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Abstract-The labels mathematician, engineer, and 
physicist have all been used in reference to Balthazar van 
der Pol. 
The van der Pol oscillator, which we study in this paper, is a 
model developed by him to describe the behavior of 
nonlinear vacuum tube circuits in the relatively early days 
of the development of electronics technology. 

Our study in this paper will be based entirely on numerical 
solutions. The rigorous foundations for the analysis (e.g., the 
proof that the equation has a limit cycle solution which is a 
global attractor) date back to the work of Lienard in 1928, 
with later more general analysis by Levinson and others. 

 
Index terms-Van der Pol Equation, Lienard Theorem, 

Limit Cycle, Two-Timing, Regular Perturbation 

 

I. INTRODUCTION 

In the early day of nonlinear dynamic, say from about 
1920 to 1950, there was a great deal of research on 
nonlinear oscillation. The work was initially motivated by 
the development of radio and vacuum tube technology, 
and later it took on a mathematical life model of its own. 
It was found that many oscillating circuit could be 
modeled by second-order differential equation of the 
form 
          xሷ ൅ fሺxሻxሶ ൅ gሺxሻ ൌ 0    ሺ1ሻ 
Now known as lienard’s equation. It can also be 
interpreted mechanically as the equation of motion for a 
unit mass subject to a nonlinear damping force “ - fሺxሻxሶ  ” 
and nonlinear restoring force “ -g(x) ”. 
In fact lienard equation is equivalent to the system 

         ൜
xሶ ൌ y

yሶ ൌ െgሺxሻ െ fሺxሻy
      (2) 

The following theorem states that the system has a 
unique, stable limit cycle under appropriate hypothesis on 

f(x) and g(x). (Detail of proof in Jordan and Smith 
(1978), Grimshaw (1990) and Perko (1991)) 
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A.  Lienard’s Theorem  
Suppose that f(x) and g(x) satisfy the following 
conditions: 
1. f(x) and g(x) are continuously differentiable for all x; 
2. g(x) is an odd function (or g(-x) = -g(x)); 
3. gሺxሻ ൐ 0 for ݔ ൐ 0; 
4. f(x) is an even function (or f(-x) = f(x)); 

5.  The odd function Fሺxሻ ൌ ׬ fሺuሻdu
୶

଴
 has exactly one 

positive zero at x=a, is negative for 0 ൏ ݔ ൏ ܽ , is 
positive and non-decreasing for x ൐ ܽ and 
lim୶→∞ Fሺxሻ ൌ∞ 

Then the system (2) has a unique, stable limit cycle 
surrounding the origin in the phase plane. 
 
B.  van der Pol Equation; Fundamental Property  
In this section we continue the study of the Lienard 
equation in the special case where fሺxሻ ൌ μሺxଶ െ 1ሻ. This 
is the van der Pol equation. 
Since the van der pol equation which is described by  
xሷ ൅ μሺxଶ െ 1ሻxሶ ൅ x ൌ 0 has f(x) = μሺxଶ െ 1ሻ and g(x) = 
x so condition 1-4 of lienard’s theorem are clearly 
satisfied. To check condition (5), notice that 

Fሺxሻ ൌ μሺ
1

3
xଷ െ xሻ 

Hence condition (5) is satisfied for a = √3, thus van der 
pol equation has a unique, stable limit cycle. *In fact 
there is strong theorem about van der Pol equation 
according dynamical systems theory as follow. 
Theorem. There is one nontrivial periodic solution of the 
van der Pol equation and every other solution (except the 
equilibrium point at the origin) tends to this periodic 
solution. “The system oscillates.” 
 
 

II. NONLINEARITY TERMS(1) 

A. Van der pol Equation; Large Nonlinearity Term 
Consider Van der pol equation 
xሷ ൅ μሺxଶ െ 1ሻxሶ ൅ x ൌ 0 (3) 
For ߤ ≫ 1 in this strongly nonlinear limit, we’ll see that 
limit cycle consists of an extremely slow buildup 
followed by a sudden discharge, followed by another 
slow buildup, and so on  



 
Figure 1. Van der Pol equation, µ=100, extremely slow buildup 

followed by a sudden discharge 

 

 
Figure 2. Van der Pol equation, µ=100, extremely slow buildup 

followed by a sudden discharge 

 
 
Now consider a typical trajectory in the (x, y) phase 
plane. The nullclines are the key to understanding the 
motion. We claim that all trajectories behave like that 
shown in Figure 3; starting from any point except the 
origin, the trajectory zaps horizontally onto cubic 
nullcline y = F(x). Then it crawls down the null cline until 
it comes to the knee (point B in figure 3), after which it 
zaps over to other branch of the cubic at C. This is 
followed by another crawl along the cubic until the 
trajectory reaches the next jumping-off point at D, and the 
motion continues periodically after that. 

 
Figure 3. Van der Pol equation, µ=100, typical trajectory in the (x, y) 

phase plane 

 
 
If we go back and look at the Figure 3. again, we will see 
that the motion is consistent with these ideas. Here is a 
more detailed description. 
 
We start approximately at x = 2 and y = 0. The system is 
heavily damped, and there is a kind of creeping motion in 
which the damping force is balanced by the spring force, 
very much like a screen door closer. When x becomes 
less than 1, the damping changes to amplification. The 
system is rapidly accelerated and passes rapidly through 
the region from x = 1 to x = -1. When the system reaches 
the region to the left of x = -1, it is heavily damped, but it 
now has a lot of inertia. It is rapidly decelerated, and x is 
approximately -2 when the velocity falls to zero. Then the 
system creeps back toward x = 0, with damping and 
spring force in balance. When it reaches x = -1, the 
amplication begins again and the system is rapidly 
accelerated from x = -1 to x = 1. At x = 1, the system 
becomes heavily damped again, but inertia carries it out 
to about x = 2, where the velocity falls to zero, and the 
creeping motion begins again.      
 
Oscillation of this type are often called relaxation 
oscillation, because the “stress” accumulated during the 
slow buildup is “relaxed” during the sudden discharge. 
(Edelstein-Keshet 1988, Murray 1989).  
 



 
Figure 4. Van der Pol equation, µ=100, velocity of changes in the 

trajectory 

B.  Approximation of Shape and Period of van der Pol 
Equation; Large Nonlinearity Term  
To motivate the new variable, notice that so if we let 
w ൌ xሶ ൅ μFሺxሻ (4) 
Then van der Pol equation implies that  
wሶ ൌ xሷ ൅ μሺxଶ െ 1ሻxሶ ൌ െx 

Now define new variable y ൌ
୵

μ
, then (1) and (2) become 

ቊ
xሶ ൌ w െ μFሺxሻ

yሶ ൌ െ
ଵ

μ
 x

      (5) 

Now we want to estimate the period of the limit cycle for 
the van der pol equation for ߤ ≫ 1. The period time T is 
essentially the time required to travel along the two slow 
branches, since the time spent in the jumps has 
approximately O(ିߤଵሻ  is neglible for large ߤ. 
By the symmetry, the time spent on each branch is the 

same. Hence T ൎ ׬2 ݐ݀
௧ಳ
௧ಲ

. To derive an expression for dt, 

we have on the slow branches, y ൎ Fሺxሻ ൌ
ଵ

ଷ
xଷ െ x  and 

thus 
ୢ୷

ୢ୲
ൌ ሺxଶ െ 1ሻ

ୢ୶

ୢ୲
      

But since  
ୢ୷

ୢ୲
ൌ െቀ

୶

μ
ቁ, finally we have   

ୢ୶

ୢ୲
ൎ െμ

൫୶మିଵ൯

୶
  (6) 

 on a slow branch. So we have  

T ൎ 2 ׬ െμ
൫୶మିଵ൯

୶
dx

୶ా
୶ఽ

  (7) 

*Now we must compute x୅ and x୆ to evaluation of T. for 
it we note points  x୅ and x୆ are maximum and minimum 

in the figure, so it must be critical points, so 
ୢ୷

ୢ୶
 must be 

either vanished or non-exist, but  
ୢ୷

ୢ୶
ൌ ቀ

ୢ୷

ୢ୲
ቁ ሺ

ୢ୲

ୢ୶
) ൌ െቀ

୶

μ
ቁ ሺ

ୢ୲

ୢ୶
)    (8)  

According (8) we must either x= 0 or ሺ
ୢ୲

ୢ୶
) is non-exist. 

(Although case of ሺ
ୢ୲

ୢ୶
) = 0 is occurred according Figure 5, 

in this case t is a constant function of x so it is 
unacceptable)        

Note that Figure 5 shows only acceptable point is  
x୅ ൌ 2   x୆ ൌ 1    xେ ൌ െ2   xୈ ൌ െ1  

 
Figure 5. x-t diagram and availability of ሺ

ܜ܌

ܠ܌
) 

Now we can compute T. 

T ൎ 2 ׬ െμ
൫୶మିଵ൯

୶
dx ൌ 2μሺ

ଵ

ଶ
xଶ െ ln ሺxሻቚ

ଵ

ଶ

ൌ μሺ3 െ
ଵ

ଶ

2 lnሺ2ሻሻ  (9) 
Which is O(μሻ as expected.      
The formula (9) can be refined. in fact we show that  

T ൎ μሺ3 െ 2 lnሺ2ሻሻ ൅ 2αμି
భ

య ൅ ⋯       (10) 
*Where α ൌ 2.308 is the minus of smallest root of Airy 
function (or Ai (-α) =0 where Ai is Airy function). This 
correction term comes from an estimate of the time 
required to turn the jumps and the crawls.  
 
 

III. NONLINEARITY TERMS(2) 

A. van der Pol Equation; Small nonlinearity Term 
 Consider the equation of the form  
  xሷ ൅ ϵhሺx, xሶ ሻ ൅ x ൌ 0      (11) 
Where 0 ൑ ϵ ≪ 1 and hሺx, xሶ ሻ is an arbitrary smooth 
function. Such equations represent small perturbation of 
the linear oscillator  xሷ ൅ x ൌ 0 and are therefore called 
weakly nonlinear oscillator. Two important examples are 
van der pol equation  
xሷ ൅ ϵሺxଶ െ 1ሻxሶ ൅ x ൌ 0   (12) 
And Duffing equation  
xሷ ൅ ϵxଷ ൅ x ൌ 0  (13)    
To illustrate the kind of the phenomena that can arise 
figure * shows a computer generated solution of the van 
der pol equation in the ሺx, xሶ ሻ plane, for ϵ ൌ 0.1 and an 
initial condition (0.1, 0.1) which is close to origin. The 
trajectory is a slowly winding spiral; it takes many cycles 
for the amplitude to grow substantially. Eventually the 
trajectory asymptotes approximately circular limit cycle 
whose radius is close to 2. 



 
Figure 6. small nonlinearity terms 

 
Figure 7. small nonlinearity terms 

 
Figure 8. small nonlinearity term in x-y diagram 

B. Approximation of Shape and Period of van der Pol 
Equation; Small Nonlinearity Term 
*in this section we introduce two methods for 
approximation of behavior of van der pol equation, then 
discus on efficiency of each one when time become large 
and be extended to infinity. In first method we use of 
regular perturbation and then we use of Two-Timing 
method for our approach. 
B.1 Regular Perturbation Theory and its Failure 
As a first approach we seek solution (3) in the form of a 
power series in ϵ. Thus if x(t, ϵሻ is a solution, we expand 
it as  

x(t, ϵሻ = ∑ ϵ୧x୧ሺtሻ
∞
୧ୀ଴     (14) 

 where the unknown function x୧ሺtሻ are to be determined 
from the governing equation and the initial conditions. 
The hope is that all the important information is captured 
by the first term _ideally, the first two_ and the higher- 
order terms represent only tiny corrections. This 
technique works well on certain of problems but it turns 
in to *trouble here where we handle van der pol equation. 
To expose the source of difficulties we start with a simple 
problem that can be solved exactly. Consider the weakly 
damped linear oscillator. 
   xሷ ൅ 2ϵxሶ ൅ x ൌ 0    (15) 
With initial conditions x(0) = 0, xሶ (0) = 1 
*We can easily derived the solution of (15)  

x(t, ϵ) = ൫ሺ1 െ ϵଶሻ൯
షభ

మ  eିϵ୲ sin(൫ሺ1 െ ϵଶሻ൯
భ

మ t)    (16) 

now we solve the same problem using perturbation 
theory. Substitution of (14) into (15) yields  
ୢమ

ୢ୲మ
ሺx଴ ൅ ϵxଵ ൅⋯ሻ + 2ϵ 

ୢ

ୢ୲
ሺx଴ ൅ ϵxଵ ൅ ⋯ሻ+ ሺx଴ ൅ ϵxଵ ൅

⋯ሻ = 0    (17) 
*After ignoring of detail, the solution is (we’re ignoring 
O(ϵଶሻ and higher equations) 

൜
x଴ሺtሻ ൌ sin ሺtሻ

xଵሺtሻ ൌ െt sin ሺtሻ
     (18) 

Thus  
x(t) = sin(t) - ϵt sin(t) + O(ϵଶ)     (19)  
Although two formulas are agree in the following sense: 
if (16) is expanded as power series in ϵ, the first two 
terms are given by (19), in fact (19) is the beginning of a 
convergent series expansion for the true solution, there 
are two major problems: 
1. The discrepancy occurs because eିϵ୲ = 1- ϵt +O(ϵଶtଶ), 
so to this order in ϵ, it appears incorrectly that the 
amplitude  increase with t. to get the correct result, we’d 
need to calculate an infinite number of terms in the series. 

2. The frequency of the oscillation in (8) is ω ൎ 1 െ
ଵ

ଶ
ϵଶ, 

which is shifted slightly from the frequency ω ൌ 1 of 

(16). After a very long time t ൎ Oሺϵିଶ), this frequency 
error will have a significant cumulative effect. 



 
Figure 9. the difference between exact solution and perturbation theory 

B.2 Two-Timing  
 
 
The elementary note exists about weakly nonlinear 
oscillation: There are going to be (at least) two time scale 
in weakly nonlinear solution. We’ve already met this 
phenomenon in Figure 8, where the amplitude of spiral 
grew very slowly compared to the cycle time. An 
analytical Method called Two-Timing builds in fact of 
two time scales from the start, and produce better 
approximation than regular perturbation theory. In fact, 
more than two times can be used, but we’ll stick to the 
simplest case. To the apply Two_Timing to (1), let τ ൌ t 
denote the fast order O(1) time and let T ൌ ϵt denote the 
slow time. We’ll treat these two times as if they were 
independent variables. in particular , function of the slow 
time T will be regarded as constant on the fast time scale 
τ . 
Now we can turn to mechanics of method. we expand the 
solution of (1) as a series 
xሺt, ϵሻ ൌ x଴ሺτ, Tሻ ൅ ϵxଵሺτ, Tሻ ൅ Oሺϵଶሻ    (20)  
The time derivates in (1) are transformed using the chain 
rule: 

xሶ ൌ
ୢ୶

ୢ୲
ൌ  

ப୶

பτ
൅

ப୶

ப୘
 
ப୘

பτ
ൌ

ப୶

பτ
൅ ϵ

ப୶

ப୘
      (21) 

A subscript notation for differential is more compact, thus 
we write (20) as  
xሶ ൌ ∂τx ൅ ϵ ∂୘x    (22) 
After substituting (20) into (22) and collecting powers of 
ϵ, we find  
xሶ ൌ ∂τx଴ ൅ ϵሺ∂τxଵ ൅ ∂୘x଴ሻ ൅ Oሺϵଶሻ     (23)  
Similarly,  
xሷ ൌ ∂ττx଴ ൅ ϵሺ∂ττxଵ ൅ 2∂τ୘x଴ሻ ൅ Oሺϵଶሻ    (24) 
To demonstrate the power of this method, first apply it to 
(15) 
After substituting (23) and (24) for xሶ  and xሷ , we get  
∂ττx଴ ൅ ϵሺ∂ττxଵ ൅ 2∂τ୘x଴ሻ ൅ 2ϵ ∂τx଴ ൅ x଴ ൅ ϵxଵ ൅
Oሺϵଶሻ ൌ 0   (25) 

Collecting powers of ϵ yields a pair of differential 
equations: 
Oሺ1ሻ: ∂ττx଴ ൅ x଴ ൌ 0   (26) 
ܱሺϵሻ: ∂ττxଵ ൅ 2∂τ୘x଴ ൅ 2∂τx଴ ൅ xଵ ൌ 0   (27) 
As same as regular perturbation theory, we can solve (26) 
and (27) and we get  
x଴ሺτ, Tሻ ൌ eିτsin ሺτሻ    (28) 
Hence 
x= eିτ sinሺτሻ ൅ Oሺϵሻ    (29) 
is the approximate solution predicted by Two-Timing . 
Figure 10. compares the Two-Timing solution (29) to the 
exact solution (7) for ϵ ൌ 0.1 . The two curves are almost 
indistinguishable ,even though ϵ is not terribly small. This 
is a characteristic feature of the method- it often works 
better than it has any right to.  
If we want to go further with this problem, we could 
either solve for xଵand higher order corrections, or 
introduce a super-flow time ߞ ൌ ϵଶt  to investigate the 
long term phase shift caused by the Oሺϵଶሻ error in 
frequency. 

 
Figure 10. the difference of exact and two timing method 

 
 
The equation is  xሷ ൅ ϵሺxଶ െ 1ሻxሶ ൅ x ൌ 0 . Using (23) and 
(24) and collecting powers of ϵ, we find the following 
equations:        
Oሺ1ሻ: ∂ττx଴ ൅ x଴ ൌ 0    (30)              
 ܱሺϵሻ: ∂ττxଵ ൅ xଵ ൌ െ2∂τ୘x଴ െ ሺxଶ െ 1ሻ ∂τx଴    (31) 
The Oሺ1ሻ equation is a simple harmonic oscillator. Its 
general solution can be written as  
x଴ ൌ rሺTሻcos ሺτ൅ φሺTሻሻ   (32) 
Where rሺTሻ and φሺTሻ are the slowly-varying amplitude 
and phase of x଴. 
To find equation governing rሺTሻ and φሺTሻ, we insert (32) 
into (31). this yield  
∂ττxଵ ൅ xଵ ൌ െ2ሺr′ sinሺτ൅ φሻ ൅ rφ′cos(τ൅ φሻ െ
rsinሺτ൅ φሻሾrଶcosଶሺτ൅ φሻ െ 1ሿ   (33) 
We need to avoid resonant terms on the right-hand side. 
These are terms proportional to cos(τ൅ φሻ and sin(τ൅



φሻ. Some terms of this form already appear explicitly in 
(33). But-and there is also important point- there is a 
resonant term jurking in sinሺτ൅ φሻcosଶሺτ൅ φሻ,because 
of the trigonometric identity  

sinሺτ൅ φሻcosଶሺτ൅ φሻ ൌ
ଵ

ସ
ሾsinሺτ൅ φሻ ൅ sin ሺ3ሺτ൅ φሻሻሿ    

(34) 
after substituting (34) into (33), we get  

∂ττxଵ ൅ xଵ ൌ ቂെ2r′ ൅ r െ
ଵ

ସ
rଷቃ sinሺτ൅ φሻ െ

ሾ2ݎφ′ሿ cosሺτ൅ φሻ െ
ଵ

ସ
rଷsin ሺ3ሺτ൅ φሻሻ     (35) 

To avoid secular term, we require  

െ2r′ ൅ r െ
ଵ

ସ
rଷ ൌ 0     (36) 

′φݎ2  ൌ 0      (37) 
First consider (36). It may be rewritten as a vector field  

r′ ൌ
ଵ

଼
ሺr െ 4rଷሻ    (38)         

On the half line r ൒ 0. Since r∗ ൌ 0 is unstable fixed 
point and r∗ ൌ 0 is stable fixed point, lim୘→∞ rሺTሻ ൌ 2. 
 

 
Figure 11.radius of limit cycle 

 

Secondly (37) implies φ′ ൌ 0 so φሺTሻ ൌ φ
଴
 for some 

constant φ
଴
. so lim୘→∞ x଴ሺτ, Tሻ ൌ 2cos ሺτ൅ φ

଴
) and 

therefore 

 lim୲→∞ xሺtሻ ൌ 2 cos൫t ൅ φ
଴
 ൯ ൅ Oሺϵሻ    (39) 

Thus xሺtሻ approaches a stable limit cycle of r ൌ 2 ൅

Oሺϵሻ. 
To find the frequency (and therefore period) implied by 
(39), let θ ൌ t ൅ φሺTሻ denote the argument of the cosine. 
Then the angular frequency ω is given by  

ω ൌ
ୢθ

ୢ୲
ൌ 1 ൅

ୢφ

ୢ୲

ୢ୘

ୢ୲
ൌ 1 ൅ ϵφ′ ൌ 1    (40) 

through first order in ϵ. Hence ω ൌ 1 ൅ Oሺϵଶሻ; if we want 

an explicit formula for this Oሺϵଶሻ correction time, we’d 
need to introduce a super flow time ߞ ൌ ϵଶt .

 
IV. CONCLUSION 

*In this paper we study van der Pol equation which is an 
important nonlinear ODE. Then we study behavior of it 
for very large and very small nonlinearity parameter in 
this equation and approximate some property of it such as 
period and frequency and radius of limit cycle. In 
addition, we can improve these approximations by using 
of more terms in regular perturbation methods or using of 
super flow time in Two-Timing method to achieve better 
approximation. 
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