
 

 

 
Abstract—In this paper a singly diagonally implicit Runge-
Kutta-Nyström (RKN) method is developed for second-order 
ordinary differential equations with periodical solutions. The 
method has algebraic order four and phase-lag order eight at a 
cost of four function evaluations per step. This new method is 
more accurate when compared with current methods of similar 
type for the numerical integration of second-order differential 
equations with periodic solutions, using constant step size. 
 

Keywords—Runge-Kutta-Nyström methods; Diagonally 
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I. INTRODUCTION 

HIS paper deals with numerical method for second-order 
ODEs, in which the derivative does not appear explicitly,  
 

0 0 0 0( ) ( ) ( )y f x y y x y y x y                     (1) 

 
for which it is known in advance that their solution is 
oscillating. Such problems often arise in different areas of 
engineering and applied sciences such as celestial mechanics, 
quantum mechanics, elastodynamics, theoretical physics and 
chemistry, and electronics. An s -stage Runge-Kutta-Nyström 
(RKN) method for the numerical integration of the IVP is 
given by  
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The RKN parameters  andij j j ja b b c   are assumed to be real 

and s  is the number of stages of the method. Introduce the s -
dimensional vectors c b  and andb s s   matrix A, where 

1 2[ ]T
sc c c c     1 2[ ]T

sb b b b        
1 2[ ]T

sb b b b       
[ ]ijA a respectively. RKN methods can be divided into two 

broad    classes: explicit    ( 0jka  , k   j )    and    implicit (

0jka  , k > j). The latter contains the class of diagonally 

implicit RKN (DIRKN) methods for which all the entries in 
the diagonal of A are equal. The RKN method above can be 
expressed in Butcher notation by the table of coefficients  
 

c  A   
 Tb   
 Tb   

    
Generally problems of the form (1) which have periodic 

solutions can be divided into two classes. The first class 
consists of problems for which the solution period is known a 
priori. The second class consists of problems for which the 
solution period is initially unknown. Several numerical 
methods of various types have been proposed for the 
integration of both classes of problems. See Stiefel and Bettis 
[3], van der Houwen and Sommeijer [12], Gautschi [16] and 
others.  

When solving (1) numerically, attention has to be given to 
the algebraic order of the method used, since this is the main 
criterion for achieving high accuracy. Therefore, it is desirable 
to have a lower stage RKN method with maximal order. This 
will lessen the computational cost. If it is initially known that 
the solution of (1) is of periodic nature then it is essential to 
consider phase-lag (or dispersion) and amplification (or 
dissipation). These are actually two types of truncation errors. 
The first is the angle between the true and the approximated 
solution, while the second is the distance from a standard 
cyclic solution. In this paper we will derive a new diagonally 
implicit RKN method with three-stage fourth-order with 
dispersion of high order.  

A number of numerical methods for this class of problems 
of the explicit and implicit type have been extensively 
developed. For example, van der Houwen and Sommeijer 
[12], Simos, Dimas and Sideridis, [15], and Senu, Suleiman 
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and Ismail [18] have developed explicit RKN methods of 
algebraic order up to five with dispersion of high order for 
solving oscillatory problems. For implicit RKN methods, see 
for example van der Houwen and Sommeijer [13], Sharp, Fine 
and Burrage [14] and Imoni, Otunta and Ramamohan [17]. 

In this paper a dispersion relation is imposed and together 
with algebraic conditions  to be solved explicitly. In the 
following section the construction of the new four-stage 
fourth-order diagonally implicit RKN method is described. Its 
coefficients are given using the Butcher tableau notation. 
Finally, numerical tests on second order differential equation 
problems possessing an oscillatory solutions are performed.  

II. ANALYSIS OF PHASE-LAG  

In this section we shall discuss the analysis of phase-lag for 
RKN method. The first analysis of phase-lag was carried out 
by Bursa and Nigro [10]. Then followed by Gladwell and 
Thomas [5] for the linear multistep method, and for explicit 
and implicit Runge-Kutta(-Nystrom) methods by van der 
Houwen and Sommeijer [12], [13]. The phase analysis can be 
divided in two parts; inhomogeneous and homogeneous 
components. Following van der Houwen and Sommeijer [12], 
inhomogeneous phase error is constant in time, meanwhile the 
homogeneous phase errors are accumulated as n  increases. 
Thus, from that point of view we will confine our analysis to 
the phase-lag of homogeneous component only.  

The phase-lag analysis of the method (2) is investigated 
using the homogeneous test equation  
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Alternatively the method (2) can be written as  

2
1

1

1
1

( )

( )

s

n n i n i in
i

s

i n i in n
i

y y h h b f t c h Yy

h f t c h Yy y b







    

    




              (4) 

 
where  

2

1

( )
s

i n i ij n i ji
j

Y y c h h a f t c h Yy


       

By applying the general method (2) to the test equation (1) 
we obtain the following recursive relation as shown by 
Papageorgiou, Famelis and Tsitouras [4] 
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where 2

1(1 1) ( )T T
mH z e c c c      .  Here D(H) is the 

stability matix of the RKN method and its characteristic 
polynomial 

2 2 2tr( ( )) det( ( )) 0,D z D z     

 

is the stability polynomial of the RKN method. Solving 
difference system (5), the computed solution is given by 
 

 2 cos( )n
ny c n                                   (6) 

 
The exact solution of (1) is given by  
 

( ) 2 cos( )ny t nz                              (7) 

 
Eq. (6) and (7) led us to the following definition.  
 
Definition 1. (Phase-lag). Apply the RKN method (2) to (1). 
Then we define the phase-lag ( )z z   . If 1( ) ( )qz O z  , 

then the RKN method is said to have phase-lag order q . 

Additionally, the quantity ( ) 1z      is called 

amplification error. If 1( ) ( )rz O z  , then the RKN method 

is said to have dissipation order r . 
 
Let us denote   
 

2 2( ) trace( ) and ( ) det( )R z D S z D    
 
From Definition 1, it follows that  
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Let us denote 2( )R z  and 2( )S z  in the following form  
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where 2ˆ 2   is diagonal element in the Butcher tableau. Here 
the necessary condition for the fourth-order accurate 
diagonally implicit RKN method (2) to have hase-lag order 
eight in terms of i  and i  is given by 
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             (11) 

 
Notice that the fourth-order method is already dispersive order 
four and dissipative order five. Furthermore dispersive order is 
even and dissipative order is odd. 

III. CONSTRUCTION OF THE METHOD 

In the following we shall derive a four-stage fourth-order 
accurate diagonally implicit RKN method with dispersive 
order eight, by taking into account the dispersion relations in 



 

 

section II. The RKN parameters must satisfy the following 
algebraic conditions to find fourth-order accuracy as given in 
Hairer and Wanner [2].  
 

order 1  
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order 2  
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order 3  

 21 1 1
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order 4  

2  3  1 1 1 1 1
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For most methods the ic  need to satisfy  
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A four-stage method of algebraic order four ( 4p  ) with 

dispersive order eight ( 8q  ) and dissipative order five (

5r  ) is now considered. The conditions (12)-(16) and 
dispersion relations (10)-(11) formed thirteen nonlinear 
equations with nineteen variables to be solved. Now, from 
algebraic conditions (12)-(16) and phase-lag relation of order 
six (10) and letting   be a free parameter, then we solve it 
simultaneously. Therefore the following solution of one-
parameter family is obtain  
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From the above solution, we are going to derive a method with 
dispersion of order eight. The eight order dispersion relation 
(11) need to be satisfied and this can be written in terms of 
RKN parameters which corresponds to the above family of 
solution yields the following equation  
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and solving for   yields   
 
-0.2752157925, -0.08524516029, 0.04719733276, 
0.1682412065,0.2490198846, 0.6846776634,  and 
 -0.1056624327. 
 

Numerical results show that choosing -0.08524516029   
will give us more accurate scheme compared to the others and 
we mentioned here one fourth-order (p=4) with  dispersive 
order eight (q=8) method. For -0.08524516029  , the 
following method will be produced. This method will be 
denoted by DIRKN4(4,8)NEW (see Table I)  
 
 
 
 

Table 1: : The DIRKN3(4,6) method 
 
 
 
 
 
 
 
 
 
 
 
 
 
where c1=-0.1704903206, b2=0.2332957499, 

b4=0.1610418175, and  A= 22 =0.01453347471 
 
This method has PLTE  
 

(5)(5) 3 3 
21 669237 10 and 1 611272 10           . 

 
Table II compares the properties of our method with the 
methods derived by van der Houwen and Sommeijer [20], 
Sharp, Fine and Burrage [14] and Imoni, Otunta and 
Ramamohan [17]. 

IV. PROBLEM TESTED 

 
In this section we use our method to solve homogeneous and 
inhomogeneous problems whose exact solution consists of a 
rapidly or/and a slowly oscillating function. For purposes of 
illustration, we will compare our results with those derived by 
using three methods; DIRKN three-stage fourth-order derived 
by van der Houwen and Sommeijer  [20] and Imoni, Otunta, 
Ramamohan [17], three-stage fourth-order dispersive order six 
derived by Sharp, Fine and Burrage [14] and four-stage 
fourth-order derived by Al-Khasawneh, Ismail, Suleiman [22].  
 
 
 

TABLE I  THE DIRKN4(4,8)NEW METHOD  
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Problem 1(Homogenous)   
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Exact solution 1
5( ) sin(10 ) cos(10 )y t t t     

 
 
Problem 2   
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Exact solution ( ) sin( ) cos( )y t t t t     

Source : Allen and Wing [19]  
 
 
Problem 3(Inhomogeneous system)   
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Exact solution is 

1 2( ) cos( ) ( ) ( ) sin( ) ( )y t a vt f t y t a vt f t       ( )f t  is 

chosen to be 0 05te   and parameters v  and a  are 20 and 0.1 
respectively.  
Source : Lambert and Watson [7] 
 
 
 
 
 
 
 

 
Problem 4 (An almost Periodic Orbit problem) 
  

2
 1

1 1 12

2
 2

2 2 22

( )
( ) 0 001cos( ) (0) 1 (0) 0

( )
( ) 0 001sin( ) (0) 0 (0) 0 9995

d y t
y t t y y

dt

d y t
y t t y y

dt

      

       

 

Exact solution 1( ) cos( ) 0 0005 sin( )y t t t t   , 

2 ( ) sin( ) 0 0005 cos( )y t t t t    

Source : Stiefel and Bettis [3] 
 
The following notations are used in Table III-VI:  
 

 DIRKN4(4,8)NEW : A four-stage fourth-order 
dispersive order eight method with ’small’ 
dissipation constant and principal local truncation 
errors derived in this paper.  

 DIRKN3(4,4)IMONI : A three-stage fourth-order 
derived by Imoni, Otunta and Ramamohan [17]. 

 DIRKN3(4,4)HS : A three-stage fourth-order 
dispersive order four derived by van der Houwen and 
Sommeijer [20]. 

 DIRKN3(4,6)SHARP : A three-stage fourth-order 
dispersive order six as in Sharp, Fine and Burrage 
[14].  

 DIRKN4(4,4)Raed : A four-stage fourth-order  
drived by Al-Khasawneh, Ismail, Suleiman [22].  

V. NUMERICAL RESULTS 

The results for the four problems above are tabulated in Tables 
III-VI. One measure of the accuracy of a method is to examine 
the Emax( T ), the maximum error which is defined by  
 

Emax( ) max ( )n nT y t y     

0
0where 1 2n

T t
t t nh n ?
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Tables III-VI show the absolute maximum error for 
DIRKN4(4,8)NEW, DIRKN3(4,4)IMONI, DIRKN3(4,4)HS, 
DIRKN3(3,6)SHARP and DIRKN4(4,4)Raed methods  when 
solving Problems 1-4 with three different step values. From 
numerical results in Table III-VI, we observed that the new 
method is more accurate compared with DIRKN3(4,4)IMONI, 
DIRKN3(4,4)HS and DIRKN4(4,4)Raed methods which do 
not relate to the dispersion order of the method. Also the new 
method is more accurate compared with   
DIRKN3(4,6)SHARP method because the new method has  
dispersion order eight which is the highest and also the 
dissipation constant for our method is smaller than the 
DIRKN3(4,6)SHARP method (see Table II). 
 
 
 
 
 
 
 

TABLE II 
SUMMARY OF THE CHARACTERISTIC OF THE FOURTH-ORDER DIRKN 

METHODS  

Method q d  ( 1)
2

p    ( 1) 
2

p


   

DIRKN4(4,8)NEW 8 54.84 10  31 67 10   31 61 10   
DIRKN3(4,4)IMONI  4 - 23 75 10    23 22 10   
DIRKN3(4,4)HS  4 41 43 10   46 35 10    41 59 10   
DIRKN3(4,6)SHARP 6 21 02 10   31 85 10    46 26 10   

DIRKNRaed 4 21 80 10    23.13 10  21 71 10   

 
Notations : q – Dispersion order, d – Dissipation constant 

    ( 1)
2

p   – Error coefficient for ny  

    ( 1)
2

p   – Error coefficient for ny  



 

 

TABLE III 
COMPARING OUR RESULTS WITH THE METHODS IN THE LITERATURE FOR 

PROBLEM 1 

h  Method T=100 T=1000 T=4000   

0.0025 DIRKN4(4,8)NEW 1.4194(-9) 1.0464(-7) 7.7266(-7) 
 DIRKN3(4,4)IMONI 1.5646(-2) 1.4622(-1) 4.7069(-1) 
 DIRKN3(4,4)HS 1.2561(-7) 1.3689(-6) 5.8314(-6) 
 DIRKN3(4,6)SHARP 3.0150(-7) 3.0229(-6) 1.2120(-5) 
 DIRKN4(4,4)Raed 9.2774(-6) 9.2904(-5) 3.7129(-4) 
     
0.005 DIRKN4(4,8)NEW 1.5124(-9) 1.5126(-8) 5.3047(-7) 
 DIRKN3(4,4)IMONI 2.0121(-2) 1.8480(-1) 5.6322(-1) 
 DIRKN3(4,4)HS 6.6977(-7) 6.6966(-6) 2.7338(-5) 
 DIRKN3(4,6)SHARP 2.5569(-6) 2.5624(-5) 1.0255(-4) 
 DIRKN4(4,4)Raed 1.4811(-4) 1.4849(-3) 5.9392(-3) 
     
0.01 DIRKN4(4,8)NEW 4.5984(-8) 4.1025(-7) 1.875664(-6)
 DIRKN3(4,4)IMONI 5.9680(-2) 4.6223(-1) 9.286052(-1)
 DIRKN3(4,4)HS 3.2305(-5) 3.2361(-4) 1.295597(-3)
 DIRKN3(4,6) SHARP 3.1342(-4) 3.1448(-3) 1.263707(-2)
 DIRKN4(4,4)Raed 2.3699(-3) 2.3786(-2) 9.536865(-2)

 
TABLE IV 

COMPARING OUR RESULTS WITH THE METHODS IN THE LITERATURE FOR 

PROBLEM 2 

h  Method T=100 T=1000 T=4000 

0.065 DIRKN4(4,8)NEW 2.4682(-8) 2.7634(-8) 3.8789(-8) 
 DIRKN3(4,4)IMONI 5.2936(-3) 5.3213(-2) 2.0104(-1) 
 DIRKN3(4,4)HS 6.8021(-7) 6.8361(-6) 2.7394(-5) 
 DIRKN3(4,6) SHARP 4.0017(-6) 4.1061(-5) 1.6419(-4) 
 DIRKN4(4,4)Raed 5.8594(-5) 5.8706(-4) 2.3509(-3) 
     
0.125 DIRKN4(4,8)NEW 3.4752(-7) 5.1872(-7) 1.0986(-6) 
 DIRKN3(4,4)IMONI 1.0214(-2) 1.01103(-1) 3.6319(-1) 
 DIRKN3(4,4)HS 1.0871(-5) 1.0930(-4) 4.3835(-4) 
 DIRKN3(4,6)SHARP 1.3006(-4) 1.3398(-3) 5.3657(-3) 
 DIRKN4(4,4)Raed 8.0270(-4) 8.0329(-3) 3.2192(-2) 
     
0.25 DIRKN4(4,8)NEW 5.8948(-6) 1.2772(-5) 3.5775(-5) 
 DIRKN3(4,4)IMONI 1.9124(-2) 1.8683(-1) 6.2958(-1) 
 DIRKN3(4,4)HS 1.7332(-4) 1.7444(-3) 7.0007(-3) 
 DIRKN3(4,6) SHARP 4.4802(-3) 4.6441(-2) 1.9520(-1) 
 DIRKN4(4,4)Raed 1.2897(-2) 1.2969(-1) 5.3226(-1) 
 

TABLE V 
COMPARING OUR RESULTS WITH THE METHODS IN THE LITERATURE FOR 

PROBLEM 3 

h  Method T=100 T=1000 T=4000 

0.0025 DIRKN4(4,8)NEW 8.6798(-10) 2.0910(-8) 1.5309(-7) 
 DIRKN3(4,4)IMONI 5.9756(-3) 4.6003(-2) 9.1502(-2) 
 DIRKN3(4,4)HS 3.9675(-7) 3.9897(-6) 1.6028(-5) 
 DIRKN3(4,6)SHARP 1.8995(-6) 1.9004(-5) 7.6048(-5) 
 DIRKN4(4,4)Raed 2.9121(-5) 2.9123(-4) 1.1650(-3) 
     
0.005 DIRKN4(4,8)NEW 2.1642(-8) 9.4393(-8) 4.1014(-7) 
 DIRKN3(4,4)IMONI 1.1371(-2) 7.0105(-2) 9.9201(-2) 
 DIRKN3(4,4)HS 6.3468(-6) 6.3496(-5) 2.5414(-4) 
 DIRKN3(4,6)SHARP 6.1529(-5) 6.1776(-4) 2.4938(-3) 
 DIRKN4(4,4)Raed 4.6623(-4) 4.6689(-3) 1.8754(-2) 
     
0.01 DIRKN4(4,8)NEW 5.1541(-7) 3.4561(-6) 1.3384(-5) 
 DIRKN3(4,4)IMONI 1.9988(-2) 9.0402(-2) 1.0002(-1) 
 DIRKN3(4,4)HS 1.0142(-4) 1.0156(-3) 4.0589(-3) 
 DIRKN3(4,6) SHARP 2.0819(-3) 2.2852(-2) 1.2662(-1) 
 DIRKN4(4,4)Raed 7.5063(-3) 7.7409(-2) 2.5731(-1) 

 
 
 
 

 

TABLE VI 
COMPARING OUR RESULTS WITH THE METHODS IN THE LITERATURE FOR 

PROBLEM 4 

h Method T=100 T=1000 T=4000 

0.065 DIRKN4(4,8)NEW 2.4953(-8) 2.7438(-8) 4.6060(-8) 
 DIRKN3(4,4)IMONI 3.9398(-3) 4.0219(-2) 2.1108(-1) 
 DIRKN3(4,4)HS 5.6025(-7) 5.8308(-6) 3.2036(-5) 
 DIRKN3(4,6) SHARP 3.4938(-6) 3.6382(-5) 1.9990(-4) 
 DIRKN4(4,4)Raed 4.1138(-5) 4.2777(-4) 2.3486(-3) 
     
0.125 DIRKN4(4,8)NEW 3.5178(-7) 4.8299(-7) 1.2310(-6) 
 DIRKN3(4,4)IMONI 7.3190(-3) 7.3627(-2) 3.7216(-1) 
 DIRKN3(4,4)HS 7.6595(-6) 7.9664(-5) 4.3794(-4) 
 DIRKN3(4,6)SHARP 9.3794(-5) 9.7492(-4) 5.3673(-3) 
 DIRKN4(4,4)Raed 5.6329(-4) 5.8856(-3) 3.2103(-2) 
     
0.25 DIRKN4(4,8)NEW 5.8234(-6) 1.0223(-5) 3.6041(-5) 
 DIRKN3(4,4)IMONI 1.3995(-2) 1.3655(-1) 6.7067(-1) 
 DIRKN3(4,4)HS 1.2220(-4) 1.2725(-3) 7.0099(-3) 
 DIRKN3(4,6) SHARP 3.2209(-3) 3.3895(-2) 1.9396(-1) 
 DIRKN4(4,4)Raed 9.0479(-3) 9.4159(-2) 5.1301(-1) 

 
Notation : 1.2345(-4) means 41 2345 10    

VI. CONCLUSION 

In this paper we have derived diagonally implicit four-stage 
fourth-order and dispersive order eight with ‘small’ dissipation 
constant and principal local truncation errors. We have also 
performed various numerical tests. From the results tabulated 
in Table III-VI, we conclude that the new method is more 
accurate for integrating second-order equations possessing an 
oscillatory solution when compared to the current DIRKN 
methods derived by van der Houwen and Sommeijeir [20], 
Sharp, Fine and Burrage [14] , Imoni, Otunta and Ramamohan 
[17] and Al-Khasawneh, Ismail, Suleiman [22]. 
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