
 

 

 
Abstract—Encountering the uncertainties in our new world 

is a major problem which many managers are engaged with 
that. The stochastic nature of demand arrivals and service 
processes is an important problem which is studied by many 
researchers. This article is dedicated to analyzing some 
queuing systems with stepwise demand and service rates 
functions. Some analytical concepts are presented by using 
numerical examples. Also, the basic relations of queuing theory 
are used and finally the findings are applied in a case study. 
The article will help the managers to obtain the optimal 
servicing parameters for a stochastic system with stepwise 
demand and service rate functions to achieve the minimum 
total cost. 
 

Index Terms— Base time rate, Mean rate, Non-stable 
queues, Stepwise function 
 

I. INTRODUCTION 

ith a renewed approach to exponential queuing 
systems in viewpoint of time base arrival and service 

rates, it is possible to improve the flexibility of these 
systems encountering with real applications. Using periodic 
stepwise function to estimate the variable states of rates 
allows us to achieve definite results for queue parameters 
because by calculating the mean rate from stepwise 
functions and replace them in classic relations of queuing 
theory, problem of encountering non-stable queue will be 
solved. 
Studying these systems was first discussed by [1] and [2] in 
relation to obtain analytical models and continued by [3], 
[4], [5] and [6] in developing numerical and approximation 
methods. 
This approach is applicable to survey transportation 
systems, networks traffic and scheduling stochastic systems. 
Therefore, it is possible to achieve exact key parameters of 
each queue by estimating time variances of rates in systems 
with variable rates to periodic stepwise functions.  
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II.  ANALYZING 1// 11
swsw MM MODEL 

A. Review Stage 

All queuing systems which considered up to now and 
analyzed with math relations had a joint point which was 
their stationary. A stationary queuing system is achievable 
when arrival and service rates with any statistic distribution 
are stable in any planning period and utilization ratio is 
smaller than 1 [7]: 
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Discussing queuing systems with several servers where each 
customer needs a stochastic number of same servers studied 
by [4] for the first time. This queuing system is similar 

to 1// MM x queuing system however there are some 
differences.  
In many real world problems, probabilistic distributions 
rates related to interval between arrivals or interval between 
services are variable during the time. We specify this type of 
queuing models with a t index next to the statistical 
distribution. In exponential time based systems which are 
proceeded here, system manner can be studied by Chapman-
Kolmogorov differential equations. Some examples of a 

kcMM ttt /// system can be written in below form [8]: 
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(2) 

Beside , which are base time rates, above equation 

system has variable servers number tc  and it is possible to 

replace tc  with a deterministic number, if the under studied 

model has a stable number of servers. Generally, if related 
functions to arrival and service rates of these systems are 
irregular or so complex, it is only possible to achieve exact 
results by using numerical solution of differential equations 
system [5] and rather exact results for analyzing these 
queues in long term are achievable by using algorithmic 
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approximation method [6]. Solving this system of equations 
with various numbers of servers during the time is more 
complex and it is necessary to define service policies while 
one or more engaged servers exit the system in a specific 
time. Preemptive discipline and exhaustive discipline 
policies before the customer exiting will affect the transient 
probabilities and needs to define a new system of 
differential equations based on Hyper-Geometric 
distribution [9]. Functions which are used for service and 
arrival time distribution rates are stepwise such as the 
function is shown in Fig.1. This special type of base time 
form of arrival and service rates is specified by using 
superscript sw  for base time distributions in queuing 
notation. 

 
Fig.1 A stepwise function for service rate with period cycle 21 TT   

 
 
In order to analyze the behavior of this base time system, 
related differential equation system is solved by MATLAB7 
software according to relation 2 and the results are shown in 
following graphs. In this numerical example, number of 
servers assumed deterministic and number of customers 
must be finite. 

A. Numerical example 18/5// 11
swsw MM  

Assume a queuing system with exponential arrival and 
service times distribution, stepwise function base time rates, 
5servers and a capacity of 18 customers. Arrival and service 
functions characteristics are as follow: 

)4,12,8,15exp(),,...,,exp( 11  nn TTonDistributiArrival  (3) 
)7,3,8,4exp(),,...,,exp( 11  nn TTonDistributiService  (4) 

Relation 3 implies the base time exponential distribution 
which has rate 15 in first 8 units of time and in second 4 
units of time, the arrival rate is equal with 12 in a unit of 
time. Above characteristics are true for time distribution 
between services too. System utilization ratio is equal to 1 in 
the most difficult status but according to system finite 
capacity we do not have the infinite queue in this situation.  
We have to open the equations system perfectly and define 
that for MATLAB software in order to obtain the numerical 
solution for differential equations: 
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By using command 45ode  in software for equation 
systems, these results have been obtained for queue 
characteristics: 
 

 
Fig.2 System transient probabilities for number of customers in the 

system )(ti  (each color refers 0 to 18) 

 
 

 
Fig.3 Number of customers in system during long term )(tL  

 
 

It is obvious in Fig.2 and Fig.3 that related values to queue 
main parameters like transient probabilities and long term 
number of customers in system depends on time and do not 
converge to specific value but only have similar and 
repetitive cycles of a base cycloid. Also by using Simpson 
integral method we can calculate a mean value for a cycle 
which has some error. 

III. GENERAL ANALYTIC MODEL 

To represent analytic queuing model related to exponential 
system with stepwise function base time rates it is important 
to consider that our analyzing base is random choosing of a 
time period between two consequent arrivals and consider 
the system manner during this period. Random variable 
period length and determining start and finish points of this 
period in stepwise function of service rate must be 
considered. Also, our main analyzing method to represent 
time continuous chain is Markovian because in every 
moment our queuing system is exponential. 



 

 

A. First step, analyzing 1// 1
swMM  model 

In this model it is assumed that arrival rate for exponential 
distribution is stable and only service rate is base time 
stepwise function. So, if we consider a period between two 
consequent arrivals and fit that on service rate stepwise 
function, number of states that can be studied is twofold 
number of steps in a cycle. Therefore, if service rate 
function has two steps, four states will be possible: 
A. According to Fig.4 and using uniform distribution to 
calculate the probability of arrival interval time occurrence 
during a cycle of stepwise function, the first state service 
rate probability is given by: 
 

 
Fig.4 Fitting the interval arrival rate on first step of stepwise function 
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Probability 1P is given by multiplying two probabilities: 

1P =p(finish point of time interval be smaller than the end 
of first step)*p(match the start point of interval time on first 
step) 
The probability of choosing a point on time axis is based on 
uniform distribution on a cycle and the probability of lasting 
the period to a specific value is calculated based on 
exponential distribution. And also it is assumed that service 
rate is stable during the service process of a customer and 
continues up to end of the service. 
B. Probability 2P  is calculated from the mentioned method 
but in this case, occurrence of interval arrival time period is 
in such way that start point of the period fits on the first step 
and finish point of the period surely will occur out of first 
step. This period is related to first step service rate and if the 
rate changes, first rate is applied. 
 
 

 
Fig.5 Fitting interval arrival time period on first and second steps of 

stepwise function 
 
 

Probability of second state is relevant to first step rate and in 
this state like first state, service rate 1 is active. 
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C. Probability 3P  is relevant to situation which interval 
arrival time periods completely stand in second service step 

and consequently service rate in this situation is equal to 2 . 

Fig.6 shows the relevant situation: 
 
 

 
Fig.6 Fitting interval arrival time period on second step of stepwise 

function 

 
Probability relation of this situation is given by: 
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D. Similarly to state2, state four is relevant to a situation 
which service rate variation from second step to first step 
will occur during a time period between arrivals. Fig.7 
illustrates situation four schematically: 
 

 
Fig.7 Fitting interval arrival time period on first and second steps of 

stepwise function 

 
Probability of this state is calculated by below relation: 

(9) 

Probabilities of various service states in a time period 
between stochastic arrivals was calculated according to 
relations (6) to (9). Summation of these probabilities is 
equal to one. Therefore, system expected service rate is the 
statistical mean of these four states for rates and is given by: 

(10) 
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Now, according to exponential behavior of queuing system 
in every state (possible various rates), there exist a 
continuous Markovian chain to analyze this queuing system 
which is different from the classic exponential queuing 
model just in calculating mean service rate. 

 
Fig.8 Continuous time Markovian chain for 1// sw

tMM queuing 

system 

 
Therefore, all queuing relations in 1// MM systems are 
true here [7] but we replace a mean service rate. 

B. Analyzing 1// sw
t

sw
t MM model 

This model is more complete than the model presented in 
section III.A just by one stage where arrival rate variation is 
a stepwise function in its relevant time. Computational 
differences between this model and the last one are in 
service rate calculating which is needed in computing 
probability in each state of four possible states. So, if we 
have a time stepwise function for arrival rate, we can study 
following possible states: 
 

 
Fig.9 Arrival rate stepwise function with two steps in each cycle 

 
In this section there exist relations like (6) to (9) which 
result that time interval between two consequent arrivals in 
this system can be shown based on first rate or second rate 
each of which have a probability to be chosen. 

 

(12) 

 

(13) 

Therefore we can rewrite relation (6) in below form: 

(14) 

(15) 

Other relations can be calculated similarly and based on 
equation (16) and (17) it is possible to study general 
formulation of any possible state of every stepwise function 
with any number of steps: 

(16) 

(17) 

 
Probability 1and 2 in relations (16) and (17) are relevant to 
states where interval between arrivals were completely 
placed in one step of service function or was in a form 
which included service rate variations. Finally, mean arrival 
and service rate in this system can be calculated based on 
following relations (18) and (19) which result in calculating 
the classic relations of exponential queues. 
 

(18) 

(19) 

C.I. Analyzing 1// GM sw
t model 

In relation to 1// GM  model, we can generate a 
Markovian chain model as follows: 
 

 

(20) 

}{ aAP   shows the probability of  a  arrivals to system in 

two consequent service intervals. As it is seen in relation 
(20), to calculate this probability, Poisson process is used to 
calculate number of arrivals in the interval. According to 
base time state and especially stepwise function of 
exponential distribution rate in this section we can replace a 

i rate instead of each step of function: 

 

(21) 



 

 

In this section it is assumed that service rate stepwise 
function has Ns  steps with various rates in each of its 
periodic cycles which result in calculating probability with 
summation of  Ns  consequent relations. Using this method 

it is simply possible to analyze 1// GM sw
t queuing system. 

 

C.II. Analyzing 1// sw
tMG model 

For a 1// sw
tMG queuing model, Markovian chain is 

defined as follows: 

(22) 

Therefore 

 

(23) 

}{ bBP   shows the probability of b exits in interval time 

between two consequent arrivals to system. Now, according 
to consideration of base time queuing system stepwise 
exiting rate we have remember that service won’t be 
uniform during all moments of a cycle. So, we have to use 
the method of defining arrival intervals on service function 
and calculate possible probabilities on service rate stepwise 
function and finally we obtain mean service rate to replace 
in relation (23). 
 

(24) 

(25) 

Relation (23) is relevant to probability of time period 
occurrence in one step of service rate stepwise function and 
completely places in that step. Relation (24) is relevant to 
states where interval time starts from first step and finishes 
out of first step. This equation was used in relations (6) to 
(9) but in that case, time distribution )(ta  was exponential 

and integral was computable, so in relations (23) and (24) 
after recognizing )(ta  distribution, relevant integral and 

needed probabilities will be calculated. Ms steps are 
considered for service rate stepwise function which result in 

Ms2 probability calculations. Consequently, mean 
service rate will be calculated by relation (26): 

 

(26) 

Therefore, relevant probabilities to 1// sw
tMG will be 

obtained by replacing   instead of : 

 

(27) 

Other computations relevant to 1// sw
tMG  model are 

completely similar to 1// MG  model just with mean 
service rate. 
 

IV. CASE STUDY 

In this section, it is tried to show using of these models by a 
practical example. This example is about modeling a simple 
crossroad by using base time queuing model. 
In a simple cross road with a traffic light, as it is seen in 
Fig.10 every arrival roads has separate arrival rate each of 
which have variation in specific time periods in more real 
cases. Each path has a specific capacity for car queues. 
Queue units can be expressed as one car or several cars 
which can move through the road width because in real 
cases, road width gets full earlier. Each group size is based 
on cars mean width and road width and can be any real 
number. Finally, these group sizes will result in final 
solution of queues length and present customers in system. 
Here we consider an example from a crossroad which has 
four stepwise functions for arrival rates and one stepwise 
service rate function. Service rate values constantly varies 
between zero and crossroad service rate. The reason is that 
when the light varies between red and green positions, this 
stepwise rate are generated from the viewpoint of arrival 
path and cycle order substitutes in each vertical path. Also, 
arrival rate function can vary between two different numbers 
but arrival stepwise functions can obtain more than two 
variation values (step in each cycle). 
 

 
Fig.10 A simple crossroad with four arrival paths and one traffic light 

According to Table.1 which contains characteristics of the 
supposed crossroad with stepwise exponential rates, we can 
study the results: 



 

 

Table.1 Relevant information to a simple crossroad 

No 1 2 3 4 

Total 

1  9 10 15 12 

2  5 8 12 7 

1T  10 6 8 3 

2T  5 10 4 2 

Cyc. 15 12 12 5 

1  20 0 20 0 

2  0 20 0 20 

3T  8 8 8 8 

4T  15 15 15 15 

Cyc. 10 10 15 4 
C 1 1 1 1 
K 20 15 18 12 
L 13.33 2.01 17.01 2.86 35.21 

qL  12.35 1.34 16.01 2.1 31.8 

 

 qLL,  results are calculated by KMM sw
t

sw
t /1// model. 

Each above table row is relevant to one branch of crossroad. 
Stoplight times are 8 and 15 seconds vice versa for 
crossroads. Yellow light time is considered in green light 
time. Maximum capacity for number of cars in each road is 
given in column k. Finally, queues information are 
aggregated in last column which shows that with this couple 
time considered for stoplight it’s expected that in long term 
in a random moment, about 32 cars are stopped in crossroad. 
Therefore it’s possible to minimize long term expected 
queue length in crossroad and find stoplights optimal time 
by varying green and red phases times. By using queuing 
relation and replace that in a computer software which is 
prepared by MATLAB7, time period (5,180) seconds for 
green and red lights studied and following results are 
obtained. 

 
Fig.11 Queue expected values for assumed crossroad in long term 

 
Local maximum points in Fig.11 are banned points which 
have been generated in reason of nominator and 
denominator same values in queue utilization relation 
(relation number (1)). Now, it’s obvious that values beside 
main diagonal are best times which can be used in stoplight 
assignment. Best relevant couple time is (31, 35) which 
reduces expected crossroad queue number to 25.71which is 
a salient improvement. 

V. CONCLUSION 

As it is seen in paper's sections, by base time mean 
calculation which are arrival and service rates in exponential 
queuing systems or general and exponential queuing 
systems, a set of deterministic results are calculated for 
these types of queue parameters. Stepwise function has a 
good ability to fit the rates complex variations in time in 
simplest situation. So, we can hopefully approximate 
sinusoidal and cosine functions or more complex forms to 
stepwise function and obtain a quick solution with high 
accuracy by this method. Another application of base time 
queues with stepwise rates is the ability to scheduling work 
shifts for servers which work in systems with stochastic 
specifications. Calculating an expected cost function based 
on generated queues and optimizing that by various times 
for steps can help us to obtain the least cost based on a right 
planning in stochastic systems. One field to future research 
is to analyze base time rates in group arrival or group 
service systems or to analyze queuing networks with base 
time nodes. Entering base time rates to other queuing 
discussions would be a solution object for many practical 
problems. 
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