
 

  
Abstract—Power of the analysis of variance (ANOVA) and 

the Kruskal-Wallis test for comparing the several Weibull 
population means is investigated. Since Weibull data sets are 
nonnormal distributed, they must be transformed to normal 
distribution with constant variance before ANOVA is applied 
whereas the Kruskal-Wallis test does not need the normality 
assumption. The power of them was compared in a number of 
different situations and different sample sizes. The results 
depended on the coefficient of variation of population means. It 
seems that the power of ANOVA is higher than the power of 
the Kruskal-Wallis test a little in every case. 

 
Index Terms—Weibull Data, Power, The Coefficient of 

Variation, Population Means 
 

I. INTRODUCTION 
HERE are many methods for comparing of more than 
two population means such as the analysis of variance 

(ANOVA) and the likelihood ratio test (LRT). It is easier to 
use the ANOVA if the data are normally distributed. In case 
of nonnormal data, we usually apply the LRT to scale, 
location or shape parameter. Nagarsenker [1] derived the 
exact distribution of the likelihood ratio statistic for testing 
the equality of parameters of k exponential populations. The 
exact significant points for moderate sample sizes were 
checked using Box’s chi-squared approximation and the 
beta approximation. When computed numerically, the beta 
approximation was shown to be better than Box’s chi-
squared approximation. Singh [2] derived the likelihood 
ratio test for testing the equality of location parameters of 
k( 2)≥  two-parameter exponential distributions based on a 
type-II censored sample, assuming that the scale parameters 
were unknown but equal. Gill [3] proposed a likelihood-
based test for comparing the means of two or more log-
normal distributions with unequal variances when the 
sample sizes were small. The performance of the proposed 
procedure was compared with the F-ratio test using Monte 
Carlo simulation. The likelihood-based test had a better 
power than the F-test when the population dispersion 
parameters were heterogeneous.  
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However, it is difficult to find the exact distribution of the 

likelihood ratio statistic, Λ . For large samples the statistic 
2 ln− Λ  is approximately distributed as chi-squared with  

k-1 degrees of freedom, where k is a number of the 
population. For small samples the approximated chi-square 
may be inaccurate. Alternatively, the Kruskal-Wallis non-
parametric test can be used. ANOVA can be applied if and 
only if the nonnormal data are transformed to fit the 
required assumption of it. In this paper, the power of the 
ANOVA and the Kruskal-Wallis test for comparing the 
several Weibull population means is investigated. 

II. THE WEIBULL DISTRIBUTION 
The Weibull distribution is a continuous probability 

distribution. It is named after Waloddi Weibull who 
described it in detail in 1951. The probability density 
function of a two parameter Weibull random variable X is 
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where α is the shape parameter and γ  is the scale 

parameter. The mean is 1 1⎛ ⎞γ ⋅Γ +⎜ ⎟α⎝ ⎠
. It’s useful in many 

fields such as survival analysis, extreme value theory, 
weather forecasting, reliability engineering and failure 
analysis. Moreover, it is used to describe wind speed 
distribution, the particle size distribution, and so on. 
Furthermore, it is related to the other probability distribution 
such as the exponential distribution when α=1 [4].  

III. TESTS FOR COMPARISONS OF SEVERAL WEIBULL 
POPULATION MEANS 

A. The ANOVA  
Usually, a Box-Cox transformation is used to transform 

data to normality. For the ANOVA, the Box-Cox 
transformation is in the form 
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for ijx > 0, where ijX is a random variable in the jth trial 
from the ith population, ijY  the transformed variable of 

ijX and λ  a transformation parameter, but the condition of 
observation is that the value of it is greater than zero. In the 
sets of Weibull data, the some observations may be zero. In 
order to cope with this problem, Watthanacheewakul [5] 
presented the alternative transformation for any sets of 
Weibull data to normality with constant variance in this 
form 
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where  ijX  is a random variable in the jth  trial from the ith 
                  Weibull distribution, 

    ijY   the transformed variable of ijX ,      

        ic   the range of the ith Weibull distribution, and 
     λ   a transformation parameter.     
Furthermore, the power of the ANOVA increases as 

sample size increases.  When the differences among the 
population means are larger, higher powers of the tests are 
obtained. 

B. The Kruskal-Wallis Test           
This is a non-parametric analogue, based on rank, of  

one-way analysis of variance. The test statistic is  
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where iR is the average rank of the member of the ith  

sample obtained after ranking all of the 
k

i
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observations. Kruskal [6] proves that if 0H is true, the 
statistic H has a limiting chi-square distribution with k–1 
degrees of freedom as in → ∞  simultaneously. 

IV. POWER FUNCTIONS OF TESTS 
In order to compare the power of the ANOVA with its of 

the Kruskal-Wallis test, the power functions are taken into 
consideration. Patnaik [7] and Pearson and Hartley [8] 
showed that the power function of ANOVA is in the form  
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(5) 
where B is a beta function, F′  is a distribution function of a 
non-central F, with a non-centrality parameter, δ . Andrew 
[9] showed that the power function of the Kruskal-Wallis 

test has an approximate non-central 2χ distribution with k-1 
degrees of freedom and the non-centrality parameter is 
defined as      
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where iξ 's are not all equal and i
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The power function is given by      
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V. SIMULATION METHOD 
Since the power functions of the two tests are in different 

forms, they cannot be compared directly. To draw a 
conclusion, the power of the tests is studied numerically for 
particular cases by simulation method. 

A. Simulation Method 
A power comparison of several tests was suggested in two 

steps [10].  
1) To find the critical value for rejection of the null 

hypothesis, Weibull populations of size iN = 4,000 are 
generated for 1 2 k...α = α = = α  and 1 2 k...γ = γ = = γ , 
i 1, 2,.., k= . From each generated population, 1,000 random 
samples, each of size in , i 1,2,..., k= , are drawn. The test 
statistics of the two tests are calculated from each of the 
1,000 samples. For each test, the 1,000 values of the test 
statistics are arranged in an increasing order and the 95th 
percentile is identified. This gives the critical values at 

0.05α =  for the two tests. 
2) Since the proportion of rejections of the null 

hypothesis when the alternative is true is needed, Weibull 
populations of size iN = 4,000 are generated for various 
parameter values i iand ,  i 1,2,.., kα γ = . Since means of 
Weibull distributions depend on both shape parameter, iα , 
and scale parameter, iγ , i 1, 2,.., k=  and there are many 
values of shape parameter and scale parameter, the 
difference of means of several Weibull distributions are 
considered. The difference of means is measured by the 
coefficient of variation (C.V.), 
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They are set for two cases: the shape parameters are the 

same and the scale parameters are different and both shape 
and scale parameters are different. We ignore in case of the 
shape parameters are different but the scale parameters are 
the same because the coefficients of variation have a little 
change in each situation. 



 

From each generated i iWeibull( , )α γ population, 1,000 
random samples, each of size in , are drawn. The test 
statistics of the two tests are calculated. If the value of the 
test statistic is in the rejection area, as defined by the critical 
values, then the null hypothesis is rejected. The power of the 
test is the proportion of times that the null hypothesis is 
rejected. 

Let  Fβ̂  be the power of the ANOVA, and Hβ̂  the power 
of the Kruskal -Wallis test. The values of parameters and 
the significant value are set as follows:  
  1)  k = number of the populations = 3 

 2) in = sample sizes from the ith Weibull population, is 
             between 10 and 50,  for i 1,..., k=  

     3) iα = the shape parameter of the ith Weibull 
                 population, is  between 2 and 4 

 4) iγ = the scale parameter of the ith Weibull population, 
             is between 1,000 and 2,000 

     5) 0.05α = . 
 

B. Results of the Power Comparison 
For a fixed null hypothesis, the power of the two tests is 

obtained as the proportion of rejection when the alternative 
hypothesis is true with different values of the coefficients of 
variation of population means. When the coefficient of 
variation of population means is zero, the null hypothesis is 
true. Hence, the proportion of rejecting the null hypothesis 
is equal or nearly closed to the level of significance α . 
When the coefficient of variation of population means is 
greater than zero, the null hypothesis is false or the 
alternative hypothesis is true. Thus the proportion of 
rejection of the null hypothesis is the estimate of the power 
of the test. The results of the power of tests for different 
sample sizes and different coefficients of variation of 
population means are compared when α  is set equal to 
0.05. 

The results of comparison are divided into two cases. 
1) Same Shape Parameters but Different Scale 

 Parameters  
To make it clear, the examples of the values of shape 

parameter and scale parameter and the calculation of the 
coefficient of variation are illustrated in Table I and Table 
II, respectively. 

The results are shown in Table III to Table V. 
 

TABLE I 
THE VALUES OF SAME SHAPE PARAMETERS AND 

DIFFERENT SCALE PARAMETERS 
No. 

iα and iγ   Values of Parameters 

1 1 2 3 1 2 32, 2, 2, 1000, 1001, 1002α = α = α = γ = γ = γ =  
2 
 

1 2 3 1 2 32, 2, 2, 1000, 1050, 1100α = α = α = γ = γ = γ =  

3 
 

1 2 3 1 2 32, 2, 2, 1000, 1100, 1200α = α = α = γ = γ = γ =  

4 1 2 3 1 2 32, 2, 2, 1000, 1150, 1300α = α = α = γ = γ = γ =  

5 1 2 3 1 2 32, 2, 2, 1000, 1200, 1500α = α = α = γ = γ = γ =  

6 1 2 3 1 2 32, 2, 2, 1000, 1500, 2000α = α = α = γ = γ = γ =  

 
 
 
 

TABLE II 
THE CALCULATION OF THE COEFFICIENT OF VARIATION  

OF POPULATION MEANS 
No. 1μ 2μ 3μ C.V. (%) 

1 886.23 887.11 888.00 0.10 

2 886.23 930.54 974.85 4.76

3 886.23 974.85 1063.47 9.09

4 886.23 1019.16 1152.10 13.04

5 886.23 1063.47 1329.34 20.40

6 886.23 1329.34 1772.45 33.33

 
  

TABLE III 
THE POWER OF TESTS WHEN THE C.V. OF POPULATION MEANS VARIES WITH 

EQUAL SAMPLE SIZES OF in = 10 AND in = 20 

 

No. 
C.V. (%) in = 10 in = 20 

Fβ̂  Hβ̂  Fβ̂  Hβ̂  
1 0.10 0.053 0.050 0.057 0.057 

2 4.76 0.058 0.058 0.085 0.077 

3 9.09 0.101 0.096 0.111 0.106 

4 13.04 0.145 0.131 0.240 0.205 

5 20.40 0.288 0.246 0.579 0.508 

6 33.33 0.633 0.590 0.941 0.912 

 
 

TABLE IV 
THE POWER OF TESTS WHEN THE C.V. OF POPULATION MEANS VARIES WITH 

EQUAL SAMPLE SIZES OF in = 30 AND in = 50 

 

No. 
C.V. (%) in = 30 in = 50 

Fβ̂  Hβ̂  Fβ̂  Hβ̂  
1 0.10 0.059 0.058 0.058 0.055 

2 4.76 0.098 0.085 0.100 0.088 

3 9.09 0.181 0.156 0.293 0.244 

4 13.04 0.358 0.283 0.544 0.453 

5 20.40 0.736 0.668 0.938 0.899 

6 33.33 0.993 0.987 1.000 1.000 

 
 

TABLE V 
THE POWER OF TESTS WHEN THE C.V. OF POPULATION MEANS VARIES WITH 

UNEQUAL SAMPLE SIZES OF  1 2 3n 10, n 20, n 30= = =   

AND 1 2 3n 10,n 30,n 50= = =  

 

No. 
C.V. 

(%) 
1 2 3n 10, n 20, n 30= = = 1 2 3n 10, n 30, n 50= = = 

Fβ̂  Hβ̂  Fβ̂  Hβ̂  
1 0.10 0.052 0.052 0.057 0.051 

2 4.76 0.075 0.068 0.058 0.056 

3 9.09 0.100 0.092 0.101 0.097 

4 13.04 0.175 0.154 0.233 0.209 

5 20.40 0.459 0.417 0.577 0.542 

6 33.33 0.838 0.837 0.913 0.906 

 



 

In this case, the power of ANOVA is often higher than 
the power of the Kruskal-Wallis test a little both equal and 
unequal sample sizes. Furthermore, the power of the two 
tests increases as sample size increases.  When the 
differences among the population means are larger, higher 
power of the tests is obtained. Furthermore, they have the 
same power. 

2) Different Shape Parameters and Different Scale 
Parameters 

From the values of shape parameters and scale parameters 
as Table VI and the values of the coefficient of variation as 
Table VII, the power of the two tests is shown in Table VIII 
to Table X. 

 
TABLE VI 

THE VALUES OF DIFFERENT SHAPE PARAMETERS AND 
DIFFERENT SCALE PARAMETERS 

No. 
iα and iγ   Values of Parameters 

1 1 2 3 1 2 32, 2.25, 2.4, 1000, 1001, 1002α = α = α = γ = γ = γ =  
2 
 

1 2 3 1 2 32, 3, 4, 1000, 1050, 1100α = α = α = γ = γ = γ =  
3 
 

1 2 3 1 2 32, 3, 4, 1000, 1100, 1200α = α = α = γ = γ = γ =  

4 1 2 3 1 2 32, 3, 4, 1000, 1150, 1300α = α = α = γ = γ = γ =  

5 1 2 3 1 2 32, 3, 4, 1000, 1200, 1500α = α = α = γ = γ = γ =  

6 1 2 3 1 2 32, 3, 4, 1000, 1500, 2000α = α = α = γ = γ = γ =  

 
 

TABLE VII 
THE CALCULATION OF THE COEFFICIENT OF VARIATION  

OF POPULATION MEANS 
No. 1μ 2μ 3μ C.V. (%)  

1 886.23 893.87 908.22 0.12 

2 886.23 937.63 997.04 5.90

3 886.23 982.28 1087.68 10.23

4 886.23 1026.93 1178.32 14.18

5 886.23 1071.58 1359.60 21.57

6 886.23 1339.47 1812.80 34.42

 
From Table VIII to Table X, the results are as the same 

 in case of same shape parameters but different scale 
parameters. 

 
TABLE VIII 

THE POWER OF TESTS WHEN THE C.V. OF POPULATION MEANS VARIES WITH 

EQUAL SAMPLE SIZES OF in = 10 AND in = 20 
 

No. C.V. (%) in = 10 in = 20 

Fβ̂  Hβ̂  Fβ̂  Hβ̂  
1 0.12 0.058 0.057 0.061 0.060 

2 
 

5.90 0.132 0.121 0.265 0.262 

3 
 

10.23 0.142 0.137 0.269 0.266 

4 14.18 0.260 0.247 0.495 0.476 

5 21.57 0.638 0.608 0.926 0.913 

6 34.42 0.957 0.948 1.000 1.000 

 
 
 

TABLE IX 
THE POWER OF TESTS WHEN THE C.V. OF POPULATION MEANS VARIES WITH 

EQUAL SAMPLE SIZES OF in = 30 AND in = 50 

 

No. 
C.V. (%) in = 30 in = 50 

Fβ̂  Hβ̂  Fβ̂  Hβ̂  
1 0.12 0.063 0.061 0.072 0.069 

2 5.90 0.341 0.334 0.527 0.517 

3 10.23 0.391 0.372 0.623 0.613 

4 14.18 0.662 0.639 0.876 0.872 

5 21.57 0.990 0.988 1.000 1.000 

6 34.42 1.000 1.000 1.000 1.000 

 
 

TABLE X 
THE POWER OF TESTS WHEN THE C.V. OF POPULATION MEANS VARIES WITH 

UNEQUAL SAMPLE SIZES OF  1 2 3n 10,n 20,n 30= = =   

AND 1 2 3n 10, n 30, n 50= = =  

 

No. 
C.V. 

(%) 
1 2 3n 10, n 20, n 30= = = 1 2 3n 10, n 30, n 50= = = 

Fβ̂  Hβ̂  Fβ̂  Hβ̂  
1 0.12 0.066 0.058 0.064 0.060 

2 5.90 0.320 0.260 0.409 0.333 

3 10.23 0.324 0.254 0.429 0.349 

4 14.18 0.481 0.431 0.625 0.565 

5 21.57 0.922 0.878 0.984 0.961 

6 34.42 0.997 0.995 1.000 0.999 

 

VI. CONCLUSION 
In order to compare the power of parametric and 

nonparametric test for testing means of several Weibull 
population, both the ANOVA and the Kruskal-Wallis test 
were investigated. The Weibull data must be transformed to 
normal distribution with constant variance before ANOVA 
is applied whereas the Kruskal-Wallis test does not need the 
normality assumption. Furthermore, the power of the 
ANOVA is compared to the power of the Kruskal-Wallis 
test. Since the power functions of the two tests are of 
different forms and cannot be compared explicitly, a 
numerical method is then used for comparison purposes. It 
is found that the power of ANOVA is often higher than the 
power of the Kruskal-Wallis test a little both equal and 
unequal sample sizes. Furthermore, the power of the two 
tests increases as sample size increases. When the 
differences among the population means are larger, higher 
power of them is obtained and they have the same power. 
The results are the same both in case of same shape 
parameters but different scale parameters and different 
shape parameters and different scale parameters. 
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