorithms. The latter might be defined as an
iterative search process that efficiently performs the
exploration and exploitation in the solution space aiming to
efficiently find near optimal solutions. Various natural
intelligences and inspirations have been adopted into the
iterative process. In this work, two types of meta-heuristics
called Bees and Firefly algorithms were adapted to find
optimal solutions of noisy non-linear continuous mathematical
models. Considering the solution space in a specified region,
some models contain global optimum and multiple local
optimums. Bees algorithm is an optimisation algorithm
inspired by the natural foraging behaviour of honey bees.
Firefly algorithm is used to produce a near optimal solution
under a consideration of the flashing characteristics of fireflies.
A series of computational experiments using each algorithm
were conducted. Experimental results were analysed in terms
of best solutions found so far, mean and standard deviation on
both the actual yields and execution time to converge to the
optimum. The Firefly algorithm seems to be better when the
noise levels increase. The Bees algorithm provides the better
levels of computation time and the speed of convergence. In
summary, the Firefly algorithm is more suitable to exploit a
search space by improving individuals’ experience and
simultaneously obtaining a population of local optimal
solutions.

Index Terms — Meta-Heuristic, Bees Algorithm, Firefly
Algorithm, Noisy Non-linear Optimisation

I. INTRODUCTION

The optimisation of systems and processes is very
meaning to the efficiency and economics of many science
and engineering domains. Optimisation problems are solved
by using rigorous or approximate mathematical search
techniques. Rigorous methods have employed linear
programming, integer programming, dynamic programming
or branch-and-bound techniques to approach the optimal
solution for moderate-size problems. However, optimising
real-life problems of the scale often encountered in

Manuscript received December 9, 2010; revised January 24, 2011. This
work was supported in part the Thailand Research Fund (TRF), the
National Research Council of Thailand (NRCT) and the Commission on
Higher Education of Thailand. The authors wish to thank the Faculty of
Engineering, Thammasat University, THAILAND for the financial support.
 N. Chai-ead is a master student with the Industrial Statistics and
Operational Research Unit (ISO-RU), Department of Industrial
Engineering, Faculty of Engineering, Thammasat University, 12120,
THAILAND.
 *P. Aungkulanon is a Ph. D. Candidate, ISO-RU, Department of
Industrial Engineering, Faculty of Engineering, Thammasat University,
12120, THAILAND. [Phone: (662)564-3002-9; Fax: (662)564-3017; e-
mail: pasurachacha@hotmail.com, lpongch@engr.tu.ac.th].

P. Luangpaiboon is an Associate Professor, ISO-RU, Department of
Industrial Engineering, Faculty of Engineering, Thammasat University,
12120, THAILAND.

engineering practice is much more challenging because of
the huge, complex and noisy solution space. Finding exact
solutions to these problems turn out to be NP-hard. This
kind of complex problem requires an exponential amount of
computing power and time, as the number of decision
variables increases. To overcome these problems,
researchers have proposed approximate evolutionary-based
or meta-heuristics algorithms as a means to search for near-
optimal solutions [1].

Generally, meta-heuristics work as follows: a population
of individuals is randomly initialised where each individual
represents a potential solution to the problem. The quality of
each solution is then evaluated via a fitness function. A
selection process is applied during the iteration of meta-
heuristics in order to form a new population. The searching
process is biased toward the better individuals to increase
their chances of being included in the new population. This
procedure is repeated until convergence rules are reached.

Learning from life system, people have developed many
optimisation computation approaches to solve complicated
problems in the recent decades. Researchers have developed
computational systems that mimic the efficient behaviour of
species such as ants, bees, birds and frogs, as a means to
seek faster and more robust solutions to complex and noisy
optimisation problems. The evolutionary based techniques
introduced in the literature were Genetic Algorithm or GA
[2], Memetics Algorithm or MAs [2], Shuffled Frog
Leaping Algorithm or SFLA [2], Firefly Algorithm or FFA
[3, 4, 5], Bees Algorithm or BEES [6, 7],Harmony Search
Algorithm or HSA [8], Neural Network or NN [9], Ant
Colony Optimisation or ACO [10], Evolutionary
Programming or EP [11], Differential Evolution or DE [12]
and Particle Swarm Optimisation or PSO [13]. Moreover,
there are some with the socially-based inspiration, e.g.
Taboo Search or TS [14] and the physically-based
inspiration such as Simulated Annealing or SA [15]. These
algorithms have been widely used in many industrial and
social areas. These kinds of algorithms for scientific
computation are called as ‘‘Artificial-Life Computation”.

A relatively new branch of nature inspired meta-heuristics
which are called as swarm intelligence is focused on insect
behaviour in order to mimic insect’s problem solution
abilities. Interaction between insects contributing to the
collective intelligence of the social insect colonies is
focused. A new population-based search algorithm called
the Bees Algorithm (BEES) was then presented. The
algorithm mimics the food foraging behaviour of swarms of
honey bees. A colony of honey bees can extend itself over
long distances (more than 10 kilometres) and in multiple
directions simultaneously to exploit a large number of food
sources. A colony prospers by deploying its foragers to good
fields. One of the examples of such interactive behaviour is
the waggle dance of honey bees during the food harvesting.
By performing this at the dance floor, successful foragers
share the useful information about the direction and distance

Bees and Firefly Algorithms for Noisy
Non-Linear Optimisation Problems

 N. Chai-ead, P. Aungkulanon*, and P. Luangpaiboon, Member, IAENG

to patches of flower and the amount of nectar within this
flower with their hive mates. This is a successful mechanism
which foragers can recruit other bees in their colony to
productive patches. Bee colony can efficiently and precisely
adjust its searching pattern in time and space according to
changing nectar sources.

The other meta-heuristic algorithm, which idealises some
of the flashing characteristics of fireflies, has been recently
developed and named the Firefly algorithm (FFA). Nature-
inspired methodologies are currently among the most
powerful algorithms for optimisation problems. FFA is a
novel nature-inspired algorithm inspired by social behavior
of fireflies. Fireflies are one of the most special, captivating
and fascinating creature in the nature. There are about two
thousand firefly species, and most fireflies produce short
and rhythmic flashes. The rate and the rhythmic flash, and
the amount of time form part of the signal system which
brings both sexes together. Therefore, the main part of a
firefly's flash is to act as a signal system to attract other
fireflies. By idealising some of the flashing characteristics of
fireflies, the firefly-inspired algorithm was presented by
Xin-She Yang [3]

The objective of this paper is to investigate the
performance of Firefly and Bees algorithm to find optimal
solutions of noisy unconstrained mathematical models with
continuous design variables. Various standard benchmark
engineering optimisation examples from the literature are
also presented to demonstrate the effectiveness and
robustness of the meta-heuristics. This paper is organised as
follows. Section II describes the selected meta-heuristic of
Bees algorithm including its pseudo code. Sections III
describes the selected meta-heuristic of Firefly algorithm.
Section IV and V are briefing about tested models and
computational results and analyses, respectively. The
conclusion is also summarised and it is followed by
acknowledgment and references.

II. BEES ALGORITHM (BEES)

A. Bees in Nature
A colony of honey bees can be seen as a diffuse creature

which can extend itself over long distances in various
directions in order to simultaneously exploit a large number
of food sources [6, 7]. In principle, flower patches with
plentiful amounts of nectar or pollen that can be collected
with less effort should be visited by more bees, whereas
patches with less nectar or pollen should receive fewer bees.

The foraging process begins in a colony by scout bees
being sent to survey for promising flower patches. Scout
bees search randomly from one patch to another. A colony
of honey bees can extend itself over long distances in
multiple directions of a search space. During the harvesting
season, a colony continues its exploration, keeping a
percentage of the population as scout bees. When they
return to the hive, those scout bees that found a patch which
is rated above a certain threshold (measured as a
combination of some constituents, such as sugar content)
deposit their nectar or pollen and go to the “dance floor” to
perform a dance known as the “waggle dance”.

This dance is essential for colony communication, and
contains three vital pieces of information regarding a flower
patch: the direction in which it will be found, its distance
from the hive or energy usage and its nectar quality rating

(or fitness). This information helps the bees to find the
flower patches precisely, without using guides or maps.

Each individual’s knowledge of the outside environment
is gleaned solely from the waggle dance. This dance enables
the colony to evaluate the relative merit of different patches
according to both the quality of the food they provide and
the amount of energy needed to harvest it. After waggle
dancing on the dance floor, the dancer bee (i.e. the scout
bee) goes back to the flower patch with follower bees that
were waiting inside the hive. The number of follower bees
assigned to a patch depends on the overall quality of the
patch.

This allows the colony to gather food quickly and
efficiently. While harvesting from a patch, the bees monitor
its food level. This is necessary to decide upon the next
waggle dance when they return to the hive. If the patch is
still good enough as a food source, then it will be advertised
in the waggle dance and more bees will be recruited to that
source.

B. Bees Algorithm
Bees Algorithm is an optimisation algorithm inspired by

the natural foraging behaviour of honey bees [3, 4]. Fig. 1
shows the pseudo code for the algorithm in its simplest
form. The algorithm requires various influential parameters
to be preset, namely: the number of scout bees (n), the
number of patches selected out of n visited points (m), the
number of elite patches out of m selected patches (e), the
number of bees recruited for the best e patches (nep), the
number of bees recruited for the other (m-e) selected patches
(nsp) and the size of patches (ngh) including stopping
criterion.

The algorithm starts with the n scout bees being randomly
placed in the search space of feasible solutions. The
fitnesses of the points visited by the scout bees are evaluated
in the second step. Step 3, the scout bees are classified into
various groups. In step 4, bees that have the highest fitnesses
are designated as “selected bees” and sites visited by them
are chosen for neighbourhood search. Then, in steps 5 and 6,
the algorithm conducts searches in the neighbourhood of the
selected bees, assigning more bees to search near to the best
e bees.

The bees can be chosen directly according to the fitnesses
associated with the points they are visiting. Alternatively,
the fitness values are used to determine the probability of
the bees being selected. Searches in the neighbourhood of
the best e bees which represent more promising solutions are
made more detailed by recruiting more bees to follow them
than the other selected bees. Together with scouting, this
differential recruitment is a key operation of the Bees
Algorithm. In step 6, for each site only the bee with the
highest fitness will be selected to form the next bee
population. In nature, there is no such a restriction. This
constraint is introduced here to reduce the number of points
to be explored. In step 7, the remaining bees in the
population are assigned randomly around the search space
scouting for new potential solutions. These steps are
repeated until a stopping criterion is met. At the end in each
iteration, the colony will have two parts to its new
population – representatives from each selected patch and
other scout bees assigned to conduct random searches. The
Bee dance function to provide the related useful information
for finding the food is followed:

()1 () (0 *()+ = + − i i i ix x ngh 2*ngh*rand 1 upper x lower x- -

The algorithm has been successfully applied to different
problems including of neural network optimisations, training
pattern recognition, scheduled jobs for a machine, data
clustering and tuning the fuzzy logic controller. Fig. 1 shows
the pseudo code for the BEES in its simplest form.

Procedure BEES Meta-heuristic()
Begin;

Initialise algorithm parameters:
 n: the number of scout bees

 m: the number of sites selected out of n visited sites
e: the number of the best sites out of m selected sites
nep: the number of bees recruited for the best e sites,

 nsp: the number of bees recruited for the other m-e selected sites
ngh: the initial size of patches

Randomly initialise the bee population;
Evaluate fitnesses of the bee population;
While (stopping criterion not met)

Form the new bee population;
Select sites for neighbourhood search;
Recruit bees for selected sites with more bees for better e sites;
Evaluate the fitnesses;

End while;
End procedure;

Fig. 1. Pseudo code of the BEES Meta-heuristic.

III. FIREFLY ALGORITHM (FFA)

A. Firefly in Nature
Fireflies or glowworms are the creatures that can generate

light inside of it. Light production in fireflies is due to a type
of chemical reaction. This process occurs in specialised
light-emitting organs, usually on a firefly's lower abdomen.
It is thought that light in adult fireflies was originally used
for similar warning purposes, but evolved for use in mate or
sexual selection via a variety of ways to communicate with
mates in courtships. Although they have many mechanisms,
the interesting issues are what they do for any
communication to find food and to protect themselves from
enemy hunters including their successful reproduction.

The pattern of flashes is often unique for a particular
species of fireflies. The flashing light is generated by a
chemical process of bioluminescence. However, two
fundamental functions of such flashes are to attract mating
partners or communication, and to attract potential victim.
Additionally, flashing may also serve as a protective
warning mechanism. Both sexes of fireflies are brought
together via the rhythmic flash, the rate of flashing and the
amount of time form part of the signal system. Females
respond to a male’s unique pattern of flashing in the same
species, while in some species, female fireflies can mimic
the mating flashing pattern of other species so as to lure and
eat the male fireflies who may mistake the flashes as a
potential suitable mate.

The light intensity at a particular distance from the light
source follows the inverse square law. That is as the distance
increases the light intensity decreases. Furthermore, the air
absorbs light which becomes weaker and weaker as there is
an increase of the distance. There are two combined factors
that make most fireflies visible only to a limited distance
that is usually good enough for fireflies to communicate
each other. The flashing light can be formulated in such a
way that it is associated with the objective function to be
optimised. This makes it possible to formulate new meta-
heuristic algorithms.

B. Firefly Algorithm
The firefly algorithm (FFA) is a meta-heuristic algorithm,

inspired by the flashing behaviour of fireflies. The primary
purpose for a firefly's flash is to act as a signal system to
attract other fireflies. Now this can idealise some of the
flashing characteristics of fireflies so as to consequently
develop firefly-inspired algorithms. For simplicity in
describing our new Firefly Algorithm (FFA) [3, 4], there are
the following three idealised rules.

On the first rule, each firefly attracts all the other fireflies
with weaker flashes [16]. All fireflies are unisex so that one
firefly will be attracted to other fireflies regardless of their
sex. Secondly, attractiveness is proportional to their
brightness which is reverse proportional to their distances.
For any two flashing fireflies, the less bright one will move
towards the brighter one. The attractiveness is proportional
to the brightness and they both decrease as their distance
increases. If there is no brighter one than a particular firefly,
it will move randomly. Finally, no firefly can attract the
brightest firefly and it moves randomly.

The brightness of a firefly is affected or determined by the
landscape of the objective function. For a maximisation
problem, the brightness can simply be proportional to the
value of the objective function. Other forms of brightness
can be defined in a similar way to the fitness function in
genetic algorithms. Based on these three rules, the basic
steps of the firefly algorithm (FFA) can be summarised as
the pseudo code shown in Fig. 2.

Procedure FFA Meta-heuristic()
Begin;

Initialise algorithm parameters:
MaxGen: the maximal number of generations
γ: the light absorption coefficient
r: the particular distance from the light source
d: the domain space

Define the objective function of f(x), where x=(x1,........,xd)T
Generate the initial population of fireflies or xi (i=1, 2 ,..., n)
Determine the light intensity of Ii at xi via f(xi)

 While (t<MaxGen)
 For i = 1 to n (all n fireflies);
 For j=1 to n (n fireflies)
 if (Ij > Ii), move firefly i towards j; end if
 Attractiveness varies with distance r via Exp [-γr2];
 Evaluate new solutions and update light intensity;
 End for j;
 End for i;
 Rank the fireflies and find the current best;
 End while;
 Postprocess results and visualisation;
End procedure;

Fig. 2. Pseudo code of of the FFA Meta-heuristic.

In the firefly algorithm there are two important issues of
the variation of light intensity and the formulation of the
attractiveness. For simplicity, it is assumed that the
attractiveness of a firefly is determined by its brightness
which in turn is associated with the encoded objective
function of the optimisation problems. On the attractiveness
of the FFA the main form of attractiveness function or β(r)
can be any monotonically decreasing functions such as the
following generalised form of

0
mr(r) = e− γβ β , (m1),

where r or rij is the distance between the ith and jth of two
fireflies. β0 is the attractiveness at r = 0 and γ is a fixed light
absorption coefficient. The distance between any two

fireflies i and j at xi and xj is the Cartesian distance as
follows:

 2
, ,

1

()
d

ij i j i k j k
k

r x x x x
=

= − = −∑ ,

where xik is the k-th component of the i-th firefly (xi). The
movement of a firefly, i is attracted to another more
attractive (brighter) firefly j, is determined by

2

1 0 () (0.5)ijr
i i j ix x e x x rand−γ
+ = + β − + α − ,

where the second term is due to the attraction while the third
term is the randomisation with α being the randomisation
parameter. Rand is a random number generator uniformly
distributed in the range of [0, 1]. For most cases in the
implementation, 0β = 1 and α ൌ [0, 1]. Furthermore, the
randomisation term can easily be extended to a normal
distribution N (0, 1) or other distributions.

Additionally, if the scales vary significantly in different
dimensions such as −105 to 105 in one dimension while,
say, −0.001 to 0.01 along the other, it is a good idea to
replace α by αSk where the scaling parameters Sk (k = 1, ...,
d) in the d dimensions should be determined by the actual
scales of the problem of interest. The parameter γ
characterises the variation of the attractiveness, and its value
is crucially important in determining the speed of the
convergence and how the FFA behaves. In most
applications, it typically varies from 0.01 to 100.

IV. TESTED MODELS
In this paper, the algorithms operate and analyse the

results under various type of continuous mathematical
functions with two variables. The comparison is made with
the measurement noise, normally and independently
distributed with zero mean and standard deviation of 0, 1, 2
and 3, on the process yields. The typical three-dimensional
response surfaces are shown in Figures A-H.

The typical natures of selected surfaces to be used in this
study are the single peak of parabolic function, the multi-
peak of Camelback, Rastrigin and Shekel functions and the
curved ridge of Rosenbrock and Styblinski functions
including the multi-peak with curved ridge of Branin
Goldstein-Price functions. However, there is the limitation
of merely 2-variable problems.

A. Parabolic Function

2 2

1 2 1 2Max f(x , x) 12 (x x / 100)= − +

B. Branin Function

2 2 2
1 2 10 2 1 1

1

Max f(x , x) 5 log [(x (5.1 / 4 π) x ((5 / π) x 6)
((10 (5 / 4 π)) cos(x)) 10]

= − − + − +
− +

C. Camelback Function

2 2

1 2 10 1 1

1

Max f(x , x) log [x (. x (/) x)

x x x (x)]

= − − − + +

+ −

4
1

2 2
2 2 2

10 4 2 1 1 3
4 1

D. Goldstein-Price Function

2

1 2 10 1 2
2 2 2

1 1 2 1 2 2 1 2
2 2

1 1 2 1 2 2

Max f(x , x) 10 log [1/{(1 (1 x x) (19

14x 3x 14x 6x x 3x))*(30 (2x 3x)

(18 32x 12x 48x 36x x 27x))}]

= + + + + −

+ − + + + −

− + + − +

E. Styblinski Function

4 2 4 2

1 2 1 1 1 2 2 2Max f(x , x) 275 [((x 16 x 5x) / 2) ((x 16 x 5x) / 2) 3]= − − + + − + +

F. Rastrigin Function

2 2

1 2 1 2 1 2Max f(x , x) 80 [20 x x 10(cos(2π x) cos(2π x))]= − + + − +

G. Rosenbrock Function

2 2 2

1 2 1 2 1Max f(x , x) 70 [[[20 {(1 x / 7) ((x / 6) (x / 7)) }]
150] /170] 10

= − − − + + −
+ +

H. Shekel Function

2 2

1 2 1 2
2 2 2 2

1 2 1 2
2 2 2 2

1 2 1 2

Max f(x , x) 100 [1/ (9 (x 4) (x 6))

1/ (20 (x 0) (x 0)) 1/ (14 (x 8) (x 3))

1/ (11 (x 8) (x 8)) 1/ (6 (x 6) (x 7))

= + − + − +

+ + + − + + − + +

+ + − + − + + + + −

V. COMPUTATIONAL RESULTS AND ANALYSES
In this work, for the computational procedures described

above a computer simulation program was implemented in a
Visual C#2008 computer program. A Laptop computer
Aspire Z99Sseries ASUS was used for computational
experiments throughout. A numerical comparison of the
conventional procedures of the Bees and Firefly algorithms
are determined in this section. These meta-heuristics were
adapted to search optimal solutions of non-linear
mathematical models without constraints. Considering the
solution space in a specified region of response surfaces,
some models contain global optimum and multiple local
optimums as described above.

FFA and BEES algorithms are optimisation algorithms
inspired by the natural foraging behavior of honey bees and
social behavior of fireflies and the phenomenon of
bioluminescent communication, respectively. They are the
meta-heuristics with the similar naturally-based inspiration
which include Particle Swarm Optimisation (PSO) or
Artificial Bee Colony (ABC) techniques. Experimental
results involved a performance comparison of the FFA and
BEES algorithms under a limitation of the 2-variable
problems.

Each algorithm has its own influential parameters that
affect its performance in terms of solution quality and
execution time. To achieve the most preferable parameter
choices that suit the tested problems, a large number of
experiments were conducted. For each algorithm, an initial
setting of the parameters was established using values
previously reported in the literature. Then, the parameter
values were developed via the experimental designs and the
results were monitored in terms of various solution quality
measures. The final parameter values adopted in each
algorithm are followed and will be applied for all
optimisation problems presented in this paper.

BEES parameters were set as follows: the number of
scout bees (n) = 50, the number of sites selected out of n
visited sites (m) = 10, the number of best sites out of m
selected sites (e) = 5, the number of bees recruited for best e
sites (nep) = 5, the number of bees recruited for the other m-
e selected site (nsp) = 10, the initial size of patches (ngh) =
0.1. FFA parameters were set as follows: β0 = 1, α = [0, 1],
γ = [0.01, 100] and the number of fireflies = 40. Both
algorithms were executed with the same designed points of
6000 realisations. There are fifteen trial runs in each
problem and noise level. The performance of the different
algorithms was compared using three criteria which
comprise of the mean and standard deviation of actual
process yields and the processing time to reach the optimum
at the maximal preset design points.

When there was no noise on the process yields, the
performance of both algorithms of the BEES and FFA
seems to be not different to approach to the optimum. The
average and standard deviation (STD) of actual yields and
the computation time (Tables I and II) including maximal
and minimal actual yields achieved by the FFA tend to be
better, especially on the multi-peak functions, when the
standard deviation of noises (N) raise from 1 to 3 (Fig. 3).
Moreover, the consistency of the FFA performs quite well
that could be indicated by the standard deviation of yields
from 15 replications.

Complexity or difficulty of the functions had no effect to
the FFA as expected except Camelback function. However,
execute time in each replication is dramatically higher when
compared, especially on the functions with curved ridge or
mixed curved ridge and multi-peak natures. BEES seems to
be better in terms of speed of convergence (Fig. 4 and 5).
This might be the effect from generating the completely
different random numbers to use in the iterative procedures
of the algorithm.

BE E SF F A

9 .6

9 .5

9 .4

9 .3

9 .2

9 .1

9 .0

8 .9

8 .8

8 .7

D
at

a

G o l d s te i n -P r i c e F u n c t i o n

B E E SF F A

3 5 3 .3 3

3 5 3 .3 2

3 5 3 .3 1

3 5 3 .3 0

3 5 3 .2 9

D
at

a

S ty b l in s k i F u n c t io n

Fig. 3. Graphical Results on Goldstein-Price and Styblinski Function.

This implies that the FFA is more potentially powerful in
solving noisy non-linear optimisation problems. The FFA
seems to be a promising optimisation tool in part due to the
effect of the attractiveness function which is a unique of
firefly behaviour. The FFA has not only the self
improvement process with the current space, but it also
includes the improvement among its own space from the
previous stages whereas the BEES provides only the
procedure of bee dance improvement. As also appeared on
the Particle Swarm Optimisation (PSO), this leads the
proper level of convergence to the optimum.

REFERENCES
[1] E. Elbeltag, T. Hegazy and D. Griersona, “Modified Shuffled Frog-

Leaping Optimisation Algorithm: Applications to Project
Management”, Structure and Infrastructure Engineering, vol. 3, no.
1, 2007, pp. 53 – 60.

[2] E. Emad, H. Tarek, and G. Donald, “Comparison among Five
Evolutionary-based Optimisation Algorithms”, Advanced Engineering
Informatics, vol.19, 2005, pp. 43-53.

[3] X.S. Yang, “A Discrete Firefly Meta-heuristic with Local Search for
Make span Minimisation in Permutation Flow Shop Scheduling
Problems”, International Journal of Industrial Engineering
Computations, vol. 1, 2010, pp. 1–10.

[4] X.S. Yang, “Firefly Algorithms for Multimodal Optimisation”,
Stochastic Algorithms: Foundations and Applications, SAGA 2009,
Lecture Notes in Computer Sciences, vol. 5792, 2009, pp. 169-178.

[5] S. Lukasik and S. Zak, “Firefly Algorithm for Continuous
Constrained Optimisation Tasks”, Systems Research Institute, Polish
Academy of Sciences, 2010, pp. 1–10.

[6] D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim and M.
Zaidi, “The Bees Algorithm. Technical Note”. Manufacturing
Engineering Centre, Cardiff University, UK, 2005.

[7] D.T. Pham, Ghanbarzadeh A., Koc E., Otri S., Rahim S., and M.
Zaidi, “The Bees Algorithm - A Novel Tool for Complex
Optimisation Problems", Proceedings of IPROMS 2006 Conference,
2006, pp. 454-461.

[8] K.S. Lee and Z.W. Geem, “A New Meta-heuristic Algorithm for
Continues Engineering Optimisation: Harmony Search Theory and
Practice”, Comput: Meth. Appl. Mech. Eng., vol. 194, 2004, pp.
3902–3933.

[9] P. Muller and D.R. Insua, "Issues in Bayesian Analysis of Neural
Network Models", Neural Computation, vol. 10, 1995, pp. 571–592.

[10] M. Dorigo, V. Maniezzo and A. Colorni, “Ant System: Optimisation
by a Colony of Cooperating Agents”, IEEE Transactions on Systems,
Man, and Cybernetics Part B, vol. 26, numéro 1, 1996, pp. 29-41.

[11] J.Y. Jeon, J.H. Kim, and K. Koh “Experimental Evolutionary
Programming-based High-precision Control,” IEEE Control Sys.
Tech., vol. 17, 1997, pp. 66-74.

[12] R. Storn, “System Design by Constraint Adaptation and Differential
Evolution", IEEE Trans. on Evolutionary Computation, vol. 3, no. 1,
1999, pp. 22-34.

[13] M. Clerc, and J. Kennedy, “The Particle Swarm-Explosion, Stability,
and Convergence in a Multidimensional Complex Space”, IEEE
Transactions on Evolutionary Computation, vol. 6, 2002, pp.58-73.

[14] Lokketangen, A. K. Jornsten and S. Storoy “Tabu Search within a
Pivot and Complement Framework”, International Transactions in
Operations Research, vol. 1, no. 3, 1994, pp. 305-316.

[15] V. Granville, M. Krivanek and J.P. Rasson, “Simulated Annealing: a
Proof of Convergence”, Pattern Analysis and Machine Intelligence,
IEEE Transactions, vol. 16, Issue 6, 1994, pp. 652 – 656.

[16] H. Zang, S. Zhang and K. Hapeshi, ”A Review of Nature-Inspired
Algorithms”, Journal of Bionic Engineering, vol. 7, 2010, pp. 232–
237.

TABLE I

EXPERIMENTAL RESULTS OBTAINED FROM THE BEES ON EACH TESTED
FUNCTION

Tested Function N=0 Time N=1 Time

Branin Mean 5.40 281.21 4.80 281.10
STD. 0.00 0.30 0.48 0.02

Camelback Mean 12.89 281.13 11.10 281.09
STD. 0.80 0.14 1.13 0.00

Gold S.P. Mean 9.28 281.13 8.69 281.13
STD. 0.27 0.13 0.70 0.11

Parabolic Mean 12.00 281.12 11.90 281.09
STD. 0.00 0.09 0.12 0.02

Rastrigin Mean 99.35 281.17 98.63 281.12
STD. 1.02 0.14 1.52 0.10

Rosenbrock Mean 80.00 281.22 79.84 281.09
STD. 0.00 0.37 0.12 0.02

Shekel Mean 18.98 281.10 18.63 281.12
STD. 0.00 0.01 0.27 0.12

Styblinski Mean 353.32 281.14 352.65 281.12
STD. 0.01 0.09 0.48 0.07

Tested Function N=2 Time N=3 Time

Branin Mean 3.52 281.18 3.22 281.096
STD. 0.52 0.12 0.58 0.002

Camelback Mean 10.02 281.09 9.31 281.135
STD. 1.51 0.01 0.87 0.151

Gold S.P. Mean 8.06 281.11 7.27 281.095
STD. 0.70 0.07 0.93 0.001

Parabolic Mean 11.46 281.09 11.19 281.147
STD. 0.53 0.00 0.55 0.200

Rastrigin Mean 98.26 281.16 97.6 281.133
STD. 1.87 0.29 1.95 0.144

Rosenbrock Mean 79.71 281.13 79.72 281.095
STD. 0.27 0.17 0.24 0.001

Shekel Mean 18.08 281.11 17.71 281.096
STD. 0.83 0.04 0.819 0.002

Styblinski Mean 351.65 281.14 351.53 281.120
STD. 1.36 0.08 1.346 0.094

TABLE II
EXPERIMENTAL RESULTS OBTAINED FROM THE FFA ON EACH TESTED

FUNCTION
Tested Function N=0 Time N=1 Time

Branin Mean 5.400 660.124 4.108 2282.105
STD. 0.000 0.277 0.371 4388.727

Camelback Mean 13.014 660.083 9.854 662.378
STD. 0.285 0.126 1.049 4.808

Gold S.P. Mean 9.492 660.089 6.161 662.008
STD. 0.020 0.183 0.354 4.722

Parabolic Mean 12.000 660.073 11.913 660.803
STD. 0.000 0.106 0.011 1.934

Rastrigin Mean 99.989 689.861 99.513 661.399
STD. 0.010 115.386 1.062 3.718

Rosenbrock Mean 80.000 660.053 79.931 660.879
STD. 0.000 0.049 0.028 1.840

Shekel Mean 18.980 689.829 18.976 660.285
STD. 0.000 115.364 0.004 0.938

Styblinski Mean 353.330 660.083 353.321 660.923
STD. 0.002 0.112 0.009 2.347

Tested Function N=2 Time N=3 Time

Branin Mean 3.902 1283.567 3.728 659.958
STD. 0.812 2414.949 0.618 0.143

Camelback Mean 8.414 660.028 7.994 659.952
STD. 0.684 0.070 0.304 0.159

Gold S.P. Mean 5.820 660.044 5.867 659.948
STD. 0.370 0.094 0.435 0.167

Parabolic Mean 11.915 660.040 11.896 659.973
STD. 0.008 0.118 0.031 0.104

Rastrigin Mean 95.724 1283.538 95.432 659.989
STD. 0.268 2414.876 0.613 0.020

Rosenbrock Mean 79.933 660.048 79.940 659.960
STD. 0.014 0.134 0.004 0.188

Shekel Mean 18.962 660.025 18.954 659.984
STD. 0.014 0.054 0.020 0.002

Styblinski Mean 353.301 660.040 353.280 659.966
STD. 0.023 0.089 0.045 0.102

Fig. 4. Speed of Convergence on Branin Function.

Fig. 5. Speed of Convergence on Styblinski Function.

4
4.2
4.4
4.6
4.8

5
5.2
5.4
5.6

1 26 51 76 101

FFA

BEES

250
270
290
310
330
350
370
390

1 26 51 76

FFA

BEES

