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Abstract—Interest rate modeling is a challenging but impor-
tant problem in financial econometrics. This work is concerned
with the parameter estimation of the short term interest models.
In light of a recent development in Markov Chain Monte Carlo
simulation techniques based on Gibbs sampling, numerical
experimentations are carried out for finding an effective and
convergent Beyesian estimation scheme. The optimal degree of
data augmentation is probed on basis of sensitivity analysis in
searching of maximum A-posteriori probability density. Our
method is calibrated with both US Treasury bills and basic
loan rates from Japanese market.

Index Terms—Bayesian estimation, Gibbs sampler, MCMC
method, MAP estimation, Data augumenation.

I. INTRODUCTION

Interest rate is a key variable in economy and financial
market. It determines or impacts the values of various finan-
cial contracts, options, and derivatives. Given an prescribed
interest model, one may rely on both mathematical and
simulation techniques to solve for the value of a financial
contract. In reality, the value of a financial instrument, an
index, or a contract, is often observable from market. What is
drawing more attention is the inverse problem, i.e., to select
a model, usually stochastic in nature, and to determine the
parameters appearing in the model so that market participants
may rely on the model in making future decisions. Because
of this, there has been incessant literatures on the interest
modeling and parameter estimation. For commonly used spot
interest rate models, one can refer to [11], for instance.

Theoretical interest rate models, formulated in terms of
stochastic differential equations, often assume continuous
observations in time. The main merit of continuity is the
flexibility for mathematical treatment. Among several types
of mean-reverting processes, CIR model ([8]) is one of
the most exploited short term rate models in literature.
Accordingly, there have been considerable studies concerning
the parameter estimation for the model.

Due to the complexity of the transitional probability
density of CIR model, it is difficult to apply the maximum
likelihood estimation (MLE) method to estimate the param-
eters. On the other hand, even if the MLE estimators are
explicitly known, as is true for the Vasicek model, they
are not necessarily unbiased [3]. Thus many approximation
methods have been introduced. For example, in [4], [7],
and [10], the continuous CIR process is approximated with
finite discretizations. In [13],[14], and [5], it is suggested
to approximate the drift term, or the diffusion term, or the
transitional density function with nonparametric techniques.
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However, these approximation techniques, though plausible
in theory, also have implementation difficulties, as argued in
[6], for instance. These challenges may include bias from
discrete sampling or slow convergence.

In a recent work ([12]), a Bayesian estimation approach
is introduced with Markov Chain Monte Carlo (MCMC)
algorithm for estimating the parameters of the CIR model.
Gibbs sampler algorithm ([2]) based on Euler-Maruyama
discritization is designed to simulate the posterior distribution
of the latent data. In the mean time, a genetic algorithm is
implemented to achieve the maximum A-posteriori (MAP
hereinafter) estimation of the parameters.

However, there are several implementation issues to be
answered about the method, including the its performance
when applied to different markets. So one aim of our current
work is to calibrate the relative convergence of the algorithm
in terms of estimating model parameters. And also, we wish
to find optimal degree of data augmentation for the MCMC
scheme. In the following of this paper, a brief summary of
our previous results (see[12]) is firstly provided. Through
simulated data using non-central Chi-square approximations,
the effects of the number of time intervals and the number of
simulated paths on convergence of estimation are analyzed,
based on which the optimal degree of data observation is
obtained. Numerical results are provided using historical data
of US Treasury bills and the basic loan rates from Japanese
market.

II. REVIEW OF MAIN METHODOLOGY

The CIR short term interest rate process is defined by the
stochastic differential equation

dy(t) = {α− βy(t)}dt + σ
√

y(t)dW (t) (1)

where {W (t), t ≥0} is a standard Brownian motion and α,
β, σ >0 are the constant model parameters. The majors steps
of the MCMC based iterative conditional sampling algorithm
for parameter estimation are summarized as follows.

A. The Fully Conditional Posterior Distribution

Suppose there are T observations, and M augmented
data points between each pair of adjacent observations. Let
Y=(y1, · · · , yT ) denote the set of all observed historical
data and Y ∗ = (y∗1 , · · · , y∗T−1) the set of all augmented
data, where y∗t = {y∗t,1, · · · , y∗t,M}. According to the general
theory of Beyesian estimation (see [1], for instance), we may
assume that the priori density function of the parameters
is proportional to the inverse of σ. The following are the
results about the fully conditional posterior distribution
derived in ([12]).



For the augmented data Y ∗, we have

f(y∗t |Y, θ) =
M∑

j=0

f(y∗t,j+1 | y∗t,j , θ) (2)

where θ = (α, β, σ), y∗t,0 = yt, y∗t,M+1 = yt+1 and

y∗t,j+1|y∗t,j , θ ∼ N(y∗t,j + (α− βy∗t,j)4, σ2 4 y∗t,j). (3)

For the drift parameters ψ = (α, β), we have

ψ|Y, Y ∗, σ2 ∼ N(µ, Λ−1) (4)

where µ =
(

µ1

µ2

)
, Λ =

( 4
σ2 A −4

σ2 n

−4
σ2 n 4

σ2 B

)
and

µ1 =
σ2

4
BC + nD

AB − n2
,

µ2 =
σ2

4
nC + AD

AB − n2
,

n = (T − 1)(M + 1),

A =
T−1∑
t=1

M∑

j=0

1
y∗t,j

,

B =
T−1∑
t=1

M∑

j=0

y∗t,j

C = −
T−1∑
t=1

M∑

j=0

y∗t,j − y∗t,j+1

y∗t,j
,

D =
T−1∑
t=1

M∑

j=0

(y∗t,j − y∗t,j+1).

B. The Sampling Algorithm
Step 1: Initialize y0, θ and use Gibbs sampler to generate
the initial values of y∗1 , · · · , y∗T−1.
Step 2: Use Gibbs sampler to

(a) Update α, β from f(ψ|Y ∗, Y, σ2) where
y∗1 , · · · , y∗T−1 are obtained from the previous iteration.

(b) Update σ2 from f(σ2|Y ∗, Y, α, β) where
y∗1 , · · · , y∗T−1 are obtained from the previous iteration
and α, β are given by (a)
Step 3: Update y∗1 , · · · , y∗T−1 from f(y∗t |yt, α, β, σ2)
Step 4: Repeat Step 2 until the prescribed sampling size N
is reached.

C. the posterior density and the MAP estimation

p(σ2|Y ) =
1

N −N0

N∑

j=N0+1

p(σ2|Y, Y ∗
(j), α(j), β(j))

p(α, β|Y ) =
1

N −N0

N∑

j=N0+1

p(σ2|Y, Y ∗
(j), σ

2
(j))

where the subscript j refers to the jth iteration and the first
N0 iterations are cast away in order to mitigate the effects of
initial conditions. The MAP estimates of the parameters are
the points where p(α, β|Y ) and p(σ2|Y ), respectively, have
the maximum values. The genetic algorithm in MATLAB
can help to realize the optimization process.

TABLE I
SUMMARY STATISTICS FOR THE PARAMETERS WHEN N IS FIXED

M = 3

parameters MAP correlation coefficient

α 0.0692 1.0000 0.8010 -0.0368

β 1.3721 0.8010 1.0000 -0.0305

σ2 0.0906 -0.0368 -0.0305 1.0000

M = 6

parameters MAP correlation coefficient

α 0.0583 1.0000 0.8199 -0.0795

β 1.346 0.8199 1.0000 -0.0766

σ2 0.0668 -0.0795 -0.0766 1.0000

M = 7

parameters MAP correlation coefficient

α 0.0506 1.0000 0.8089 -0.0596

β 1.1051 0.8089 1.0000 -0.0507

σ2 0.0624 -0.0596 -0.0507 1.0000

M = 8

parameters MAP correlation coefficient

α 0.0379 1.0000 0.8049 -0.0692

β 0.8748 0.8049 1.0000 -0.0671

σ2 0.0614 -0.0692 -0.0671 1.0000

M = 10

parameters MAP correlation coefficient

α 0.0269 1.0000 0.8201 -0.0856

β 0.6184 0.8201 1.0000 -0.0760

σ2 0.0527 -0.0856 -0.0760 1.0000

M = 20

parameters MAP correlation coefficient

α 0.0265 1.0000 0.8313 -0.1292

β 0.6118 0.8313 1.0000 -0.1274

σ2 0.0391 -0.1292 -0.1274 1.0000

M = 25

parameters MAP correlation coefficient

α 0.0162 1.0000 0.8322 -0.1293

β 0.3764 0.8322 1.0000 -0.1391

σ2 0.0351 -0.1293 -0.1391 1.0000

III. NUMERICAL EXPERIMENTATION

In this section, we use simulated data to carry out numer-
ical experimentations. To test the robustness of the method,
sensitivity analysis is provided for different time intervals and
various number of iterations. We take y0 = 1 and obtain 100
observations using a noncentral chi-squared distribution with
α = 0.05, β = 1, σ = 0.25. The following Figure 1 gives
the time series of the simulated observations. The value of
4† indicating the time interval between two observations is
taken to be 1/52 and N0 is set at 100 for all the computations.
The time interval changes with M. We first set N=5100 and
run our program for different values of M, which yields
different estimates of the parameters. The results of the these
estimations are presented in TABLE I.

From the results reported in table 1, we see that the
MAP procedure achieves most accurate estimates of the true



0 20 40 60 80 100
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Figure 1:Time series of 100 simulated observations.

TABLE II
SUMMARY STATISTICS FOR THE PARAMETERS WHEN M IS FIXED

N = 4100

parameters MAP correlation coefficient

α 0.0432 1.0000 0.8101 -0.0801

β 1.014 0.8101 1.0000 -0.0716

σ2 0.0651 -0.0801 -0.0716 1.0000

N = 5100

parameters MAP correlation coefficient

α 0.0506 1.0000 0.8089 -0.0596

β 1.1051 0.8089 1.0000 -0.0507

σ2 0.0624 -0.0596 -0.0507 1.0000

N = 5600

parameters MAP correlation coefficient

α 0.0408 1.0000 0.8109 -0.0456

β 0.9233 0.8109 1.0000 -0.0443

σ2 0.0643 -0.0456 -0.0443 1.0000

parameter values when M=7. Other values of M away from
7 tend to generate large bias. Small value of M means large
discretization interval, leading to large bias. On the other
hand, misrepresentation of true data structure may occur due
to the large number of inserted latent data points when M is
large. In the above simulated example, M=7 is optimal.
In addition, we find the estimated long-term mean of the CIR
model α

β is always close to the mean of the true data for
different values of M. Another interesting finding is that α
and β are always positive correlated while both of them have
negative correlations with σ. When we fix M=7, and run the
program with different values of N, we find the estimated
results are more or less very close to each other, as long
as N is large enough. Such results, as shown in TABLE II,
tend to suggest that the method outlined in Section II will
provide convergent estimations when the number of iteration
paths are sufficiently large, provided that an an optimal M is
chosen.

IV. APPLICATION TO HISTORICAL FINANCIAL DATA

We wish to implement the method outlined in Section
II using the historical data of US Treasury bills using the
method outlined in Section II. Here, we first select 8 years
of weekly data of the yields of the US Treasury bills from
November 2002 to October 2010. The time span is long
enough to accommodate the usual market fluctuations. And
it has the same time interval between two observations with
the above simulated example. Figure 2 gives the time series
of historical yields of the US 6-month Treasury bills used in
our example. The iteration results for parameter estimations
are plotted in Figure 3. The MAP estimates for the three
parameters appearing in the CIR model are, respectively,
α = 7.0660e− 4, β = 3.5546e− 4, and σ = 0.002.

To compare, we also apply our method to the basic loan
rate from Japanese market. Here we use the 132 monthly
observations of Japan’s basic loan rates from Jan. 2000 to
Dec. 2010. To choose a relatively reasonable value for M,
we first compute the time interval between each pair of
consecutive observations, size of the data in terms of number
of observations, sample expectation, and standard deviation
of the data under study. We use the observed mean of data to
approximate the initial simulation of α

β and use the observed
variance to approximate σ, although they are not exactly the
same in theory. We simulate the same number of sample
points with the real data, and then we apply our method
outlined in Section III to get a rational M as our selection
for analyzing the historical data. The time series of the
historical monthly data of 10 years of Japanese basic loan
rate is plotted in Figure 4. According to our approximation,
a rational choice of M is 8.

Implementation of our method yields the iteration results
for parameter estimations as plotted in Figure 5. The MAP
estimates for the parameters are respective α = 3.0202e −
4, β = 0.0012, and σ2 = 0.01742.

V. CONCLUSION

This paper focuses on the numerical simulation and imple-
mentation of our previous work on Bayesian estimation of
the parameters. Using simulated examples, we have shown
that the approach can generate good estimates, although the
performance of the algorithm relies on the selection of the
number of the inserted points. Moreover, we have proposed
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Figure 2: Time series of US 6-month Treasury bills over a duration of 8 years.
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Figure 3: The estimated values of the parameters α, β, σ2 from the fully conditional posterior distribution in each iteration
with 8 years of observations. Here M = 7, N = 5100.
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Figure 4:Time series of Japan basic loan rate over a duration of 10 years.
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Figure 5: The estimated values of the parameters α, β, σ2 from the fully conditional posterior distribution in each iteration
with 10 years of observations. Here M = 8, N = 5100.



a method for finding the acceptable M, based on empirical
experiments, and applied it to the real historical data of
Japanese basic loan rates. These results provide insightful
hints for further studies on how to improve the accuracy and
convergence of the method.
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