
 

 

Abstract—Currently multi-core processors have been 

available on most personal computers. To get the maximum 

benefit of computational power from the multi-core 

architecture, we need a new design on existing algorithms and 

software. We propose the parallelization of the rough k-means 

clustering algorithm. In the rough k-means clustering 

algorithm, each cluster has been formed regarding the two 

approximations, a lower and an upper approximation. To make 

the rough k-means clustering be better parallelized, we employ 

Erlang as a language for concurrent programming. Sending 

and receiving messages between a master and the concurrently 

created process of the Erlang language are done in an 

asynchronous manner. Therefore, the implementation can be 

highly parallel and fault tolerant. The experimental results 

demonstrate considerable speedup rate of the proposed parallel 

rough k-means clustering method, compared to the serial rough 

k-means approach. 

 
Index Terms—Rough clustering, parallel rough k-means, 

Erlang, concurrent functional language 

 

I. INTRODUCTION 

LUSTERING algorithm is an unsupervised learning. In 

clustering methodologies, data are partitioned into 

smaller groups with a general criterion that data in the same 

group should be more similar or closer to each other than 

those in different groups. The clustering method most widely 

used is the k-means method. But rough clustering produces 

different solutions because of the possibility of multiple 

cluster membership of objects. 

Rough clustering is an extension of the theory of rough or 

approximation sets, introduced by Pawlak [4]. In the rough 

k-means clustering algorithm proposed by Lingras [3], each 

cluster has two approximations, a lower and an upper 

approximation. The lower approximation is a subset of the 

 
Manuscript received December 18, 2010; revised January 20, 2011. 

This work was supported by the National Research Council of Thailand 

(NRCT) and Suranaree University of Technology.  

W. Chongnguluam is a master student with the school of Computer 

Engineering, Suranaree University of Technology, Thailand (corresponding 

author, phone: +66-(0)86-677-4904; fax: +66-(0)44-224602; e-mail: 

singpor@gmail.com).  

K. Intharachatorn is a master student with the school of Computer 

Engineering, Suranaree University of Technology, Thailand (e-mail: 

b4900313kanjana@ gmail.com). 

P. Sinahawattana is a master student with the school of Computer 

Engineering, Suranaree University of Technology, Thailand (e-mail: 

prapatsorn.sin@gmail.com). 

N. Kerdprasop is an associate professor with the school of Computer 

Engineering and the principal researcher of the Data Engineering and 

Knowledge Discovery (DEKD) research unit, Suranaree University of 

Technology, Thailand (e-mail: nittaya@sut.ac.th). 

upper approximation. The members of the lower 

approximation belong to any other cluster. The data objects 

in an upper approximation may belong to the cluster. Since 

their membership is uncertain they must be member of an 

upper approximation of at least another cluster. New 

centroid of the rough k-means algorithm depends on three 

parameters Wl, Wu and ε threshold.  

Parallelization is one obvious solution to this problem and 

several ideas have been proposed since the last two decades. 

This paper focuses on parallelizing rough k-means algorithm 

using Erlang language, which uses the concurrent functional 

paradigm and communicates among hundreds of active 

processes via a message passing method. The processes in 

Erlang virtual machine are lightweight and do not share 

memory with other processes. Therefore, it is an ideal 

language to implement a large scale parallelizing algorithm. 

The organization of the rest of this paper is as follows. 

Discussion of related work in rough clustering and parallel 

cluster in other algorithm is presented in Section 2. Our 

proposed algorithm, a lightweight parallel rough clustering 

is explained in Section 3. The implementation of the 

proposed algorithm as Erlang functions and experimental 

results are demonstrated in Section 4. The source code of 

our implementation is also provided in the appendix section. 

The conclusion as well as future research direction appears 

as the last section of this paper.  

II. RELATED WORK 

Rough set theory introduced by Zdzislaw Pawlak [4] is a 

new mathematical tool to deal with vagueness and 

uncertainty. Rough set theory applied to the clustering 

method can take advantage of the multi-core processors in 

that programs implementing its methods may easily run on 

parallel computers. Some refinements of rough k-means 

clustering were proposed by Georg Peters in 2005 [5]. He 

analyze Lingras algorithm [3] with respect to objective 

function, numerical stability, the stability of the clusters and 

others. He suggests two solutions to tackle the problem of 

initial parameter selection in rough k-means clustering. 

Pawan Lingras [3] presented combination of the efficiency 

of rough K-means algorithm with the ability of genetic 

algorithms to find a near optimal solution based on a cluster 

quality measure. 

The study of parallel k-means algorithm [8] adopted data 

parallel strategy and master/slave model in a parallel 

manner. Zhang and Colleagues [8] introduced dynamic load 

balance for enhancing the efficiency of parallel K-means. 

Their experiments demonstrate that presented parallel K-

Parallelized Rough K-means Clustering with 

Erlang Programming 

Weerasak Chongnguluam, Kanjana Intharachatorn, Prapatsorn Sinahawattana, and  

Nittaya Kerdprasop, Member, IAENG 

C 



 

means has higher efficiency and general usage. Prasad [6] 

modified the method to initial centroid selection by using 

electrostatic data partitioning and used node merging 

algorithm. Tian and colleagues [7] presented a refined initial 

cluster centers method and a parallel k-means scheme. 

Li and Fang [2] presented two parallel clustering 

algorithms on a single instruction multiple data (SIMD) 

architecture. Kittisak Kerdprasop and Nittaya Kerdprasop 

[1] proposed the parallelization of the well-known k-means 

clustering algorithm by employing a single program multiple 

data (SPMD) approach based on a message passing model. 

In this paper, we propose implementation of the rough k-

means clustering algorithm in parallel by using Erlang 

Programming. We compare the performances of the parallel 

rough k-means clustering with the serial rough k-means 

clustering. We expect that the performance of parallel rough 

k-mean clustering algorithm is better than serial rough k-

mean clustering algorithm.  

III. PARALLEL ROUGH K-MEANS CLUSTERING ALGORITHM 

In sequential rough k-means clustering, the process takes 

much time in determining the distance between each data 

points and in the step of calculating new mean points for 

each cluster. Both the distance and mean calculation 

processes must be repeated several times, so we design our 

algorithm to improve the performance by dividing the work 

of both of these processes into P processes, and then 

calculate the values from each P processes before running in 

the next step. Division processes of calculation into P 

process are the basis of the parallel programming and we 

will call our algorithm the Parallel Rough K-Means (PRKM) 

algorithm. The pseudo code of the PRKM algorithm is 

shown in Figure 1 and the program source codes are 

provided in appendix. 

 

INPUT:  data set,  

                number of clusters, K, and  

                Wl, Wb, and ε threshold constants 

Output: K-centroids,  

               lower approximation and upper approximation of 

                         each cluster 

Steps:  

1.   Set initial centroid C = <C1, C2, ..., Ck> 

2.   Partition data into P subgroups 

3.   For each P, 

4.        Create a new process for calculate distance 

5.        Send result back to parent process 

6.        Receive distances and initial members of lower  

                        initialize of K clusters from P 

7.        Calculate upper approximation of each member in K  

                       clusters 

8.   Recalculate new centroid C' 

9.   If difference(C, C') 

10.     Then set C to be C' and go back to step 3 

11.     Else stop and return C as well as cluster members 

 

Fig.1. Parallel Rough K-Means (PRKM) algorithm 

 

The PRKM algorithm is the main process responsible for 

creating new parallel processes, sending centroids to the 

created processes and receiving the cluster distances. The 

steps repeat as long as the old and new centroids do not 

converge or do not reach the maximum iteration limit. 

 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

We implement our algorithm with the Erlang language 

(http://www.erlang.org, release R14B). Each process of 

Erlang is a lightweight process. Thai is each process does 

not use shared memory and running in the concurrently 

manner. Main part of the PRKM implementation as an 

Erlang program is presented in Figure 2. Main function of 

the given program is the function go(). That dataset to be 

used in this clustering program is stored in the sample4.txt 

file. The two definitions of the rough_cluster functions are 

responsible for the clustering method.  

 

 

Fig.2. Main module of PRKM program coding in Erlang language 



 

 

Fig.3. Compiling and running the PRKM program 

 

The screenshot of compiling and running the program is 

shown in Figure 3. The program is within the module 

roughcluster_parallel. Therefore, invoking the go() function 

has to be done via the command roughcluster_parallel:go(). 

In the experiments we have identified a number of 

processes to be 8 processes and set the values of Wl to be 

0.7, Wb to be 0.3, ε threshold to be 0.2. The third line in 

figure 3 shows a command to divide the dataset into 4 

clusters. When the program has finished, it will show the 

time used for calculations (9,712,938 microseconds or 

9.712938 seconds as shown in the tenth line of figure 3), 

together with the new centroid of each cluster at the end of 

the clustering process. In the experiment we generate 

synthetic two-dimensional data. The final output of our 

clustering program is therefore the two-dimensional 

centroid, or central point, of each cluster. 

Each data point is stored as a list, then it was divided into 

8 parts and then it will be calculated for the rough k-means 

clustering. The data used in our experiments will be 

randomly generated by determining the value of the two-

dimensional data point in the range of 1 to 10000. The 

number of experimental data were 50, 500, 1000, 10000, 

50000, 100000, and 500000. The execution time of 

sequential rough k-means versus the parallel scheme, 

PRKM, is shown in Table 1. We perform a series of 

experiments with the laptop computer Intel Core 2 Duo 

2.26GHz/core with 3GB memory space. 

 

Table1. The execution time of sequential rough k-means versus 

parallel rough k-means (PRKM) 

 

From the experimental results shown in Table 1, it can be 

noticed that when the number of data were small (50 and 

1000 data points), the parallel program run slower than the 

sequential one. This may be the results of the overhead in 

the parallel initialization step to spawn concurrent processes. 

The effect of running time saving is observable when the 

number of data points is large (more than 100,000 two-

dimensional data points). Running time comparison of 

parallel versus sequential rough k-means is graphically 

shown in Figure 4. Percentage of running time speedup is 

also provided in Figure 5. 

 

 
Fig.4. Running time comparison of parallel versus sequential 

rough k-means 
 

 
Fig.5 Percentage of running time speedup at different data sizes 

 

V. CONCLUSION 

Rough k-means clustering is a clustering method that is 

discovered recently base on rough set theory to help in 

approximate clustering with data with uncertain membership 

states. The clustering results are the lower and upper 

approximation. Rough clustering is gaining popularity for 

the potential use in Web mining and Web usage mining.  

In this paper, we propose the algorithm and the 

implementation of rough k-means clustering algorithm in 

parallel style by using Erlang Programming language. 

Parallelization is achieved by dividing data into groups 

equally and then dividing processes to find the distances and 

the mean of each cluster.  

The results show that by working parallel, the speed of 

calculation increases. The speed is increased significantly as 

compared to the sequential program when the number of 

data increases. Our future work will focus on the real 

applications in web mining.  



 

  

APPENDIX 

-module(roughcluster_parallel). 

-compile(export_all). 

 

mysplit(DataSet,_Num,NumPart,Result) 

when  length(DataSet) =< NumPart ->  

lists:reverse([DataSet|Result]); 

mysplit(DataSet,0,_NumPart,Result) ->  

lists:reverse([DataSet|Result]); 

mysplit(DataSet,Num,NumPart,Result) ->  

{Part,Rest} = lists:split(NumPart,DataSet), 

mysplit(Rest,Num-1,NumPart,[Part|Result]). 

     

rough_cluster(DataSet,T,Wl,Wu,N) ->  

Means = [E || E <- lists:zip(lists:seq(1,N), 

   get_centroid(DataSet,N))], 

    DataSetList =  

     mysplit(DataSet,8,(length(DataSet) div 8),[]), 

   {Time,Result} = 

     timer:tc(?MODULE,rough_cluster, 

         [DataSetList,N,T,Means,Wl,Wu,100,0]). 

 

rough_cluster(_,_,_,Means,_,_,0,_) -> Means; 

rough_cluster(DataSet,N,T,Means,Wl,Wu,I,Count) ->  

Closest = determine_closest2(DataSet,Means), 

Approx = determine_approximation(Closest,Means,T, 

[{K,{[],[]}} || K <- lists:seq(1,N)]), 

NewMeans = 

calculate_means_rough(Approx,N,Wl,Wu,[]), 

AllTrue =  

    lists:all(fun(X)->lists:member(X,Means)end,  

NewMeans), 

if AllTrue == true -> NewMeans; 

    true -> rough_cluster(DataSet,N,T,NewMeans, 

Wl,Wu,I-1,Count+1) 

    end. 

go() ->  

{_,N} = io:read("enter number of clusters:> "), 

     {ok,DataSet} = file:consult("sample4.txt"), 

      rough_cluster(DataSet,0.2,0.7,0.3,N). 

get_centroid(DataSet,Cluster)  -> 

get_centroid(DataSet,Cluster,[]). 

 

get_centroid(_DataSet,0,R) -> lists:reverse(R); 

get_centroid([],_,R) -> lists:reverse(R); 

get_centroid([H|T],N,R) -> 

case lists:member(H,R) of 

true -> get_centroid(T,N,R); 

 _     -> get_centroid(T,N-1,[H|R]) 

end. 

 

random_assign_approximation([],_,Result) -> Result; 

random_assign_approximation([H|T],K,Result) -> 

N = random:uniform(K),  

{LowerApp,UpperApp} = proplists:get_value(N,Result), 

NewResult = [{N,{[H|LowerApp],UpperApp}} |  

            proplists:delete(N,Result)], 

random_assign_approximation(T,K,NewResult). 

 

calculate_means([]) -> 0; 

calculate_means(H) ->  

[HR|_T] = H, 

  Dim = length(HR), 

GroupByDim = [[lists:nth(N,L) || L <- H] ||  

             N <- lists:seq(1,Dim)], 

[lists:sum(G)/length(G) || G <- GroupByDim]. 

 

calculate_means_rough(_,0,_,_,Result) -> Result; 

calculate_means_rough(Cluster,K,Wl,Wb,Result) -> 

{LowerApp, UpperApp} =  

proplists:get_value(K,Cluster), 

Mk = case UpperApp of 

[]     -> calculate_means(LowerApp); 

_Else ->  

LMeans =  

      [Wl*M || M <- calculate_means(LowerApp)], 

UMeans =  

            [Wb*M || M <- calculate_means(UpperApp)], 

[L+U || {L,U} <- lists:zip(LMeans,UMeans)]  

end, 

NewMean = [{K,Mk}|Result], 

calculate_means_rough(Cluster,K-1,Wl,Wb,NewMean). 

 

euclidean_distance(X1,X2) -> math:pow((X1-X2),2). 

 

distance_cluster(Xn,Mk) -> 

{K,M} = Mk, 

{K,math:sqrt(lists:sum(lists:map(fun({X1,X2}) -> 

euclidean_distance(X1,X2) end, lists:zip(Xn,M))))}. 

 

min_distance(Xn,Means) -> 

Dist = [distance_cluster(Xn,Mk) || Mk <- Means], 

[FirstDist |_Rest] = Dist, 

    {H,_} = lists:foldl(fun({K1,M1},{K2,M2}) -> 

                   if M1 < M2 -> {K1,M1}; 

                       true     -> {K2,M2} 

                   end 

                  end,FirstDist,Dist),H. 

     
determine_closest([],_Means,Result) -> Result; 

determine_closest([H|T],Means,Result) -> 

Min = min_distance(H,Means), 

    {Lower,Upper} =  

proplists:get_value(Min,Result,{[],[]}), 

    NewResult = [{Min,{[H|Lower],Upper}}  

           | proplists:delete(Min,Result)], 

determine_closest(T,Means,NewResult). 

 

determine_closest2(DataSetList,Means) -> 

lists:foreach(fun(H) -> 

spawn(?MODULE,determine_closest_process, 

             [self(),H,Means]) 

end, DataSetList), 

determine_closest_response(length(DataSetList), 

    length(Means),[]). 

 



 

determine_closest_process(Parent,DataList,Means) ->  

Parent ! determine_closest3(DataList,Means,[]). 

 

determine_closest3([],_Means,Result) -> Result; 

determine_closest3([H|T],Means,Result) -> 

Min = min_distance(H,Means), 

determine_closest3(T,Means,[{Min,H}|Result]). 

 

determine_closest_response(0,LMean,Result) ->  

FlattenResult = lists:flatten(Result), 

    lists:map(fun(M) -> 

     Lowers = proplists:get_all_values(M,FlattenResult), 

           {M,{Lowers,[]}} 

       end, 

    lists:seq(1,LMean)); 

 

determine_closest_response(N,LMean,Result) -> 

receive 

    R ->  

     determine_closest_response(N-1,LMean,[R|Result]) 

end. 

      
determine_set_T(H,Mh,Means,Epsilon) -> 

lists:filter(fun(Mk) -> 

{_,Dist1} = distance_cluster(H,Mk), 

{_,Dist2} = distance_cluster(H,Mh), 

    ((Dist1 - Dist2) =< Epsilon) 

    end, 

Means). 

 

determine_approximation([],_,_,Result) -> Result; 

determine_approximation([H|T],Means,Epsilon,Result) -> 

{K,Data} = H, 

{Lower,_} = Data, 

Mh = proplists:get_value(K,Means), 

OtherMeans = proplists:delete(K,Means), 

NewResult = determine_set_T(Lower,{K,Mh}, 

          OtherMeans,Epsilon,Result), 

determine_approximation(T,Means,Epsilon,NewResult). 

 

determine_set_T([],_,_,_,Result) -> Result; 

determine_set_T([H|T],Mh,Means,Epsilon,Result) -> 

{K,_} = Mh, 

SetT = determine_set_T(H,Mh,Means,Epsilon), 

 

NewResult = if  

SetT == [] -> 

{Lower,Upper}=  

          proplists:get_value(K,Result,{[],[]}), 

         [{K,{[H|Lower],Upper}} | 

           proplists:delete(K,Result)]; 

       true -> 

         upper_assign_approximation(H,[Mh|SetT],Result) 

    end, 

determine_set_T(T,Mh,Means,Epsilon,NewResult). 

 

upper_assign_approximation(_Data,[],Result) -> Result; 

upper_assign_approximation(Data,[Mt|T],Result) -> 

{K,_} = Mt, 

{Lower,Upper}= proplists:get_value(K,Result,{[],[]}), 

NewResult = [{K,{Lower,[Data|Upper]}}  

              | proplists:delete(K,Result)], 

     upper_assign_approximation(Data,T,NewResult). 

REFERENCES 

[1] K. Kerdprasop and N. Kerdprasop, “Parallelization of K-means 

Clustering on Multi-core Processors”, in Proceedings of 10th WSEAS 

International Conference on Applied Computer Science, Japan, 

October 2010, pp.472-477. 

[2] X. Li and Z. Fang, “Parallel clustering algorithms”, Parallel 

Computing, Vol.11, Issue 3, 1989, pp. 275-290. 

[3] P. Lingras, “Evolutionary Rough K-Means Clustering”, Department 

of Mathematics and Computing Science, Saint Mary’s University, 

Halifax, 2009, pp. 68-75. 

[4] Z. Pawlak, “Rough sets”, International Journal of Information and 

Computer Science, Vol. 11, 1982, pp. 145–172. 

[5] G. Peters, “Some refinements of rough k-means clustering”, 

Department of Computer Science/Mathematics, Munich University of 

Applied Sciences, 2006. 

[6] A. Prasad, “Parallelization of k-means clustering algorithm”, Project 

Report, University of Colorado, 2007, pp. 1-6. 

[7] J. Tian, L. Zhu, S. Zhang, and L. Liu, “Improvement and parallelism 

of k-means clustering algorithm”, Tsignhua Science and Technology, 

Vol. 10, No. 3, 2005, pp. 277-281. 

[8] Y. Zhang, Z. Xiong, J. Mao, and L. Ou, “The study of parallel k-

means algorithm”, in Proceedings of the 6th World Congress on 

Intelligent Control and Automation, 2006, pp. 5868-5871. 

 




