
 

  
Abstract—Turbulence transition in boundary layer flows 

arises from nonlinear wave generation, interaction, and 
amplification in the flow.  The nonlinear wave dynamics 
depend on the intricate phase synchronization of the 
propagating waves.  Numerical simulation of the process 
encounters challenges in the forms of achieving sufficient 
computational resolution, dealing with truncated 
computational domains, and control of numerical errors.  
Application of high-order, optimized Combined Compact 
Difference numerical methods help to mitigate these issues and 
achieve realizations of nonlinear wave dynamics during 
turbulence transition.  Validation of the numerical results 
attests to the accuracy of the model.  
 

Index Terms—turbulence, transition, combined compact 
difference, nonlinear wave dynamics 

I. INTRODUCTION 
he  classical work Schubauer and Skramstad, 1947 [1] 
conducts a famous experiment to examine the topic of 

boundary layer turbulence transition.  The experiment 
entails a vibrating ribbon that is placed at the base of the 
inlet to a flow channel and acts to introduces perturbations 
into the flow.  The perturbations convert to disturbance 
waves that travel downstream.  As the disturbance waves 
propagate downstream, they will begin to interact with one 
another in progressive stages of transition towards flow 
turbulence.  Initially, the wave interactions are linear in the 
linear instability stage [2].  Further downstream, the wave 
interactions will evolve to become non-linear.  The non-
linear interactions will spawn a secondary instability in the 
flow.  The secondary instability will eventually become 
unsustainable and break down into turbulence.  The stages 
of transition up to the linear instability stage are well-
understood presently.  The linear wave interactions can be 
described accurately with the Orr-Sommerfeld (OS) 
equation of linear stability theory.  Chen and Chen, 2010 [3] 
offers an excellent study of the linear stage of turbulence 
transition.  However, once the waves undergo non-linear 
interactions, the transition phenomenon becomes mysterious 
and is the subject of much current research.    
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 A subsequent classical work, Klebanoff, et al., 1962 [4] 
would shed illuminating insight into the non-linear stage of 
transition.  As transition to turbulence can occur via multiple 
pathways, Klebanoff, et al., 1962 [4] studies the pathway 
that has come to bear the namesake of its author, K-type 
transition.  When the amplitude of the initial perturbation 
exceeds 1% of the mean flow, the K-type transition 
mechanism activates to induce an explosive amplification of 
waves leading to breakdown into turbulence.  Klebanoff, et 
al., 1962 [4] observes definitive and reproducible behavior 
of non-linear wave interactions beginning with the 
formation of the first set of waves from the perturbation 
known as the fundamental waves.  The fundamental wave 
exercises a fecundity that begets second and third harmonics 
of successively higher wave frequencies.  The harmonics 
would then cluster in wave packets as they traverse 
downstream.  Within the packets, the waves interact and 
synchronize.   The phase synchronization of the waves 
results in explosive spikes in the observed wave oscillations.  
These observations have become bespoke signature features 
of non-linear turbulence transition [4]. 

Additional classical works would ensue.  Kachanov and 
Levchenko, 1984 [5] and Kachanov, 1994 [6]  reveal 
another possible pathway towards turbulence called the N-
type transition.  The N-type transition facilitates a more 
controlled pathway to turbulence, evoked by a lower 
amplitude of the initial disturbance than K-type transition.  
As such, the N-type transition transpires with measurably 
exponential amplification of waves as contrasted with the 
incontinent explosion in the K-type.  Also, the N-type 
transition generates harmonics of lower frequencies than the 
K-type.   For more details, Herbert, 1988 [7] offers an 
excellent review of the physical processes occurring in the 
non-linear transition stage. 

The perspicacity of the aforementioned procession of 
classical works, though worthy of fete, has only begun to 
enervate the confounding complexity of the turbulence 
transition phenomenon.  The nature of turbulence transition 
remains shrouded in mystery to the present time.   

II. ISSUES OF CONCERN 
The numerical simulation of boundary layer turbulence 

transition meets with several challenges.  The simulation 
endeavor must successfully contend with these issues of 
concern so that it can attain accurate and precise realizations 
of the transition process.  
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A. Computational Resolution 
The wave interaction dynamics underlying the transition 

to turbulence presents a view of the process from the 
perspective of periodic oscillations of the disturbance 
velocities in wave form.  A concomitant perspective views 
the process in terms of the formation and deformation of 
physical flow structures during transition.  Some of the 
commonly observed flow structures include the Λ-vortex, 
Ω-vortex, high shear layer, and turbulent streaks [3]. An 
important physical flow structure of note is the formation of 
turbulent eddies strewn intermittently throughout the flow.  
The intermittent turbulent eddies also experience 
progeneration where first generation eddies beget second 
and third generations in cascading fashion ([8], [9], and 
[10]).  The posterior eddies will sequentially decrease in 
length and time scales, imposing taxing demands on the 
computational power required to visualize them.  Chen, 
2009 [8] offers an excellent exposition on the eugenics of 
turbulent eddy progeneration.  The numerical simulation 
must have the computational capacity to reach the necessary 
level of computational resolution.  

Further exacerbating the situation is the concept of three-
dimensionality.   During the transition towards turbulence, 
the generated waves will acquire a three-dimensional 
characteristic.   The formation of three-dimensional waves 
represents a key development in the transition towards 
turbulence.  Saric, et al., 2003 [11] explains that the three-
dimensional waves arise from crossflow and centrifugal 
instabilities occurring in flow regions with pressure 
gradients.  The three-dimensional nature of the flow is the 
critical element that leads to rapid generation of additional 
harmonics and their subsequent explosive or exponential 
amplification.   Orszag and Patera, 1983 [12] notes that, 
during wave interactions, the  two-dimensional waves are 
unstable to the presence of even infinitesimal three-
dimensional waves and will amplify exponentially from the 
encounter.   Orszag and Patera, 1983 [12] systematically 
illustrates that the combination of vortex stretching and 
tilting terms in the governing Vorticity Transport Equation 
accelerates the growth of waves.  Both vortex stretching and 
tilting are required to produce the accelerated growth of 
waves [12].  Both are three-dimensional phenomena and 
thus, concurringly underline the important role of three-
dimensionality in turbulence transition.  Reed and Saric, 
1989 [13]  and Herbert, 1988 [7] offer excellent reviews of 
the mechanisms that cause the formation of three-
dimensional waves.  Numerical visualization of three-
dimensional waves incurs vast computational demands.   

Even further immiseration in regard to computational 
demands comes in the form of the critical Reynolds number.  
The putative work, Orszag and Kells, 1990 [14], explains 
that, for the transition to turbulence to be sustainable, the 
flow Reynolds number must exceed a critical threshold 
value.  The fact that a critical Reynolds number exists for 
turbulence transition has been corroborated by other works 
of Orszag and Patera, 1983 [12] and Saric, et al., 2003, [11].   
Towards the study of non-linear wave interaction dynamics, 
the critical Reynolds number carries a vexatious implication.  
The resolution of computational grids needed to realize 
turbulent flow structures scales exponentially with the 
Reynolds number (number of grid points ~ ܴ݁ଽ ସ⁄ ) [3].   

Hence, for transition to occur, the Reynolds number must 
surpass a critical threshold, and the numerical visualization 
of the transition process at that Reynolds number requires a 
computational grid that scales exponentially with it.  The 
exponential correlation between the Reynolds number and 
computational grid causes the computational demands to 
quickly reach impractical levels for even typical turbulent 
flow conditions.   

Clearly then, due to the amalgamation of these issues, 
microscopic length scales of turbulent eddies, three-
dimensionality, and critical Reynolds number, the 
computational demands weigh onerously on numerical 
simulations of turbulence transition.  Computational 
capacity of the present time cannot meet such demands for 
flows of physically realistic dimensions within practical 
simulation runtime limits.  The limitation in computational 
capacity leads to a follow-up challenge, well-renowned as 
the Open Boundary Condition (OBC) problem.   

B. Open Boundary Condition Problem 
Because present-day computational capacity cannot 

practically realize turbulence transition for flows of realistic 
physical dimensions, the computational domain must be 
truncated to maintain satiable computational demands.  This 
truncation creates its own problems.  Questions now arise 
regarding what should be the correct boundary conditions 
stipulated at the points of truncation.  In general, for 
boundary layer flows, the domain will be truncated at the 
freestream and outflow boundaries.  For the freestream 
boundary, because it lies transverse to the prevailing flow, 
the disturbance vorticity will decay rapidly along that 
direction, making the boundary conditions there relatively 
manageable.   However, the case of the outflow boundary 
stands as a formidable challenge, because it lies in-line with 
the flow direction and the downstream direction of the 
amplifying waves.  The propagating waves will exit the 
domain at the outflow boundary while potentially still 
containing appreciable wave amplitudes.   How to correctly 
define the outflow boundary conditions becomes a topic of 
much longstanding controversy and debate.  The outflow 
boundary conditions must be defined in such a way as to 
prevent the exiting waves from reflecting back into the 
domain to cause numerical errors.  This issue is known as 
the Open Boundary Condition (OBC) problem.  

Sani and Gresho, 1994 [15] provides an interesting review 
of OBC’s based on dialogue from two mini-symposia, Mini-
symposium on Outflow Boundary Conditions for 
Incompressible Flow, that took place within the 6th and 7th 
International Conference on Numerical Methods in Laminar 
and Turbulent Flow, 1989 and 1990, respectively [15]. The 
mini-symposia posed four problems and invited 
contributions on defining the OBC’s for them.  The four 
problems were the backward-facing step, stratified 
backward-facing step, vortex shedding past a cylinder, and 
Poiseuille-Bernard channel flow [15].  Many different forms 
of the OBC were tested.  Sani and Gresho, 1994 [15] reports 
on the effectiveness of these boundary conditions when 
applied to the four problems.  Ultimately, the correct choice 
of OBC also varies with the specific flow conditions of each 
problem.  So, the correct stipulation of the OBC remains 
inconclusive and elusive.  Other studies that propose their 



 

solutions for non-reflecting OBC’s include Jin and Braza, 
1993 [16], Hedstrom 1979 [17], Rudy and Strikwerda, 
1980[18], and Johansson, 1993 [19].  Another excellent 
review of OBC’s is given in Gresho, 1991 [20].   

Since the correct definition of the OBC proves to be 
querulous, perhaps then, it would be expedient to eschew the 
topic by appealing to the convenience of using a buffer 
domain.   A buffer domain implements a damping function 
near the outflow that would dissipate the waves prior to their 
exit.  Other works that practice this strategy include Streett, 
1989 [21] and Meitz, et al., 2000 [22]. 
 The insertion of an artificial buffer domain onto an 
artificial truncation of that domain merely trades one 
problem for another.  Unsurprisingly, a new problem 
emerges, this time in the form of grid-mesh oscillations.  
The buffer domain inserts a discontinuity into the flow 
domain that will generate oscillating numerical errors of 
high wave numbers that can flow back upstream to distort 
the true wave dynamics.  Furthermore, the buffer domain 
forcibly damps waves that potentially could still be 
amplifying.  The coerced damping against the amplifying 
will of the waves results in violent oscillations with clearly 
visible shaking of the wave motion, as the waves struggle 
against the suppression of the buffer domain.  Grid-mesh 
oscillations declare a very important issue of contention in 
the simulations of turbulence:  control of numerical errors.  

C. Numerical Errors 
Nonlinear wave generation, interaction, and amplification 

in boundary layer turbulence transition rely heavily on the 
intricate minutiae underlying synchronization of the phases 
and amplitudes of the propagating wave packets.   As such, 
the presence of pernicious numerical errors exacts a 
noisome toll on the accuracy and precision of the numerical 
visualizations with potentially disastrous consequences.   
One of the sources of numerical errors emanates from the 
buffer domain.  The buffer domain prevents the exiting 
waves from reflecting back upstream but at the cost of 
introducing its own errors in the form of grid-mesh 
oscillations.  Other types of errors can be introduced from 
the numerical discretization of the governing equations of 
the flow.   With finite difference discretizations, numerical 
dissipiation, dispersion, and aliasing errors become relevant. 

Dissipation errors pertain to the accurate depiction of the 
amplitudes of the propagating waves.  The flow contains 
natural viscous dissipative forces.  So, dissipation errors can 
emerge simply from inaccurate accounting for the effects of 
viscous dissipation ([2], [23], and [24]).  In addition, the 
numerical discretization can generate pseudo-dissipative 
mechanisms in the simulation that otherwise should not be 
present at all ([2], [23], and [24]).  These would be 
numerical dissipation errors.  Dissipation errors impact the 
amplification behavior within the wave interaction 
dynamics, and wave amplification is a key component of the 
turbulence transition process.   

Dispersion errors deal with the phase velocities of the 
traveling waves, as well as, the relative velocities amongst 
waves within a group or packet.  The effects of dispersion 
errors cause the wave velocities to drift away from their true 
speeds ([2], [23], and [24]).  This can lead to incorrect 
lagging or acceleration of the traveling waves, or even 

worse, a false total reversal in the direction of propagation.  
Dispersion errors affect the phase synchronization of the 
interacting waves, and this synchronization is the flywheel 
that drives wave generation, interaction, and amplification in 
boundary layer turbulence transition.  

Perhaps, the most dyspeptic prospects egress from 
aliasing errors.  The interactions of the propagating waves 
produce additional waves with increasing wave numbers.  
For simulations with insufficient numerical resolution, the 
high wave number waves would need to be interpolated or 
aliased onto the grid as lower wave number waves.  The 
incorrect representation of the high wave number wave as a 
lower wave number wave will cause numerical instabilities 
that culminate in the apprehensive scenario of numerical 
blow-up ([25] and [26]).   Indeed, aliasing error threatens 
potential disaster if the numerical simulation does not 
adequately address its catastrophic influence.  

So then, the discussion heretofore should elucidate the 
both the detracting and devastating aspects of numerical 
errors.  Therefore, the abeyance of numerical errors poses a 
mandate of utmost importance.   Combined compact 
difference numerical methods offer a viable tool for 
surmounting the preceding jeremiad in regards to the 
challenges confronting the numerical simulations of wave 
dynamics occurring in boundary layer turbulence transition. 

III. PROBLEM DEFINITION 
The governing equations for turbulence transition in 

boundary layer flow are the Navier-Stokes (NS) equations.  
For better ease of defining the flow conditions at the 
boundaries, the NS equations undergo a conversion to its 
variant form, the Vorticity Transport Equation (VTE).  Chen 
and Chen, 2010 [3] provides copious discussions on the 
transformation procedure and its mathematical implications.  
The total set of governing equations for two-dimensional 
flows comprise the VTE given in (1), the Velocity-Poisson’s 
Equation in (2), and the continuity condition in (3): 
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where U is the velocity in the x-direction, V is the velocity 
in the y-direction, and Ω  is the vorticity.  The numerical 
model can be extended to three-dimensional flows once the 
accuracy of the two-dimensional model has been 
established.  The flow parameters U , V , and Ω  consist of 
steady, time-independent base flow components, BU , BV , 
and BΩ , with no disturbances and time-dependent 
components, u , v , and ω, that account for the disturbance:  

),,(),(),,( tyxuyxUtyxU B +=  (4) 
),,(),(),,( tyxvyxVtyxV B +=  (5) 

).,,(),(),,( tyxyxΩtyxΩ B ω+=  (6) 
Figure 1 shows the flow domain.  Truncations to the 

domain occur at the freestream boundary CD and outflow 
boundary BC.  The perturbation is introduced into the flow 
at the location of the black block in the form of a blowing 



 

and suction strip modeled by a sinusoidal function: 
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Fig. 1.  The computational flow domain. 

 
Chen and Chen, 2010 [24] expounds on the boundary 

conditions.  Noteworthy are the freestream and outflow 
boundaries.  The freestream boundary conditions are:  
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where α is the linear disturbance wave number.   
The OBC problem at the outflow boundary is treated by a 

buffer domain.  The buffer domain damps ω between a 
designated point x = xB and the outflow boundary by 
multiplying ω to a damping function T(Lb) given in Fig. 2: 

.
MB

B
b xx

xxL
−
−

=  (13) 

 
Fig. 2.  The damping function. 

 
After damping, the outflow boundary conditions are: 
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The insertion of the buffer domain interjects a 

discontinuity that produces grid-mesh oscillating errors with 
high wave numbers. To preserve the accuracy and precision 
of the numerical simulation, the grid-mesh oscillations must 
be suppressed along with other types of numerical errors, 
dissipation, dispersion, and aliasing errors.   

IV. NUMERICAL METHOD 

A. Combined Compact Difference Schemes 
High-order combined compact difference (CCD) schemes 

provide the dual advantages of accuracy of simulations and 
control of numerical errors.   The CCD scheme combines 
the discretization for the function, f, its first derivative, F, 
and second derivative, S, with a, b, and c as the coefficients 
of the numerical scheme and h as the grid size: 

0
2

1

2

1

2

1

,1,1
2

,1 =++ ∑∑∑
=

+
=

+
=

+

j

jj
jjj

j

jj
jij

j

jj
jij fcSbhFah  (15) 

.0
2

1

2

1

2

1

,2,2
2

,2 =++ ∑∑∑
=

+
=

+
=

+

j

jj
jij

j

jj
jik

j

jj
jij fcSbhFah  (16) 

A 5-point CCD scheme involves points at i = -2, -1, 0, 1, 
2.   To derive a CCD scheme of 12th-order accuracy, there 
will be 15 coefficients each for (15) and (16). The 
parameters bp,2 (p = 1, 2) should be set as 1 for 
normalization. Then, bp,0 and bp,1 are free for selection.   The 
other 12 parameters are obtained from matching the Taylor 
series up to 12th-order.  

The discretizations of the spatial derivative terms 

involving 2

2

x∂

∂ , 
y∂

∂  , and 2

2

y∂

∂ in (1) to (3) use 12th-Order 

Centered-Difference Combined Compact Difference 
schemes hereafter referred to as CCCD12.  The high order 
of the numerical discretizations here will suppress 
dissipation and dispersion errors.   The discretization of the 

downstream convective term 
x
ΩU

∂
∂  uses a 12th-Order 

Upwind-type Combined Compact Difference scheme 
hereafter referred to as UCCD12.  The upwind nature of this 
discretization scheme will suppress the grid-mesh 
oscillations arising from the buffer domain. The 
discretization of the temporal derivative in (1) uses a 4th-
order 5-6 alternating stages Runge-Kutta (RK) scheme 
based on Hu, et al., 1996 [27].  

B. Control of Numerical Errors 
The effectiveness of the CCCD12 and UCCD12 schemes 

in controlling numerical errors can be examined using 
Modified Wave Number analysis.  This method takes the 
Fourier transform of (15) and (16) to consider the numerical 
errors in spectral space: 
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where    is the Fourier transform of f,              ,   and               
is the scaled wave number, the wave number multiplied by 
the grid size Δx.   Due to numerical errors, the scaled wave 
numbers will be modified.  The parameters w1 and w2

 are the 
modified scaled wave numbers for the discretizations of the 
first and second derivatives, respectively. The modified 
scale wave numbers are complex numbers, whereas the true 
scale wave numbers are purely real numbers.  Figure 3 
shows a comparison between the modified and true scaled 
wave numbers for the first derivative discretizations using 
the CCCD12, UCCD12, and ECD1st12 (12th-Order Explicit 

xkw Δ=f
)

1−=I



 

Centered-Difference) schemes.  The subscripts R and I 
represent the real and imaginary parts, respectively.   
Deviations of the real part of the modified scale wave 
number from the true value w will cause dispersion errors.  
Deviations of the imaginary part, which should be zero since 
w is a real number, will give rise to dissipation errors.  
Figure 3 indicates that, the real parts of the modified scale 
wave number, (w1)R, for the CCCD12 and UCCD12 
schemes remain close to the true value w for a longer range 
than the ECD1st12 scheme.  So, the two former schemes 
should display greater accuracy and lower dispersion errors 
than the latter.  The UCCD12 scheme is the only method 
that exhibits an imaginary part, increasing rapidly at high 
scaled wave numbers to signify powerful dissipation.   
 

 
Fig. 3.  Comparison between the modified and true scaled wave numbers 
for the first derivative discretization. 
 

The numerical method can be optimized to leverage upon 
the high accuracies of CCCD12 and UCCD12 schemes and 
the dissipative tendencies of the UCCD12 scheme at high 
wave numbers.  The idea here is to choose the grid size Δx 
and coefficients of the UCCD12 and 5-6 RK schemes such 
that the physical waves for simulation will fall in the range 
where (w1)R remains close to w for accurate realizations.  
Then, the grid-mesh oscillating errors with high wave 
numbers will be made to enter into the high dissipation 
range and be dissipated by the imaginary part (w1)I.   

V. RESULTS AND DISCUSSIONS 
To establish confidence in the accuracy of the numerical 

model, its simulations of linear instability can be validated 
versus the OS equation.  Figure 4 shows a comparison 
between model predictions and solutions of the OS equation 
for the wall-normal profiles of flow parameters u, v, and ω.  
The results of the model and the OS equation completely 
overlap, averring excellent agreement.  
 

 
Fig. 4.  Validation of the numerical model versus linear stability theory and 
the OS equation. Initial disturbance A0 = 0.009% of the freestream velocity 
to maintain linear waves.  Downstream x-location .400== xReRex  

 

With confidence assured, the matter at hand shifts to the 
investigation of nonlinear wave generation, interaction, and 
amplification in boundary layer turbulence transition. Figure 
5 delivers a numerical realization to this effect.  The 
numerical visualization of the downstream evolution of the 
u-disturbance velocity vividly describes the sequence where 
disturbance waves manifest then amplify in their amplitudes 
as they traverse downstream.  Indeed, the targeted nonlinear 
wave dynamics have been realized.  

 
Fig. 5.  Downstream amplification behavior of the u-disturbance velocity.  
Amplitude of initial disturbance A0 = 0.3% of the freestream velocity.  
 

Notice a critical development occurring at the buffer 
domain.  When the waves arrive at the buffer domain, their 
amplification persists.  However, the damping function of 
the buffer domain forcibly compels the amplifying waves to 
damp.  The struggle between the natural amplifying 
tendencies of the waves and the forced damping of the 
buffer domain produces a visible shaking of the waves in the 
simulation.  Numerical errors caused by the disruption from 
the buffer domain are quite obvious, as is the importance of 
controlling these errors.  The oscillations at the buffer 
domain tend to have high wave numbers, and the numerical 
method can eliminate them using the dissipative 
mechanisms of the UCCD12 scheme shown in Fig. 3.   

Figure 6 shows Fourier decomposition of the flow field in 
Fig. 5 and depicts four constituent wave components 1F to 
4F.  The 4F wave has four times the frequency as the 1F.   
Notice here that the 3F and 4F waves display amplitudes 
orders of magnitude lower than the 1F and 2F.  The 
microscopic amplitudes of the 3F and 4F waves render them 
especially vulnerable to distortions from numerical 
dissipation, dispersion, and aliasing errors.  The high-order 
CCCD12 schemes applied to the spatial derivatives control 
the numerical errors and preserve the low-amplitude waves.   
Notice further that the 4F wave has a scaled wave number of 
2.25, which according to Fig. 3, places it safely in the region 
before the large dissipative effects at high wave numbers.  
So, the delicate 4F wave can be protected from this risk.   

An immediate riposte that inveighs upon this result 
should be addressed, and that is, the dissipative mechanism 
of the UCCD12 scheme can destroy high wave number 
physical waves that may be crucial to the wave interaction 
dynamics.  In fact, the dominance of microscopic-scale 
eddies in turbulence suggests that high wave number 
physical waves would seem especially relevant to the 



 

process.  The remedy to this conundrum would call for 
rigorous further study of the wave interaction dynamics to 
astutely demarcate the cut-off point for realizing high wave 
number waves.  Beyond the cut-off point, the waves can be 
allowed to be dissipated.  In Fig. 6, the justification for 
realizing up to the 4F wave contends that inclusion of higher 
wave number waves would not produce appreciable changes 
to the overall disturbance amplification.  

 

 
Fig. 6.  Fourier transformation of the fully developed flow field given in 
Fig. 5 at the wall-normal location y = 0.7.   

 
Figure 7 exhibits qualitative agreement between the 

model predictions and the work of Bertolotti, et al., 1992 
[28] for the amplification behaviors of the 1F and 2F waves.  
Also, the 1F wave amplifies faster than the prediction from 
the OS equation due to the inclusion of nonlinear interaction 
effects.  These results attest to the accuracy of the model.  

 

 
Fig. 7.  Comparisons of simulation results of nonlinear amplification of the 
maximum disturbance velocity umax with linear stability theory and 
Bertolotti, et al., 1992 [28]. 

VI. CONCLUSION 
This has been an illuminating discourse on non-linear 

wave generation, interaction, amplification in boundary 
layer turbulence transition.  This fascinating problem traces 
from the classical works of Schubauer and Skramstad, 1947 
[1], Klebanoff, et al., 1962 [4], and  Kachanov and 
Levchenko, 1984 [5].  Important challenges confront the 
numerical simulation of turbulence transition in terms of 
considerations for computational resolution, the OBC 
problem, and control of numerical errors.  The numerical 
model uses high-order, optimized CCD schemes to preserve 
the physical waves, while dissipating numerical errors with 
high wave numbers.  Numerical realizations resplendently 
demonstrate the wave dynamics and its underlying 
constituent components.  Validation of the model versus 
linear stability theory and other works of non-linear wave 
dynamics asserts confidence and legitimacy.  The numerical 
model can be extended to three-dimensions to realize the 
full turbulence transition process and to address the issue of 
meeting the requisite computational demands.  
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