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Sumof Sets of Integer Points of Common-Normal
Faces of Integer Polyhedra
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Abstract—We consider the Minkowski sum of subsets of whereconv(X) is the convex hull of the sunX, and we call

integer lattice, each of which is a set of integer points of a face X hole-free if the inclusion holds with the equality. X is
of an extended submodular [Kashiwabara—TakabatakeDiscrete hole-free then any: € conV(X) N Zd is divided between

Appl. Math. 131 (2003) 433] integer polyhedron supported by RGN 9 . i
a common positive vector. We show a sufficient condition for the agents ag’ = _+ *, choosing some:” € X' f°f_
the sum to contain all the integer points of its convex hull €achr = 1,2. When is X secured to be hole-free? If it is

and a sufficient condition for the sum to include a specific a hard-won property, then what sort ofc conv(X) N Z¢
subset of congruent integer points of its convex hull. The latter given what type ofX"’s can be divided between the agents?
also gives rise to a subclass of extended submodular integerq, hropositions will answer to these questions. See Section

polyhedra, for which the sum of “copies” of a set of integer L
points of a face always contains all the integer points of its 4 for the relevance of our results to this division problem.

convex hull. We do this by using the properties of M-convex ~ The paper is organized as follows. Section 2 gives some
sets [Murota, Discrete Convex Analysi€2003)] and some logic preliminaries. Section 3 contains the results. Section 4 dis-

from the elementary number theory. Our study has a direct cusses about the economic application.
significance for an economic problem of division of a bundle of

indivisible goods.
i i . . Il. PRELIMINARIES

Index Terms—Minkowski sum of integer point sets, extended ) . . .
submodular polyhedron, M-convex set, indivisible goods Let R be thed-dimensional Euclidean space with the
standard basige’, - - - ,e?}. We denote by and1 the zero
vector and the vector of all ones, respectively. WeRét :=
{reR% |z, >0Vi}, R, :={z e R"|z; >0 Vi}, and

In this paper we consider the Minkowski sum of subsetsenote the support and positive support of a vecter R?
of integer lattice, each of which is a set of integer pointsy supp(z) := {i | z; # 0} andsupp* () := {i | z; > 0},
of a face of an integer polyhedron supported by a commegspectively. The inner product af,y € R? is written as
vector. In particular, we consider the sum of sets of integer .— 2?21 z;y;, and the (Minkowski) sum of set&, Y C
points of the faces of extended submodular [2] integg< is written asX +Y ;= {z+y |z € X, y e Y}.
polyhedra supported by a common positive vector, and showa finite intersection of closed half spaces is called a
a sufficient condition for the sum to contain all the integefonvex polyhedron, or simply polyhedron. A polyhedron
points of its convex hull (Proposition [11.1), and more weaklyp - R? is down-monotondf = € P andy < z imply
a sufficient condition for the sum to include a specific subsgte P. For a down-monotone polyhedroR ¢ R, the
of congruent integer points of its convex hull (Propositiogupport functioné;,: R? — R of P is defined for each
[11.2). The latter also gives rise to a subclass of extendedc Ri by the supremum of. - z overz € P, namely by
submodular integer polyhedra, for which the sum of “copies”
of a set of integer points of a face always contains all the 6p(a) :==sup{a-z |z € P}. (1)
integer points of its convex hull (Proposition 111.4). We d d
this by using the properties of M-convex sets ([3]) and sor?wzeor eacha € Ry, the set
logic from the elementary number theory. P,:={z€Pla-z=0dp(a)} 2

The reason why we pay attention .to the |_nteger pqmts §fves afaceof P, and we say that a vectar supportsP,,
faces (not of the entire polyhedra) is application-oriented.

. ; [ ais anormal v r . The f with dimensionali
Our study has a direct significance for an economic proble0 a is a normal vector of%,. The faces with dimensionality

of division of a bundle of indivisible goods as follows. L. 1o andd — 1 are called thevertices, theedges and the

d . ) . ; . d tTacets, respectively.
Z" be thed-dimensional integer lattice anX. < Z be. A down-monotone polyhedro® ¢ R? is an extended
a demand set of an agent= 1, 2. When dealing with this o . e
. : supmodular polyhedrorj2] if its support functioné} is
problem we reverse the signs, and think a demand set to be .
. . W sybmodularin that
set of integer points of a face of an extended “supermodular

integer polyhedron supported by a common positive pricg; (a)+d5(a’) > 6p(ava')+dp(and’), a,a’ € RL, (3)
vector. This amounts to say that agents have weakly convex , , ,
and weakly monotone preference treating every pair of gooWIQere“ Va = (/max{alv ar}, - ’/max{“dv ag}) anda A
as net substitutes (see Section 4 for the detaifXIf:.— ¢ = (min{ai,ar},---, min{aq, ay}). As proved in [2],
{z'+ 22| 2" € X!, 2% € X2} then X C conv(X) N Z, the extended submodular_polyhedra are characterized by a
simultaneous exchangeability such that P, y € P, and
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polyhedronsupported by gositive vector a € Ri+, then Proof: Let a -y = b, wherey € R Theny =

x € P,y € P,, andi € supp™ (x — y) imply 20 4 30 Ai(mie’ — mpel) for some); € R for each
. , , A . ; i hy _— ;

v —c(el —sel) € P, andy + (el — sel) € P, (4) ! # h, sincea - (m;e* — mpe™) = 0 for all i # h,

. X and m;e’ — mpe® (i = 1,---,d, i # h) are linearly
for somej & supp™(y — =) and real numbers > 0 and independent. We show that € Z¢ only if \; € Z for all
€ > 0. Any edge ofP, supported by a positive is parallel ; _z j, (the converse is clear). Let:= y — z° and assume

to somee’ —se’ (i,j € {L,--.d}, i # j.s > 0).As . c 7d iz, y € Z9). Herez; = A\;m; for all i # h
proved in [1], the class of extended submodular polyhedradgd », = — 5. W Aim, SOz, = — 2., (2i/mi)my, or,
a subclass opolybasic polyhedra, which are defined to bey,, .. .md/mhl)éh = =2 izp(ma - .mlf/mi)zi, multiply-

the polyhedra with edge vectors of support size at most tWag 1, - .. 1, /m,, for both sides. To see that; € Z for
and characterized as having submodular support function g, ; 5, pick an arbitraryj # h and assumen; > 1 (if
alternatively, having faces with full-support normals that arg,. — | then A, = z;/m; € Z, as desired). Then for an
reflections and axiwise scalings of base polyhedra (see [Jhgeterminate equation

Let Z¢ be the set of integer points &<. In the following
we assume that a polyhedron has a vertex. A polyhedronis ~ —(mq ---mq/m;)z; = Z(ml cema/my)z; (7)
integral if its vertices are all integer points. Lét ¢ R¢ be i#j
an extended submodular integer polyhedron. Then for ay 4 — 1 unknowns 5 G = 1,---.d i # j) to have

Integer pOInth andy in an edgee of P Sl:pported bY @ jnteger solutions, it is necessary (and sufficient) that the
vectora < R++’ we havex AN C(m?(e)e —mj(e)e’) greatest common divisor of the right hand side coefficients
for somei,j € {1,---,d} (i # j), an integerc > 0, and  y; iec the left hand side. Sinee; divides allm, - - - ma/m,
coprime positive integersn;(e) and m;(e) specific toe. G = 1, od i # §) m, isj a factor of the greatest
Integerszy,--- , z, are coprime if their greatest common commor’1 div’isc'>r and div,ideé(ml - ma/m;)z;. Sincem,
divisor is one. They arpairwise coprimef any two of them (i=1,---d)are pairwise coprime, this sa)J/s tjha; dividezs

are coprime. Note that the integer;(e) may vary on the * '\ "_ 2 /m; € 7 ’ -
edges that involve’ in their segmentation, even if the edges’", "7~ "7/ 77 '

are taken from the same facet. ) '(I:'tl’:)li if mqy,---,mg are pairwise coprime, the set of
An M-convex set is a set of integer points characterizecf
by a simultaneous exchangeability in 0l-integers ([3]). A {mie' —mpe |i=1,--- ,d, i #h} (8)
set M C Z¢ is M-convexif 2 € M,y € M, andi €
supp™ (z — ) imply given anyh € {1,---,d} is a basis of the set of inte-
r_ et e Mandyte o e M 5) ger points of a hyperplane with normél/my,--- ,1/my)

containing an integer point, e.g., the origin. The pairwise
for somej € supp™(y — x). An M-convex setM C Z? coprimality condition is also necessary. To see this,Het
is hole-freein that conv(M) N Z¢ = M. Note that the set and H; be the sets of integer points of hyperplanes through
of integer points of a convex set having integer vertices e origin with normal vectorss = (1/mq,---,1/my)
always hole-free. An M-convex set coincides with the set @ind 1, respectively, wheren,,--- ,my4 are not necessarily
integer points of an integral base polyhedron. A hole-free geirwise coprime positive integers. Thd#, > TH; by
E c Z¢ is M-convex if for any integer points andy in a diagonal matrix?’ := diag(ms,---,mg4), and the set
an edge ofconv(E) we haver — y = c(e’ — ¢/) for some {e' —e? | i = 1,.--,d — 1}, for example, is a basis of
i,7€{1,---,d} (¢ # j) and an integee > 0. A sum of M- H; by Lemma lll.1. This basis is mapped ly to the set
convex sets is M-convex, and hence hole-free. The convex,e! —mge? |i=1,--- ,d—1}, and ifm; andm, are not
hull of an M-convex set is included in a hyperplane witltoprime, for example, then letting := mje' —mg4e? € H,
normal vectorl, and can be regarded as an instance of a fagedx? := mye? — mge? € H,, 2% — 2! = mqe? —mye! =
of an extended submodular integer polyhedron supported dynse®> — mje') with some integerc > 1 and coprime
a positive vector. integersm/, and m}, which says that there are— 1 > 0
integer points between' andx? not spanned by the vectors
lll. THE RESULTS mie' — mge? (i # d) resulting inH, # TH;. Hence the
We begin with a structure of the set of integer solutions {sairwise coprimality is necessary for Eq. (8) to be a basis of
the equatioru - « = b with a certaind-dimensional positive f,.
rational vectora and a rational numbér. Note thata can be Using this lemma, we state and prove our first proposition.

expre_ssed as a vector of unit fractiofig/m,---,1/mg4), Recall that an edge of a face of an extended submodular in-
by suitably scalingz andb. teger polyhedron supported by a positive vector is segmented

Lemma II.1. Letz € Z¢ be a solution to the equation Py & vector of the formm;(e)e’ — m;(e)e’, wherem;(e)
a-x = b, wherea is a d-dimensional positive rational vector @d 71;(¢) are coprime positive integers specific ¢o For

and b is a rational number. Ifa = (1/my,--- ,1/mg) with Previty, we denote byX' + . the sumX + {z} of a setX
pairwise coprime positive integers,, - - - , mg, then, for any and @ pointz. The setX + (—z) is denoted byX — z.
givenh € {1,---,d}, Proposition I1l.1. Let P!,-.., P" be extended submodular
o . (o0 o h integer polyhedra iR¢, and P!, - -- | P" be their faces sup-
{o]aw =0, vintegral} = {x +Z)‘l(mle mne”) | ported by a positive rational vectar -— (1/my, -+, 1/ma).
i7h Let E" = PrnZd r =1, ,n If my, - ,my are

Ai€Z,i=1,--.d i#h}. (6) pajrwise coprime thery, E” is hole-free.
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Proof: Let b” be a vertex ofconv(E") for eachr = for the pair(1,2) appears only on an edge @fnv(E. + E?2).

1, ,n, and letT := diag(m,---,mg). Then eachE” We note that the sunk! + E2 has a holg(1, 1, 1), but this
lies in the setl'Hy +b" C Z¢, r = 1,--- ,n, and)_ E! is not congruent modul¢2, 2, 1) with the vertices (the first
lies in THy + . b", where Hy := {z € Z¢ | 1-z = 0}. two components are not).

The setT'Hy + >, b" is bijective to H; and has a basis The existence of such an integer vectaras in Propo-
of the form Eq. (8). Now, the sef'~!(E” — b") C H, is sition 11l.2 will certainly impose restrictions for each set
M-convex, sincel'~!(E" — b") is hole-free given hole-free E” := P' NZ%, r = 1,--- ,n. As can be seen from the
E’ —b", and an edge ofonv(E! — b") segmented by a proof of Proposition IIl.2 (and also from the argument of
vectorm;(e)e’ —m;(e)e’ is mapped byl'~! to an edge of Proposition Ill.1 and after), the points @' are congruent

conv(T~Y(E"—b")) segmented by’ —e’ (i,j € {1,---,d}, modulo m if and only if it is an affine transformation
i # j). Therefore} T—'(Er —b") C H; is hole-free as a of an M-convex setM such thatkE?, = TM + b", with
sum of M-convex sets, and soYs, E. =T > T YE.— T := diag(my,---,mq), Wheremy,--- ,mq are pairwise

b") + >, b" by the bijectiveness of’'H; + > b" and H;. coprime positive integers, and a vertéX of conv(EY).
B We therefore propose the following subclass of extended
Thus,for anyz € conv(}", E)NZ%, there is ane” € E7  submodular integer polyhedra.

f— “ e f— 1 PN n 1
for eachr = 1,---,n such thatz v +a”, if Definition 1l1l.1. An extended submodular integer polyhe-

a=(1/ma,---,1/mq) With pairwise coprimens, - ,ma. 405 p satisfies asimultaneous exchangeability in pairwise

A simple example of such an is wherem; are distinct ST
rimes or ones, which might be restrictive, though AssuminCOprIme m_tegers on facets fqr any facetf of P, the set of
b ’ ' ' |ﬁteger pointsE := fNZ? satisfies the property thate E,

that P" are integral and extended submodular, what else carn . T ;
. y € E, andi € supp™ (x — y) imply
be said?
z—m;(f)e'+m;(f)e’ € Eandy+m;(f)e'—m;(f)e’ € E
9)
for some;j € supp™ (y — z), with pairwise coprime positive
integersmy (f),--- ,mq(f) specific tof.

Proposition I1.2. Let P", P7, and E}, be as in Proposition
.1, r = 1,---,n, with an arbitrary e € R%,. Suppose
there is an integer vectom = (mq,---,mg) cOMmon to
all » such that all the points of’] are congruent modulo
m for eachr. Letx € conv(}., Er)NZ%. If 2 = v (mod This says that each facetf is written as
m) (z andv are congruent modulen) for some vertex of T conv(M) + b, with T := diag(mi(f), -+ ,ma(f)),
conv(d . EV), thenz € Y E. where m;(f),--- ,mq(f) are pairwise coprime, an M-
convex setM C Z¢, and a vectob € Z?. This can be seen
as a special form of axiwise scaling used when constructing
the faces of polybasic polyhedra from base polyhedra ([1]).
lies in THy + 3.0, where Hy = {¢ € 2 | 1 -2 ~ Now, if everyTPT' tzlel_ongs to this c_Iass of polyhedra, then
0}. This time the sefl"H; + ) b" is not bijective toH, every Ea. =Nz sa set of points congruent modulo
m(f") given any positive normal vectar The hole-freeness

but the setI'"'(E” — b") C H; is M-convex, as can be . : i .
o a " of the sum is secured if all the summands are identical.
shown similarly to the proof of Proposition IIl.1. Therefore

>, T~Y(Er —b") C Hy is hole-free as a sum of M-convexProposition 1ll.4. Let P ¢ R? be an extended submodular

sets, and the sét. Er =T > T Y(E.—b")+ >, b"is integer polyhedron satisfying the simultaneous exchangeabil-

a subset of the set of integer points @fv()_ E;) that ity in pairwise coprime integers on facets. Then, letting

are congruent modulen, including the set of all vertices. q € R‘jr+ be arbitrary, then-fold sumE, + --- + E, of

Hence, forz € conv(}., Er)NZ4, thatz = v (modm) for  E, := P, N Z% is hole-free.

some vertex of conv(} ", E7) implies thatr € Y~ E]. &
Thus, if each E? consists of points that are congruenxr )

Proof: Let b” be a vertex ofconv(E?) for eachr =
1,---,n, and letT := diag(mq,---,mgq). Then eachE”
lies in the setl'Hy +b" C Z4, r = 1,--- ,n, and)_, E"

Proof: Let f be a facet ofP including P, and let
= diag(m1(f), -+ ,mq(f)), wherem;(f) are pairwise

modulom (to be precise modulen; for all i = 1,--- ,d), . A o .
. . coprime positive integers specific tb Then, choosing an
and if m is the same for allr = 1,---,n, thenz € .
- d . . arbitrary vertexb of P, = conv(E,), the setM :=
conv(>_  Er)NZ* congruent modulen with a vertex is ex- . . .
" 1 o , T-'(E, — b) and itsn-fold sum are M-convex sets lying
pressed as =z +---+z2", 2" € E] foreachr =1,--- ,n.

; . : e in Hy :={z € Z%| 1.2 = 0}. SinceM + - - - + M (n-fold)
This may be quite obvious it2) were not hyperplaner but is hole-free ., + - - -+ Ey = T(M - -+ M) +nb is hole-

r(.act.angullar, Integer mtervals i'. Proposition I11.2 says that f{ee due to the bijectiveness @fH; + nb and H; under the
similar thing can be said for our hyperplaner environment.

Note that if someE" is taken from a facet (i.e. & — 1)- pairwise coprimality of the diagonal elementsBf ]
dimensional face) ofP” then mq,---,my are pairwise

coprime and we are back in the situation of Proposition IV. Discussion

[l.1. Also note that, whilem,; and m; are coprime if the In this section we discuss the implication of our results
pair (i,7) appears on an edge of somenv(E?) (for E7 is to the division problem as introduced in Section 1. Suppose
hole-free),m; andm; may not be coprime if the paiii, k) there ared types of indivisible commodities = 1,--- ,d
appears only on an edge @nv (), E7), which is possible. andn agentsr = 1,--- ,n. The commodity space iZi =

For example, ford = 3, if E! = {(0,0,1),(2,0,0)} and {z € Z | z; > 0 Vi}. We express each agent's preference
E?Z = {(0,0,1),(0,2,0)} with a = (1/2,1/2,1), then by a family of upper contour set&8"(z") C Z% consisting
E! + E? = {(0,0,2),(0,2,1),(2,0,1),(2,2,0)}. We have of z € Z¢ at least good as” € ZZ for r. We assume that
(mq1,ma2,m3) = (2,2,1), wherem; andms are not coprime preferences are weakly convex in that(z") are hole-free
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Fig. 1. An example of extended submodular integer polyhedron satisfyi
the simultaneous exchangeability in pairwise coprime integers on facets

vectors of unit fractions are the normal vectors of the facets)

and weakly monotone in that € E"(2") andy > x imply
y € E"(2") if y € Z4. Let P"(2") := conv(E"(z")). Then
PT(z") areup-monotonén thatz € P"(z") andy > z imply
y € P7(z"). A face P (z") of an up-monotoneP”(z") is
determined by thénf-support functiory? ey Ri — R of
P (z") defined by

0pr(zmy(a) :==inf{a-z |z € P"(2")} (10)
in such a way that
PI(") = {r € P'(") [a-2 = 6 (@)}, (1)

Let EZ(z") = Pr(z") N Z4, where P’(z") is a face of
Pr(z") supported by a positive vectar € R%,. We

interpreta as a vector of prices. Without loss of generality we

of goodsz € conv(}, E7) N Z% is divisible among the
agents. Here Proposition 111.2 will assist in revealing the
mechanism behind, that is, all the elements in the sum
>, E. are then congruent modulm (note thatz; = y;

are congruent modulo for any:;). However, imposing the
pairwise coprimality condition for a price vector is certainly
restrictive.

Proposition I11.4, which exploits Definition IIl.1, is impos-
ing a similar condition for the facets af", r = 1,--- ,n.
The simultaneous exchangeability in pairwise coprime inte-
gers on facets can be interpreted thia marginal rates of
substitution are well-defined on each demand Beider this
setting, anyz € conv(}, E7) N Z¢ is divisible among the
agents if their preferences are identical, as Proposition IIl.4
suggests.

For a possible scenario for the weakly convex and weakly
monotone not necessarily identical preferences with well-
defined marginal rates of substitution, 16t := {i | i €
supp(x —y), z,y € Er},r=1,--- n.If I, are linearly or-
deredin suchaway thdf, C --- C I, , where(rq,--- ,7,)
is a permutation of1,--- ,n), then we can show the hole-

dfeeness ofy", E; = T3 T (E; — V") + 3, b by

letting T" := diag(m1(f™),--- ,mq(f™)), wheref™ is the
facet of P™ that includes the maximum dimension&}~

of agentr,,, and by lettingb” be a vertex okonv(E?), for
eachr = 1,--- ,n. This may be interpreted as a situation
where the agents are ranked in the order of the scope of
substitutability though it is not clear how this is obtained.
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(Revised on May 12, 2011: Proposition 1.3 was deleted.)

assume thak’” (z") consists of indifferent vectors of goods,

and call it ademand sebf agentr. For brevity let us denote

E"(z"), P"(z"), Pr(z"), and EZ(2") by E", P", P’, and
E7, respectively. Our problem is written as follows.
Let £/ be a demand set of agentunder a price

vectora € R4, r = 1,--- ,n. Is a bundle of
goodsz € conv(>_, E7)NZ? divisible among the
agents?

Analogously to [2], let us call an up-monotone polyhedron

P" an extended supermodular polyhedrdnits inf-support
functioné%, is supermodularin that

Spr(a)+0p-(a') < 0pr(ava)+0p-(ana'), a,a’ € RL.
(12)

These are just a change in the signs and do not alter our
results. The inf-support functio¥? is thought to be the (cost-
minimizing) expenditure function and its supermodularity in
prices is interpreted that goods are net substitutes each other
for the agentr.

Under this setting, Proposition Ill.1 tells us that if the

price vectora € R?, is such thata = (1/mq,---,1/mg)
with pairwise coprime integens, - - - , mg, then any bundle
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