
 

  
Abstract—This paper proposes a solution algorithm to 

explicitly obtain the exact optimal solution of a second-order 
cone programming (SOCP) problem. The proposed solution 
algorithm is based on a parametric solution approach to 
determine the optimal strict region of parameters, and the main 
procedures are to perform deterministic equivalent 
transformations for the main SOCP problem and to solve the 
KKT condition of auxiliary problem without the loss of 
optimality.  
 

Index Terms—SOCP problem, KKT condition, Exact 
optimal solution, Parametric approach 
 

I. INTRODUCTION 
ECOND-ORDER cone programming (SOCP) problem is 
one of the most important optimization problems with 

linear and second-order cone constraints. A wide range of 
problems can be formulated as SOCP; linear programming 
(LP) problems, convex quadratic programming problems, 
some stochastic and robust programming problems, various 
practical problems of engineering, control and management 
science [1, 2, 3, 4]. SOCP problem itself is a subclass of 
semi-definite programming (SDP) problems, and so SOCP 
problems can be solved as SDP problems in theory. Then, 
some interior-point methods have been developed to solve 
SOCP problems [5, 6, 7]. As one of other approaches, Cai 
and Toh [8] proposed the reduced augmented equation 
approach for SOCP problems. However, these approaches 
sometimes have failed to deliver solutions with satisfactory 
accuracy and been far more efficient computationally to 
solve SOCP problems directly. Therefore, many researchers 
have developed more efficient solution methods for SOCP 
and SDP problems (e.g., [9, 10]).  

On the other hand, as a traditional solution approach for 
linear programming, Danzig [11] proposed the Simplex 
method, and it has been the centre of solution methods for 
linear programming up to the present since it is often more 
efficient to solve standard problems using the Simplex 
method than the interior-point method. In recently, 
Muramatsu [12] developed the efficient solution method for a 
SOCP problem using the pivoting method based on the 
Simplex method.  

Thus, many researchers have considered various types of 
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theoretical and practical approaches for SOCP problems 
using interior-point methods and linear programming. 
However, the explicit optimal solution is not obtained by 
these solution approaches. It is obvious that the strict and 
efficient solution method to obtain the explicit optimal 
solution has substantial advantages in theory. Therefore, in 
this paper, we propose a new solution method based on linear 
programming to explicitly obtain the strict optimal solution 
of a SOCP problem. In order to solve the main SOCP 
problem, we perform the deterministic equivalent 
transformations, and show that the main problem is 
equivalent to a parametric quadratic programming problem. 
Furthermore, we show some theorems to obtain the strict 
optimal solution explicitly, and develop the efficient and 
strict solution method based on linear programming. 

II. FORMULATION OF A SOCP PROBLEM 
In this paper, we deal with the following SOCP: 
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where 0x  and n∈\x  are decision variables, and 

0,  0n c∈ >\c , ( ) ( )1 ,  m n m n× +∈ <A \ , m∈\b . 
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In general, robust programming problems and safety first 
models in stochastic programming are equivalently 
transformed into problem (1), and so problem (1) is one of 
standard SOCP problems. With respect to SOCP problem (1), 
the efficient solution approach based on pivoting method of 
linear programming has been proposed (for instance [12]), 
but the global convergence has not been completely proved. 
Furthermore, the optimal solution of the SOCP problem has 
not been explicitly obtained until now. Therefore, we 
develop the new solution approach to overcome these 
disadvantages. 

III. DEVELOPMENT OF THE EXACT SOLUTION METHOD FOR 
SOCP PROBLEM 

First, since parameter 0u  is in only objective function and 

minimizing 0u  is equivalent to minimizing 2
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transform the main problem (1) into the following problem 
without the loss of optimality: 
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Problem (2) is a convex programming problem, and so we 

may find a global optimal solution by using the nonlinear or 
convex programming approaches. However, in general, 
nonlinear programming approaches are not efficient than 
linear programming, and so it is not appropriate to solve the 
large-scale problems. Furthermore, it is also difficult to 
represent the exact optimal solution analytically. Therefore, 
in order to solve this problem analytically and explicitly, we 
consider the following auxiliary problem SP  introducing a 
parameter S : 
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This problem is a quadratic programming problem if 
parameter S  is fixed, and so it is more efficiently solved 
than the main SOCP problems. Subsequently, with respect to 
the relation between problem (2) and its auxiliary problem 
(3), the following theorem holds. 
 
Theorem 1 

Let the optimal solution of problem (3) be ( ) ( )0 ,x S Sx . 

Then, if ( )2

1
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= ∑  is satisfied, ( ) ( )0 ,x S Sx  are 

also optimal solutions of main problem (2). 
 
Proof 

We compare Karush-Kuhn-Tucker (KKT) conditions of 
problem (2) with that of problem (3). KKT condition of 
problem (2) is as follows: 
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KKT condition of auxiliary problem (3) is also obtained as 
follows: 
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With respect to these KKT conditions, we set 
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condition of problem (3 is equal to that of problem (2). 
Therefore, this theorem holds. ,   
 
This theorem means that we can obtain the optimal solution 
of main SOCP problem (1) by solving the auxiliary quadratic 
programming problem (3) setting the appropriate parameter 

S . Furthermore, let ( ) ( )2
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following theorem to determine the appropriate value of S  
is derived. 
 
Theorem 2 

Let the optimal solution to main problem be  0 ,x∗ ∗x  and 

optimal value 2
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Proof 

First, we introduce the following two lemmas to prove this 
theorem. 
 
Lemma 1 

With respect to S ,  tc x  is a degreasing function. 
 
Proof 

Set 0 S S< < , and optimal solutions ( )Sx  and ( )Sx  

for auxiliary problems SP  and SP , respectively. Then, the 
following relations holds based on the optimality of auxiliary 

problems SP  and SP : 
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holds. Since 0S S− >  holds derived from the assumption, 
the following relation is derived: 

( ) ( ) ( ) ( )0  t t t tS S S S− < ⇔ <c x c x c x c x  (7) 

 
Therefore, this lemma holds. ,  
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Proof 
In a way similar to Lemma 1, we set 0 S S< < , and 

optimal solutions ( )Sx  and ( )Sx  for auxiliary problems 

SP  and SP , respectively. Then, with respect to SP , 
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Then, due to formula (7) in Lemma 1, the following relation 
is derived: 

( ) ( ) ( ) ( )
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Therefore, from assumption 0 S S< < , this lemma holds. 
,  
 
Furthermore, since the feasible region of problem (3) is same 
as that of problem (2) which is a bounded region and optimal 
solutions ( )Sx  are continuous to S , it holds 
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holds. Consequently, from Lemmas 1 and 2, Mean value 
theorem and uniqueness of ∗x , Theorem 2 is derived.,  
 
This theorem means that we obtain the strict optimal solution 

0 ,x∗ ∗x ,  and the strict value of S  by updating S  according 

to the value of ( )g S .  

Subsequently, with respect to each value of S , we 
consider the following simultaneous equations derived from 
KKT conditions of auxiliary problem SP : 
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We solve the simultaneous equations and find the optimal 
solution to each S  using Wolfe’s method [13], which is 
based on linear programming and pivoting method. 
Therefore, updating S  using the iterative solution method 
such as the bi-section algorithm and considering Theorem 2, 
we obtain the optimal solution of main problem (1). 
  Furthermore, in order to obtain the explicit optimal solution 
by using finite iteration with respect to updating of S , we 
show the following theorem. 
 

Theorem 3 
With respect to auxiliary problem SP , the range 

[ ],L US S  with same active constraints of SP  including S  

is unique. 
 
Proof 

With respect to auxiliary problem SP , we consider the 
following case where active constraints of SP  are known: 
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where 0J  is the index sets of active constraints, respectively. 
Then, this KKT conditions are represented as follows: 
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Furthermore, focusing on decision variables ( )00, ix i J> ∉ , 

we consider the following revised KKT conditions: 
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Since the total number of decision variables ix  and iλ′  in 

the KKT except for parameter S  is equal to that of equations 
and all equations are linear, the solutions ix  and iλ′ of the 
KKT conditions are represented as the following linear 
equations with respect to S : 
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Furthermore, if there exists another S ′   including another 

range ,L US S⎡ ⎤′ ′⎣ ⎦  with same active constraints in problem (10), 

the optimal solution is obtained as ˆ ,j j jx Sα β′ ′= −  

( )0j J∉  from the same KKT condition in a way similar to 

(13). However, it contradicts with uniqueness of optimal 
solution since problem (10) is a convex programming 
problem and the solution derived from the KKT condition is 
unique. Consequently, it is clear to obtain the unique range 

[ ],L US S  of parameter S . ,  

 
Finally, considering the following relation to the optimality 
of parameter S  in Theorem 2; 
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we obtain the following solution substituting the solutions in 
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value S ∗ , we can determine the plus or minus sign in the 
optimal solution. Therefore, from the determination of this 
optimal value S ∗ , we obtain the strict optimal solution 
explicitly. As a result of the discussion, we develop the 
following strict solution method. 
 

Solution algorithm 
STEP1: Set the initial value of parameter 0LS ← , 

US M←  where M  is a sufficient large value and 
two families of index sets to active constraint for 
auxiliary problem SP  as LFIS φ←  and 

UFIS φ← . 

STEP2: Set 
2

L US SS +
← . 

STEP3: Solve auxiliary problem SP  using the Wolfe 
method and obtain the optimal solutions ( )Sx . 

STEP4: Calculate ( ) ( )( )2
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= − ∑ . If 

( ) 0g S = , ( )Sx  are optimal solutions of the 

main problem and terminate this algorithm. If 
( ) 0g S > , LS S← , update LFIS  to the present 

index sets of active constrains, and go to STEP5. If 

( ) 0g S < , US S← , update  and UFIS  to the 

present index sets of active constrains, and go to 
STEP5. 

STEP5: If L UFIS FIS= , go to STEP 6. If are not, return to 
STEP 2. 

STEP6: Solve the following simultaneous linear equations 
derived from the KKT condition; 
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              and obtain solutions j j jx Sα β= + . 

STEP7: Solve the following quadratic equations of S : 
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               and obtain the optimal value S ∗ . Then, substitute 

S ∗  into jx  in STEP6 and obtain the optimal 

solution jx∗ . 

 
Our solution method converges within finite iteration since 

both constraints in the main problem and ranges [ ],L US S  

with same active constraints for SP  are finite. Then, it is 
also efficient since it bases on linear programming and one 
quadratic equation. Furthermore, some types of the main 
SOCP problem (1) can be explicitly solved by our proposed 
approach. Therefore, our solution approach has the 
advantage comparing other solution methods based on linear 
programming and interior-point algorithm. Then, the solution 
method may be applied to more general SOCP problems by 
extending some procedures. Furthermore, in (13), since 



 

elements of matrix D  are sparse, it may be possible to 
develop more efficient solution method using this sparseness. 

IV. CONCLUSION 
In this paper, we have considered a SOCP problem based 

on stochastic or robust programming problem, and developed 
the strict solution algorithm based on KKT conditions and 
equivalently transformations. Using the proposed solution 
algorithm, we have obtained the exact optimal solution 
explicitly. However, the main problem is a restricted SOCP 
problem, and so it may be difficult to apply this solution 
algorithm to general SOCP problems directly. Therefore, as a 
future work, we will develop more general solution algorithm 
to find the exact optimal solution explicitly. 
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