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Abstract—We consider the Minkowski sum of subsets of
integer lattice, each of which is a set of integer points of a face
of an extended submodular [Kashiwabara–Takabatake,Discrete
Appl. Math. 131 (2003) 433] integer polyhedron supported by
a common positive vector. We show a sufficient condition for
the sum to contain all the integer points of its convex hull
and a sufficient condition for the sum to include a specific
subset of congruent integer points of its convex hull. The latter
also gives rise to a subclass of extended submodular integer
polyhedra, for which the sum of “copies” of a set of integer
points of a face always contains all the integer points of its
convex hull. We do this by using the properties of M-convex
sets [Murota, Discrete Convex Analysis(2003)] and some logic
from the elementary number theory. Our study has a direct
significance for an economic problem of division of a bundle of
indivisible goods.

Index Terms—Minkowski sum of integer point sets, extended
submodular polyhedron, M-convex set, indivisible goods

I. I NTRODUCTION

In this paper we consider the Minkowski sum of subsets
of integer lattice, each of which is a set of integer points
of a face of an integer polyhedron supported by a common
vector. In particular, we consider the sum of sets of integer
points of the faces of extended submodular [2] integer
polyhedra supported by a common positive vector, and show
a sufficient condition for the sum to contain all the integer
points of its convex hull (Proposition III.1), and more weakly,
a sufficient condition for the sum to include a specific subset
of congruent integer points of its convex hull (Proposition
III.2). The latter also gives rise to a subclass of extended
submodular integer polyhedra, for which the sum of “copies”
of a set of integer points of a face always contains all the
integer points of its convex hull (Proposition III.4). We do
this by using the properties of M-convex sets ([3]) and some
logic from the elementary number theory.

The reason why we pay attention to the integer points of
faces (not of the entire polyhedra) is application-oriented.
Our study has a direct significance for an economic problem
of division of a bundle of indivisible goods as follows. Let
Zd be thed-dimensional integer lattice andXr ⊂ Zd be
a demand set of an agentr = 1, 2. When dealing with this
problem we reverse the signs, and think a demand set to be a
set of integer points of a face of an extended “supermodular”
integer polyhedron supported by a common positive price
vector. This amounts to say that agents have weakly convex
and weakly monotone preference treating every pair of goods
as net substitutes (see Section 4 for the detail). IfX :=
{x1 + x2 | x1 ∈ X1, x2 ∈ X2} then X ⊆ conv(X) ∩ Zd,
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whereconv(X) is the convex hull of the sumX, and we call
X hole-free if the inclusion holds with the equality. IfX is
hole-free then anyx ∈ conv(X) ∩ Zd is divided between
the agents asx = x1 + x2, choosing somexr ∈ Xr for
eachr = 1, 2. When isX secured to be hole-free? If it is
a hard-won property, then what sort ofx ∈ conv(X) ∩ Zd

given what type ofXr ’s can be divided between the agents?
Our propositions will answer to these questions. See Section
4 for the relevance of our results to this division problem.

The paper is organized as follows. Section 2 gives some
preliminaries. Section 3 contains the results. Section 4 dis-
cusses about the economic application.

II. PRELIMINARIES

Let Rd be thed-dimensional Euclidean space with the
standard basis{e1, · · · , ed}. We denote by0 and1 the zero
vector and the vector of all ones, respectively. We letRd

+ :=
{x ∈ Rd | xi ≥ 0 ∀i}, Rd

++ := {x ∈ Rd | xi > 0 ∀i}, and
denote the support and positive support of a vectorx ∈ Rd

by supp(x) := {i | xi 6= 0} and supp+(x) := {i | xi > 0},
respectively. The inner product ofx, y ∈ Rd is written as
x·y :=

∑d
i=1 xiyi, and the (Minkowski) sum of setsX,Y ⊆

Rd is written asX + Y := {x + y | x ∈ X, y ∈ Y }.
A finite intersection of closed half spaces is called a

convex polyhedron, or simply apolyhedron. A polyhedron
P ⊂ Rd is down-monotoneif x ∈ P and y ≤ x imply
y ∈ P . For a down-monotone polyhedronP ⊂ Rd, the
support functionδ∗P : Rd

+ → R of P is defined for each
a ∈ Rd

+ by the supremum ofa · x over x ∈ P , namely by

δ∗P (a) := sup{a · x | x ∈ P}. (1)

For eacha ∈ Rd
+, the set

Pa := {x ∈ P | a · x = δ∗P (a)} (2)

gives aface of P , and we say that a vectora supportsPa,
or a is a normal vector ofPa. The faces with dimensionality
0, 1, andd − 1 are called thevertices, theedges, and the
facets, respectively.

A down-monotone polyhedronP ⊂ Rd is an extended
submodular polyhedron[2] if its support function δ∗P is
submodularin that

δ∗P (a)+δ∗P (a′) ≥ δ∗P (a∨a′)+δ∗P (a∧a′), a, a′ ∈ Rd
+, (3)

wherea ∨ a′ := (max{a1, a
′
1}, · · · , max{ad, a

′
d}) and a ∧

a′ := (min{a1, a
′
1}, · · · , min{ad, a

′
d}). As proved in [2],

the extended submodular polyhedra are characterized by a
simultaneous exchangeability such thatx ∈ P , y ∈ P , and
i ∈ supp+(x−y) imply either (i)x−εei ∈ P andy+εei ∈ P
or (ii) x−ε(ei−sej) ∈ P andy+ε(ei−sej) ∈ P , for some
j ∈ supp+(y−x) and real numberss > 0 andε > 0. This in
particular says that ifPa is a face of an extended submodular
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polyhedronsupported by apositive vector a ∈ Rd
++, then

x ∈ Pa, y ∈ Pa, andi ∈ supp+(x − y) imply

x − ε(ei − sej) ∈ Pa andy + ε(ei − sej) ∈ Pa (4)

for somej ∈ supp+(y − x) and real numberss > 0 and
ε > 0. Any edge ofPa supported by a positivea is parallel
to someei − sej (i, j ∈ {1, · · · , d}, i 6= j, s > 0). As
proved in [1], the class of extended submodular polyhedra is
a subclass ofpolybasic polyhedra, which are defined to be
the polyhedra with edge vectors of support size at most two,
and characterized as having submodular support function or,
alternatively, having faces with full-support normals that are
reflections and axiwise scalings of base polyhedra (see [1]).

Let Zd be the set of integer points ofRd. In the following
we assume that a polyhedron has a vertex. A polyhedron is
integral if its vertices are all integer points. LetP ⊂ Rd be
an extended submodular integer polyhedron. Then for any
integer pointsx and y in an edgee of P supported by a
vector a ∈ Rd

++, we havex − y = c(mi(e)ei − mj(e)ej)
for somei, j ∈ {1, · · · , d} (i 6= j), an integerc ≥ 0, and
coprime positive integersmi(e) and mj(e) specific to e.
Integersz1, · · · , zn are coprime if their greatest common
divisor is one. They arepairwise coprimeif any two of them
are coprime. Note that the integermi(e) may vary on the
edges that involveei in their segmentation, even if the edges
are taken from the same facet.

An M-convex set is a set of integer points characterized
by a simultaneous exchangeability in 01-integers ([3]). A
set M ⊂ Zd is M-convex if x ∈ M , y ∈ M , and i ∈
supp+(x − y) imply

x − ei + ej ∈ M andy + ei − ej ∈ M (5)

for somej ∈ supp+(y − x). An M-convex setM ⊂ Zd

is hole-freein that conv(M) ∩ Zd = M . Note that the set
of integer points of a convex set having integer vertices is
always hole-free. An M-convex set coincides with the set of
integer points of an integral base polyhedron. A hole-free set
E ⊂ Zd is M-convex if for any integer pointsx and y in
an edge ofconv(E) we havex − y = c(ei − ej) for some
i, j ∈ {1, · · · , d} (i 6= j) and an integerc ≥ 0. A sum of M-
convex sets is M-convex, and hence hole-free. The convex
hull of an M-convex set is included in a hyperplane with
normal vector1, and can be regarded as an instance of a face
of an extended submodular integer polyhedron supported by
a positive vector.

III. T HE RESULTS

We begin with a structure of the set of integer solutions to
the equationa · x = b with a certaind-dimensional positive
rational vectora and a rational numberb. Note thata can be
expressed as a vector of unit fractions(1/m1, · · · , 1/md),
by suitably scalinga andb.

Lemma III.1. Let x0 ∈ Zd be a solution to the equation
a ·x = b, wherea is a d-dimensional positive rational vector
and b is a rational number. Ifa = (1/m1, · · · , 1/md) with
pairwise coprime positive integersm1, · · · ,md, then, for any
givenh ∈ {1, · · · , d},

{x | a ·x = b, x integral} = {x0+
∑
i6=h

λi(miei−mheh) |

λi ∈ Z, i = 1, · · · , d, i 6= h}. (6)

Proof: Let a · y = b, where y ∈ Rd. Then y =
x0 +

∑
i6=h λi(miei − mheh) for someλi ∈ R for each

i 6= h, since a · (miei − mheh) = 0 for all i 6= h,
and miei − mheh (i = 1, · · · , d, i 6= h) are linearly
independent. We show thaty ∈ Zd only if λi ∈ Z for all
i 6= h (the converse is clear). Letz := y − x0 and assume
z ∈ Zd (viz., y ∈ Zd). Here zi = λimi for all i 6= h
and zh = −

∑
i6=h λimh, so zh = −

∑
i6=h(zi/mi)mh, or,

(m1 · · ·md/mh)zh = −
∑

i6=h(m1 · · ·md/mi)zi, multiply-
ing m1 · · ·md/mh for both sides. To see thatλj ∈ Z for
all j 6= h, pick an arbitraryj 6= h and assumemj > 1 (if
mj = 1 then λj = zj/mj ∈ Z, as desired). Then for an
indeterminate equation

−(m1 · · ·md/mj)zj =
∑
i6=j

(m1 · · ·md/mi)zi (7)

of d − 1 unknowns zi (i = 1, · · · , d, i 6= j) to have
integer solutions, it is necessary (and sufficient) that the
greatest common divisor of the right hand side coefficients
divides the left hand side. Sincemj divides allm1 · · ·md/mi

(i = 1, · · · , d, i 6= j), mj is a factor of the greatest
common divisor and divides−(m1 · · ·md/mj)zj . Sincemi

(i = 1, · · · , d) are pairwise coprime, this says thatmj divides
zj , i.e., λj = zj/mj ∈ Z.

Thus, if m1, · · · ,md are pairwise coprime, the set of
vectors

{miei − mheh | i = 1, · · · , d, i 6= h} (8)

given any h ∈ {1, · · · , d} is a basis of the set of inte-
ger points of a hyperplane with normal(1/m1, · · · , 1/md)
containing an integer point, e.g., the origin. The pairwise
coprimality condition is also necessary. To see this, letHa

andH1 be the sets of integer points of hyperplanes through
the origin with normal vectorsa = (1/m1, · · · , 1/md)
and 1, respectively, wherem1, · · · , md are not necessarily
pairwise coprime positive integers. ThenHa ⊇ TH1 by
a diagonal matrixT := diag(m1, · · · ,md), and the set
{ei − ed | i = 1, · · · , d − 1}, for example, is a basis of
H1 by Lemma III.1. This basis is mapped byT to the set
{miei−mded | i = 1, · · · , d−1}, and ifm1 andm2 are not
coprime, for example, then lettingx1 := m1e1−mded ∈ Ha

andx2 := m2e2 −mded ∈ Ha, x2 − x1 = m2e2 −m1e1 =
c(m′

2e
2 − m′

1e
1) with some integerc > 1 and coprime

integersm′
2 and m′

1, which says that there arec − 1 > 0
integer points betweenx1 andx2 not spanned by the vectors
miei − mded (i 6= d) resulting inHa 6= TH1. Hence the
pairwise coprimality is necessary for Eq. (8) to be a basis of
Ha.

Using this lemma, we state and prove our first proposition.
Recall that an edgee of a face of an extended submodular in-
teger polyhedron supported by a positive vector is segmented
by a vector of the formmi(e)ei − mj(e)ej , wheremi(e)
and mj(e) are coprime positive integers specific toe. For
brevity, we denote byX + x the sumX + {x} of a setX
and a pointx. The setX + (−x) is denoted byX − x.

Proposition III.1. Let P 1, · · · , Pn be extended submodular
integer polyhedra inRd, andP 1

a , · · · , Pn
a be their faces sup-

ported by a positive rational vectora := (1/m1, · · · , 1/md).
Let Er

a := P r
a ∩ Zd, r = 1, · · · , n. If m1, · · · ,md are

pairwise coprime then
∑

r Er
a is hole-free.
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Proof: Let br be a vertex ofconv(Er
a) for eachr =

1, · · · , n, and letT := diag(m1, · · · ,md). Then eachEr
a

lies in the setTH1 + br ⊂ Zd, r = 1, · · · , n, and
∑

r Er
a

lies in TH1 +
∑

r br, whereH1 := {x ∈ Zd | 1 · x = 0}.
The setTH1 +

∑
r br is bijective to H1 and has a basis

of the form Eq. (8). Now, the setT−1(Er
a − br) ⊂ H1 is

M-convex, sinceT−1(Er
a − br) is hole-free given hole-free

Er
a − br, and an edge ofconv(Er

a − br) segmented by a
vectormi(e)ei −mj(e)ej is mapped byT−1 to an edge of
conv(T−1(Er

a−br)) segmented byei−ej (i, j ∈ {1, · · · , d},
i 6= j). Therefore

∑
r T−1(Er

a − br) ⊂ H1 is hole-free as a
sum of M-convex sets, and so is

∑
r Er

a = T
∑

r T−1(Er
a −

br) +
∑

r br by the bijectiveness ofTH1 +
∑

r br andH1.

Thus,for anyx ∈ conv(
∑

r Er
a)∩Zd, there is anxr ∈ Er

a

for each r = 1, · · · , n such thatx = x1 + · · · + xn, if
a = (1/m1, · · · , 1/md) with pairwise coprimem1, · · · ,md.
A simple example of such ana is wheremi are distinct
primes or ones, which might be restrictive, though. Assuming
thatP r are integral and extended submodular, what else can
be said?

Proposition III.2. Let P r, P r
a , andEr

a be as in Proposition
III.1, r = 1, · · · , n, with an arbitrary a ∈ Rd

++. Suppose
there is an integer vectorm = (m1, · · · ,md) common to
all r such that all the points ofEr

a are congruent modulo
m for eachr. Let x ∈ conv(

∑
r Er

a) ∩ Zd. If x ≡ v (mod
m) (x and v are congruent modulom) for some vertexv of
conv(

∑
r Er

a), thenx ∈
∑

r Er
a.

Proof: Let br be a vertex ofconv(Er
a) for eachr =

1, · · · , n, and letT := diag(m1, · · · ,md). Then eachEr
a

lies in the setTH1 + br ⊂ Zd, r = 1, · · · , n, and
∑

r Er
a

lies in TH1 +
∑

r br, where H1 := {x ∈ Zd | 1 · x =
0}. This time the setTH1 +

∑
r br is not bijective toH1,

but the setT−1(Er
a − br) ⊂ H1 is M-convex, as can be

shown similarly to the proof of Proposition III.1. Therefore∑
r T−1(Er

a − br) ⊂ H1 is hole-free as a sum of M-convex
sets, and the set

∑
r Er

a = T
∑

r T−1(Er
a − br) +

∑
r br is

a subset of the set of integer points ofconv(
∑

r Er
a) that

are congruent modulom, including the set of all vertices.
Hence, forx ∈ conv(

∑
r Er

a)∩Zd, thatx ≡ v (mod m) for
some vertexv of conv(

∑
r Er

a) implies thatx ∈
∑

r Er
a.

Thus, if each Er
a consists of points that are congruent

modulo m (to be precise modulomi for all i = 1, · · · , d),
and if m is the same for allr = 1, · · · , n, then x ∈
conv(

∑
r Er

a)∩Zd congruent modulom with a vertex is ex-
pressed asx = x1+· · ·+xn, xr ∈ Er

a for eachr = 1, · · · , n.
This may be quite obvious ifEr

a were not hyperplaner but
rectangular, integer intervals inZd. Proposition III.2 says that
similar thing can be said for our hyperplaner environment.
Note that if someEr

a is taken from a facet (i.e. a(d − 1)-
dimensional face) ofP r then m1, · · · ,md are pairwise
coprime and we are back in the situation of Proposition
III.1. Also note that, whilemi and mj are coprime if the
pair (i, j) appears on an edge of someconv(Er

a) (for Er
a is

hole-free),mi andmk may not be coprime if the pair(i, k)
appears only on an edge ofconv(

∑
r Er

a), which is possible.
For example, ford = 3, if E1

a = {(0, 0, 1), (2, 0, 0)} and
E2

a = {(0, 0, 1), (0, 2, 0)} with a = (1/2, 1/2, 1), then
E1

a + E2
a = {(0, 0, 2), (0, 2, 1), (2, 0, 1), (2, 2, 0)}. We have

(m1,m2,m3) = (2, 2, 1), wherem1 andm2 are not coprime

for the pair(1, 2) appears only on an edge ofconv(E1
a+E2

a).
We note that the sumE1

a + E2
a has a hole(1, 1, 1), but this

is not congruent modulo(2, 2, 1) with the vertices (the first
two components are not).

The existence of such an integer vectorm as in Propo-
sition III.2 will certainly impose restrictions for each set
Er

a := P r
a ∩ Zd, r = 1, · · · , n. As can be seen from the

proof of Proposition III.2 (and also from the argument of
Proposition III.1 and after), the points ofEr

a are congruent
modulo m if and only if it is an affine transformation
of an M-convex setM such thatEr

a = TM + br, with
T := diag(m1, · · · ,md), wherem1, · · · ,md are pairwise
coprime positive integers, and a vertexbr of conv(Er

a).
We therefore propose the following subclass of extended
submodular integer polyhedra.

Definition III.1. An extended submodular integer polyhe-
dron P satisfies asimultaneous exchangeability in pairwise
coprime integers on facetsif, for any facetf of P , the set of
integer pointsE := f ∩Zd satisfies the property thatx ∈ E,
y ∈ E, andi ∈ supp+(x − y) imply

x−mi(f)ei+mj(f)ej ∈ E andy+mi(f)ei−mj(f)ej ∈ E
(9)

for somej ∈ supp+(y − x), with pairwise coprime positive
integersm1(f), · · · ,md(f) specific tof .

This says that each facetf is written as
T conv(M) + b, with T := diag(m1(f), · · · , md(f)),
where m1(f), · · · ,md(f) are pairwise coprime, an M-
convex setM ⊂ Zd, and a vectorb ∈ Zd. This can be seen
as a special form of axiwise scaling used when constructing
the faces of polybasic polyhedra from base polyhedra ([1]).

Now, if everyP r belongs to this class of polyhedra, then
every Er

a := P r
a ∩ Zd is a set of points congruent modulo

m(fr) given any positive normal vectora. The hole-freeness
of the sum is secured if all the summands are identical.

Proposition III.4. Let P ⊂ Rd be an extended submodular
integer polyhedron satisfying the simultaneous exchangeabil-
ity in pairwise coprime integers on facets. Then, letting
a ∈ Rd

++ be arbitrary, then-fold sumEa + · · · + Ea of
Ea := Pa ∩ Zd is hole-free.

Proof: Let f be a facet ofP including Pa and let
T := diag(m1(f), · · · ,md(f)), wheremi(f) are pairwise
coprime positive integers specific tof . Then, choosing an
arbitrary vertex b of Pa = conv(Ea), the set M :=
T−1(Ea − b) and its n-fold sum are M-convex sets lying
in H1 := {x ∈ Zd | 1 ·x = 0}. SinceM + · · ·+M (n-fold)
is hole-free,Ea + · · ·+Ea = T (M + · · ·+M)+nb is hole-
free due to the bijectiveness ofTH1 +nb andH1 under the
pairwise coprimality of the diagonal elements ofT .

IV. D ISCUSSION

In this section we discuss the implication of our results
to the division problem as introduced in Section 1. Suppose
there ared types of indivisible commoditiesi = 1, · · · , d
andn agentsr = 1, · · · , n. The commodity space isZd

+ :=
{x ∈ Z | xi ≥ 0 ∀i}. We express each agent’s preference
by a family of upper contour setsEr(zr) ⊂ Zd

+ consisting
of x ∈ Zd

+ at least good aszr ∈ Zd
+ for r. We assume that

preferences are weakly convex in thatEr(zr) are hole-free
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Fig. 1. An example of extended submodular integer polyhedron satisfying
the simultaneous exchangeability in pairwise coprime integers on facets (the
vectors of unit fractions are the normal vectors of the facets)

and weakly monotone in thatx ∈ Er(zr) andy ≥ x imply
y ∈ Er(zr) if y ∈ Zd. Let P r(zr) := conv(Er(zr)). Then
P r(zr) areup-monotonein thatx ∈ P r(zr) andy ≥ x imply
y ∈ P r(zr). A face P r

a (zr) of an up-monotoneP r(zr) is
determined by theinf-support functionδ◦P r(zr) : Rd

+ → R of
P r(zr) defined by

δ◦P r(zr)(a) := inf{a · x | x ∈ P r(zr)} (10)

in such a way that

P r
a (zr) := {x ∈ P r(zr) | a · x = δ◦P r(zr)(a)}. (11)

Let Er
a(zr) := P r

a (zr) ∩ Zd, where P r
a (zr) is a face of

P r(zr) supported by a positive vectora ∈ Rd
++. We

interpreta as a vector of prices. Without loss of generality we
assume thatEr

a(zr) consists of indifferent vectors of goods,
and call it ademand setof agentr. For brevity let us denote
Er(zr), P r(zr), P r

a (zr), and Er
a(zr) by Er, P r, P r

a , and
Er

a, respectively. Our problem is written as follows.

Let Er
a be a demand set of agentr under a price

vector a ∈ Rd
++, r = 1, · · · , n. Is a bundle of

goodsx ∈ conv(
∑

r Er
a)∩Zd divisible among the

agents?

Analogously to [2], let us call an up-monotone polyhedron
P r an extended supermodular polyhedronif its inf-support
functionδ◦P r is supermodularin that

δ◦P r (a)+δ◦P r (a′) ≤ δ◦P r (a∨a′)+δ◦P r (a∧a′), a, a′ ∈ Rd
+.

(12)
These are just a change in the signs and do not alter our
results. The inf-support functionδ◦ is thought to be the (cost-
minimizing) expenditure function and its supermodularity in
prices is interpreted that goods are net substitutes each other
for the agentr.

Under this setting, Proposition III.1 tells us that if the
price vectora ∈ Rd

++ is such thata = (1/m1, · · · , 1/md)
with pairwise coprime integersm1, · · · ,md, then any bundle

of goodsx ∈ conv(
∑

r Er
a) ∩ Zd is divisible among the

agents. Here Proposition III.2 will assist in revealing the
mechanism behind, that is, all the elements in the sum∑

r Er
a are then congruent modulom (note thatxi = yi

are congruent modulo for anymi). However, imposing the
pairwise coprimality condition for a price vector is certainly
restrictive.

Proposition III.4, which exploits Definition III.1, is impos-
ing a similar condition for the facets ofP r, r = 1, · · · , n.
The simultaneous exchangeability in pairwise coprime inte-
gers on facets can be interpreted thatthe marginal rates of
substitution are well-defined on each demand set. Under this
setting, anyx ∈ conv(

∑
r Er

a) ∩ Zd is divisible among the
agents if their preferences are identical, as Proposition III.4
suggests.

For a possible scenario for the weakly convex and weakly
monotone not necessarily identical preferences with well-
defined marginal rates of substitution, letIr := {i | i ∈
supp(x−y), x, y ∈ Er

a}, r = 1, · · · , n. If Ir are linearly or-
dered in such a way thatIr1 ⊆ · · · ⊆ Irn , where(r1, · · · , rn)
is a permutation of(1, · · · , n), then we can show the hole-
freeness of

∑
r Er

a = T
∑n

r=1 T−1(Er
a − br) +

∑
r br by

letting T := diag(m1(frn), · · · ,md(frn)), wherefrn is the
facet of P rn that includes the maximum dimensionalErn

a

of agentrn, and by lettingbr be a vertex ofconv(Er
a), for

eachr = 1, · · · , n. This may be interpreted as a situation
where the agents are ranked in the order of the scope of
substitutability, though it is not clear how this is obtained.
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